organic compounds
Tris(2-amino-1,3-thiazolium) hydrogen sulfate sulfate monohydrate
aDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic, and bInstitute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: irena.mat@atlas.cz
The centrosymmetric 3H5N2S+·HSO4−·SO42−·H2O, is based on chains of alternating anions and water molecules (formed by O—H⋯O hydrogen bonds). The chains are interconnected with the 2-amino-1,3-thiazolium cations via strong N—H⋯O and weak C—H⋯O hydrogen-bonding interactions into a three-dimensional network.
of the novel semi-organic compound, 3CRelated literature
For the use of 2-aminothiazole as organo-functionalized films of TiO2 or SiO2 particles for decontamination of aqueous media or ethanol fuel, see: Cristante et al. (2007); Takeuchi et al. (2007) and for the use of 2-aminothiazole and its derivatives as anticorrosive films, see: Ciftci et al. (2011). For use of 2-aminothiazole and its derivatives in medicine, see: De et al. (2008); Aridoss et al. (2009); Franklin et al. (2008); Li et al. (2009); Alexandru et al. (2010). For the non-linear optical properties of similar aminotriazole compounds, see: Yesilel et al. (2008); Matulková et al. (2007, 2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536811046010/vm2128sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811046010/vm2128Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811046010/vm2128Isup3.cml
Crystals of the title compound, were obtained from a solution of 1.0 g of 2-aminothiazole (97%, Aldrich) and 0.56 ml of sulfuric acid (96%, Lachema) in 200 ml of water. The solution was left to crystallize at room temperature for several weeks. The colourless crystals obtained were filtered off, washed with methanol and dried in a vacuum desiccator over KOH.
The infrared spectrum was recorded at room temperature using DRIFTS and the nujol or fluorolube mull techniques on a Nicolet Magna 6700 FTIR spectrometer with 2 cm-1 resolution and Happ-Genzel apodization in the 400–4000 cm-1 region.
FTIR spectrum (cm-1): 3315 s; 3235 s; 3119 s; 3085 s; 2980 m; 2930 m; 2850 m; 2758 m; 1727 w; 1621 s; 1576 m; 1434 m; 1398 w; 1339 w; 1276 m; 1189 mb; 1079 m; 1062 m; 1028 m; 1005 mb; 887 mb; 868 m; 860 m; 772 mb; 739 sh; 732 m; 698 m; 639 m; 600 s; 592 sh; 562 s; 550 sh; 494 m; 408 mb.
The Raman spectrum of polycrystalline sample was recorded at room temperature on a Thermo Scientific DXR Raman microscope interface to on Olympus microscope (3 cm-1 resolution, 780 nm
excitation, 15–20 mW power at the sample) in the 50–3300 cm-1 region.Raman spectrum (cm-1): 3164 m; 3157 m; 3085 m; 3082 m; 3074 w; 1684 w; 1606 w; 1557 m; 1410 w; 1366 m; 1282 m; 1174 m; 1076 mb; 1032 sh; 977 m; 901 wb; 879 wb; 863 wb; 748 vs; 708 m; 593 w; 568 m; 418 w; 395 m; 267 vw; 113 sh; 89 m; 79 m; 62 m.
H atoms attached to C and N atoms were calculated in geometrically idealized positions, Csp2 - H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C). The positions of H atoms attached to O and N atoms were localized in difference Fourier maps, the distances were left unrestrained and the hydrogen atom were refined isotropically with Uiso(H) = 1.2 Ueq of parent atom.
Recent ecological studies show interest in TiO2 or SiO2 particles modified by 2-aminothiazole. Sorption and photocatalytic reduction or degradation in aqueous solutions by 2-aminothiazole modified TiO2 particles has been described (Cristante et al., 2007). Metal impurities in ethanol fuel can be detected by the electrodes modified with 2-aminothiazole organo-functionalized silica (Takeuchi et al., 2007).
The last few years, there is a huge interest in the field of fundamental research of conducting polymers such as polyaminothiazoles (Ciftci et al., 2011).
Natural and synthetic thiazole derivatives find applications as antioxidants, antibacterial drugs and fungicide (De et al. 2008; Aridoss et al., 2009). Anti-inflammatory, analgesic and antipyretic activities were observed for thiazolyl and benzothiazolyl derivatives (Franklin et al., 2008). The medical application of metal complexes of 2-aminothiazole and its derivatives involve their use as inhibitors of human cancer, Alzheimers disease, antitumor activity and activity against leukemia (Li et al., 2009; Alexandru et al., 2010).
The salt, bis(2-aminothiazolium) squarate dihydrate (Yesilel et al., 2008), was widely studied for hydrogen bond interactions, which are very attractive in the biological activities, biochemical processes, material and supramolecular chemistry.
The preparation of the title compound was motivated by the previous study on salts or cocrystals of similar aminotriazoles (Matulková et al., 2007, 2008). 2-aminothiazole compounds easily build hydrogen bonding networks, very useful for the preparation of materials with potential non-linear optical properties. Unfortunately, the title compound crystallizes in the centrosymmetric
P21/n, which excludes the second order non-linear optical properties.The
of the title compound (Fig. 1) is based on chains of alternating anions and water molecules formed via O—H···O hydrogen bonds with donor-acceptor distances in the interval 2.474 (2)–2.7628 (19) Å (Fig. 2). The chains are interconnected with 2-aminothiazolium (1+) cations via strong N—H···O (2.695 (2)–2.968 (2) Å) and weak C—H···O (3.238 (2)–3.380 (2) Å) hydrogen interactions (Table 1) into a three-dimensional network (Fig. 3). The cation rings are oriented along the axis b and are perpendicular to the ac plane.For the use of 2-aminothiazole as organo-functionalized films of TiO2 or SiO2 particles for decontamination of aqueous media or ethanol fuel, see: Cristante et al. (2007); Takeuchi et al. (2007) and for the use of 2-aminothiazole and its derivatives as anticorrosive films, see: Ciftci et al. (2011). For use of 2-aminothiazole and its derivatives in medicine, see: De et al. (2008); Aridoss et al. (2009); Franklin et al. (2008); Li et al. (2009); Alexandru et al. (2010). For the non-linear optical properties of similar aminotriazole compounds, see: Yesilel et al. (2008); Matulková et al. (2007, 2008).
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The atom-labelling scheme of tris(2-aminothiazolium) hydrogen sulfate - sulfate monohydrate. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A packing scheme of the anions and water molecules in the crystals of tris(2-aminothiazolium) hydrogen sulfate - sulfate monohydrate (projection along [010]). The dashed lines indicates the hydrogen bonds. | |
Fig. 3. A packing scheme of the structure of tris(2-aminothiazolium) hydrogen sulfate - sulfate monohydrate (projection along [010]). Hydrogen bonds are indicated by dashed lines. |
3C3H5N2S+·HSO4−·SO42−·H2O | F(000) = 1064 |
Mr = 514.59 | Dx = 1.709 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2yn | Cell parameters from 19931 reflections |
a = 11.6418 (1) Å | θ = 3.8–66.9° |
b = 9.8549 (1) Å | µ = 5.89 mm−1 |
c = 17.4291 (1) Å | T = 120 K |
β = 90.3853 (7)° | Plate, colourless |
V = 1999.57 (3) Å3 | 0.52 × 0.15 × 0.10 mm |
Z = 4 |
Agilent Xcalibur Atlas Gemini ultra diffractometer | 3558 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 3455 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.040 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 67.0°, θmin = 4.6° |
Rotation method data acquisition using ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −11→11 |
Tmin = 0.136, Tmax = 1.000 | l = −18→20 |
25544 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0412P)2 + 1.5439P] where P = (Fo2 + 2Fc2)/3 |
3558 reflections | (Δ/σ)max = 0.001 |
280 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.68 e Å−3 |
3C3H5N2S+·HSO4−·SO42−·H2O | V = 1999.57 (3) Å3 |
Mr = 514.59 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 11.6418 (1) Å | µ = 5.89 mm−1 |
b = 9.8549 (1) Å | T = 120 K |
c = 17.4291 (1) Å | 0.52 × 0.15 × 0.10 mm |
β = 90.3853 (7)° |
Agilent Xcalibur Atlas Gemini ultra diffractometer | 3558 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 3455 reflections with I > 2σ(I) |
Tmin = 0.136, Tmax = 1.000 | Rint = 0.040 |
25544 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.33 e Å−3 |
3558 reflections | Δρmin = −0.68 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogen atoms were localized from the difference Fourier map. Despite of that,all hydrogen atoms connected to C were constrained to ideal positions. The N—H and O—H distances were left unrestrained. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.29359 (14) | 0.74559 (18) | 0.51444 (9) | 0.0168 (3) | |
C2 | 0.16124 (15) | 0.69841 (19) | 0.60694 (10) | 0.0203 (4) | |
H2 | 0.1057 | 0.7191 | 0.6432 | 0.024* | |
C3 | 0.19494 (15) | 0.57200 (18) | 0.59119 (10) | 0.0207 (4) | |
H3 | 0.1662 | 0.4948 | 0.6150 | 0.025* | |
O1 | −0.10315 (11) | 0.07767 (13) | 0.22736 (8) | 0.0248 (3) | |
O2 | 0.03550 (11) | 0.11665 (13) | 0.12781 (7) | 0.0231 (3) | |
O3 | −0.10426 (12) | 0.29105 (13) | 0.15778 (8) | 0.0261 (3) | |
H1O3 | −0.153 (2) | 0.265 (2) | 0.1193 (14) | 0.031* | |
O4 | 0.04573 (11) | 0.24617 (13) | 0.24574 (7) | 0.0264 (3) | |
O5 | 0.11893 (12) | 0.41726 (14) | 0.36173 (8) | 0.0243 (3) | |
H2O5 | 0.127 (2) | 0.354 (3) | 0.3937 (14) | 0.029* | |
H1O5 | 0.091 (2) | 0.380 (3) | 0.3292 (15) | 0.029* | |
O6 | 0.16351 (11) | 0.06136 (12) | 0.56939 (7) | 0.0232 (3) | |
O7 | 0.29107 (11) | 0.10060 (13) | 0.46267 (8) | 0.0259 (3) | |
O8 | 0.10714 (11) | 0.21584 (13) | 0.46956 (7) | 0.0239 (3) | |
O9 | 0.25934 (12) | 0.27724 (13) | 0.55539 (8) | 0.0308 (3) | |
S1 | −0.02774 (3) | 0.17660 (4) | 0.19126 (2) | 0.01635 (10) | |
S2 | 0.20561 (3) | 0.16181 (4) | 0.51308 (2) | 0.01708 (10) | |
S3 | 0.29952 (4) | 0.57034 (4) | 0.52038 (2) | 0.01888 (10) | |
N1 | 0.35685 (14) | 0.82017 (17) | 0.46841 (9) | 0.0221 (3) | |
H1N1 | 0.399 (2) | 0.780 (2) | 0.4378 (14) | 0.026* | |
H2N1 | 0.344 (2) | 0.903 (3) | 0.4650 (13) | 0.026* | |
N2 | 0.21729 (13) | 0.79555 (16) | 0.56378 (8) | 0.0178 (3) | |
H1N2 | 0.2031 (19) | 0.875 (3) | 0.5679 (12) | 0.021* | |
C7 | 0.08543 (14) | 0.75482 (19) | 0.37523 (10) | 0.0180 (3) | |
C8 | 0.12455 (15) | 0.96823 (19) | 0.33003 (10) | 0.0223 (4) | |
H8 | 0.1162 | 1.0619 | 0.3267 | 0.027* | |
C9 | 0.19866 (16) | 0.89764 (19) | 0.28789 (11) | 0.0243 (4) | |
H9 | 0.2476 | 0.9356 | 0.2518 | 0.029* | |
S5 | 0.19216 (4) | 0.72483 (5) | 0.30915 (2) | 0.02143 (10) | |
N5 | 0.03629 (14) | 0.65995 (17) | 0.41708 (9) | 0.0223 (3) | |
H1N5 | −0.012 (2) | 0.683 (2) | 0.4538 (14) | 0.027* | |
H2N5 | 0.055 (2) | 0.580 (3) | 0.4078 (13) | 0.027* | |
N6 | 0.06105 (13) | 0.88732 (16) | 0.37947 (8) | 0.0200 (3) | |
H1N6 | 0.003 (2) | 0.915 (2) | 0.4024 (13) | 0.024* | |
S4 | −0.01139 (4) | 0.57716 (4) | 0.14954 (2) | 0.020 | |
C4 | 0.00150 (14) | 0.75220 (18) | 0.15074 (10) | 0.017 | |
C5 | −0.13895 (15) | 0.71377 (19) | 0.23921 (10) | 0.022 | |
H5 | −0.1933 | 0.7379 | 0.2757 | 0.026* | |
C6 | −0.11839 (16) | 0.58563 (19) | 0.21834 (10) | 0.0230 (4) | |
H6 | −0.1565 | 0.5106 | 0.2381 | 0.028* | |
N3 | −0.07096 (12) | 0.80736 (16) | 0.20091 (8) | 0.0176 (3) | |
H1N3 | −0.0797 (19) | 0.889 (3) | 0.2095 (12) | 0.021* | |
N4 | 0.07243 (14) | 0.82190 (17) | 0.10758 (10) | 0.0238 (3) | |
H1N4 | 0.116 (2) | 0.782 (3) | 0.0809 (14) | 0.029* | |
H2N4 | 0.073 (2) | 0.906 (3) | 0.1111 (13) | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0194 (8) | 0.0133 (8) | 0.0176 (8) | 0.0016 (6) | −0.0015 (6) | −0.0017 (6) |
C2 | 0.0194 (8) | 0.0210 (9) | 0.0206 (8) | −0.0009 (7) | 0.0042 (7) | −0.0008 (7) |
C3 | 0.0222 (8) | 0.0190 (9) | 0.0208 (8) | −0.0029 (7) | 0.0025 (7) | 0.0020 (7) |
O1 | 0.0255 (6) | 0.0157 (6) | 0.0333 (7) | −0.0002 (5) | 0.0138 (5) | 0.0015 (5) |
O2 | 0.0280 (7) | 0.0184 (6) | 0.0231 (6) | −0.0021 (5) | 0.0101 (5) | −0.0029 (5) |
O3 | 0.0332 (7) | 0.0145 (6) | 0.0305 (7) | 0.0028 (5) | −0.0066 (6) | −0.0013 (5) |
O4 | 0.0310 (7) | 0.0227 (7) | 0.0255 (7) | −0.0009 (6) | −0.0037 (5) | −0.0041 (5) |
O5 | 0.0306 (7) | 0.0198 (7) | 0.0225 (7) | −0.0021 (5) | 0.0012 (6) | −0.0019 (6) |
O6 | 0.0280 (6) | 0.0156 (6) | 0.0260 (6) | 0.0041 (5) | 0.0109 (5) | 0.0048 (5) |
O7 | 0.0255 (7) | 0.0224 (7) | 0.0298 (7) | 0.0039 (5) | 0.0122 (5) | 0.0043 (6) |
O8 | 0.0229 (6) | 0.0261 (7) | 0.0228 (6) | 0.0032 (5) | 0.0004 (5) | 0.0026 (5) |
O9 | 0.0349 (7) | 0.0148 (7) | 0.0425 (8) | 0.0003 (5) | −0.0122 (6) | −0.0016 (6) |
S1 | 0.0188 (2) | 0.0124 (2) | 0.0179 (2) | −0.00083 (15) | 0.00330 (16) | −0.00037 (15) |
S2 | 0.0185 (2) | 0.0126 (2) | 0.0201 (2) | 0.00032 (15) | 0.00292 (16) | 0.00103 (15) |
S3 | 0.0230 (2) | 0.0126 (2) | 0.0210 (2) | 0.00234 (15) | 0.00299 (16) | −0.00110 (15) |
N1 | 0.0297 (8) | 0.0143 (8) | 0.0223 (8) | 0.0016 (6) | 0.0099 (6) | 0.0001 (6) |
N2 | 0.0203 (7) | 0.0123 (7) | 0.0208 (7) | 0.0027 (6) | 0.0033 (6) | −0.0020 (6) |
C7 | 0.0157 (8) | 0.0204 (9) | 0.0178 (8) | 0.0019 (7) | −0.0013 (6) | −0.0020 (7) |
C8 | 0.0240 (9) | 0.0175 (9) | 0.0253 (9) | −0.0007 (7) | −0.0001 (7) | 0.0022 (7) |
C9 | 0.0233 (9) | 0.0227 (10) | 0.0269 (9) | −0.0025 (7) | 0.0038 (7) | 0.0029 (8) |
S5 | 0.0196 (2) | 0.0205 (2) | 0.0243 (2) | 0.00299 (16) | 0.00520 (17) | −0.00179 (17) |
N5 | 0.0250 (8) | 0.0178 (8) | 0.0243 (8) | 0.0031 (6) | 0.0056 (6) | 0.0015 (6) |
N6 | 0.0188 (7) | 0.0208 (8) | 0.0204 (7) | 0.0041 (6) | 0.0044 (6) | −0.0007 (6) |
S4 | 0.025 | 0.013 | 0.024 | 0.000 | 0.004 | 0.002 |
C4 | 0.018 | 0.013 | 0.021 | 0.000 | 0.000 | 0.001 |
C5 | 0.022 | 0.022 | 0.021 | 0.001 | 0.006 | −0.001 |
C6 | 0.0271 (9) | 0.0211 (9) | 0.0210 (9) | −0.0051 (7) | 0.0040 (7) | 0.0028 (7) |
N3 | 0.0189 (7) | 0.0120 (7) | 0.0220 (7) | 0.0011 (6) | 0.0032 (6) | −0.0014 (6) |
N4 | 0.0251 (8) | 0.0148 (8) | 0.0317 (9) | −0.0014 (6) | 0.0128 (7) | −0.0032 (7) |
C1—N1 | 1.317 (2) | C7—N5 | 1.319 (2) |
C1—N2 | 1.335 (2) | C7—N6 | 1.338 (2) |
C1—S3 | 1.7315 (18) | C7—S5 | 1.7254 (17) |
C2—C3 | 1.335 (3) | C8—C9 | 1.333 (3) |
C2—N2 | 1.384 (2) | C8—N6 | 1.390 (2) |
C2—H2 | 0.9300 | C8—H8 | 0.9300 |
C3—S3 | 1.7395 (18) | C9—S5 | 1.7446 (19) |
C3—H3 | 0.9300 | C9—H9 | 0.9300 |
O1—S1 | 1.4576 (13) | N5—H1N5 | 0.88 (2) |
O2—S1 | 1.4577 (12) | N5—H2N5 | 0.83 (3) |
O3—S1 | 1.5490 (13) | N6—H1N6 | 0.83 (2) |
O3—H1O3 | 0.91 (3) | S4—C4 | 1.7316 (18) |
O4—S1 | 1.4465 (13) | S4—C6 | 1.7369 (18) |
O5—H2O5 | 0.84 (3) | C4—N4 | 1.314 (2) |
O5—H1O5 | 0.75 (3) | C4—N3 | 1.335 (2) |
O6—S2 | 1.4797 (13) | C5—C6 | 1.336 (3) |
O7—S2 | 1.4620 (13) | C5—N3 | 1.389 (2) |
O8—S2 | 1.4701 (13) | C5—H5 | 0.9300 |
O9—S2 | 1.4908 (14) | C6—H6 | 0.9300 |
N1—H1N1 | 0.83 (3) | N3—H1N3 | 0.83 (2) |
N1—H2N1 | 0.83 (3) | N4—H1N4 | 0.80 (3) |
N2—H1N2 | 0.81 (2) | N4—H2N4 | 0.83 (3) |
N1—C1—N2 | 124.34 (17) | N5—C7—S5 | 124.39 (14) |
N1—C1—S3 | 124.81 (14) | N6—C7—S5 | 110.97 (13) |
N2—C1—S3 | 110.84 (13) | C9—C8—N6 | 113.02 (17) |
C3—C2—N2 | 113.17 (16) | C9—C8—H8 | 123.5 |
C3—C2—H2 | 123.4 | N6—C8—H8 | 123.5 |
N2—C2—H2 | 123.4 | C8—C9—S5 | 111.31 (14) |
C2—C3—S3 | 111.26 (13) | C8—C9—H9 | 124.3 |
C2—C3—H3 | 124.4 | S5—C9—H9 | 124.3 |
S3—C3—H3 | 124.4 | C7—S5—C9 | 90.40 (9) |
S1—O3—H1O3 | 115.0 (15) | C7—N5—H1N5 | 119.7 (15) |
H2O5—O5—H1O5 | 101 (3) | C7—N5—H2N5 | 116.7 (16) |
O4—S1—O1 | 112.89 (8) | H1N5—N5—H2N5 | 124 (2) |
O4—S1—O2 | 113.00 (8) | C7—N6—C8 | 114.30 (15) |
O1—S1—O2 | 111.42 (7) | C7—N6—H1N6 | 121.2 (16) |
O4—S1—O3 | 103.77 (8) | C8—N6—H1N6 | 123.1 (15) |
O1—S1—O3 | 107.65 (8) | C4—S4—C6 | 90.36 (9) |
O2—S1—O3 | 107.55 (8) | N4—C4—N3 | 124.35 (17) |
O7—S2—O8 | 111.76 (8) | N4—C4—S4 | 124.64 (14) |
O7—S2—O6 | 110.62 (7) | N3—C4—S4 | 111.01 (13) |
O8—S2—O6 | 108.90 (8) | C6—C5—N3 | 113.14 (16) |
O7—S2—O9 | 109.09 (8) | C6—C5—H5 | 123.4 |
O8—S2—O9 | 107.58 (8) | N3—C5—H5 | 123.4 |
O6—S2—O9 | 108.80 (8) | C5—C6—S4 | 111.34 (14) |
C1—S3—C3 | 90.30 (8) | C5—C6—H6 | 124.3 |
C1—N1—H1N1 | 117.7 (16) | S4—C6—H6 | 124.3 |
C1—N1—H2N1 | 119.3 (16) | C4—N3—C5 | 114.15 (15) |
H1N1—N1—H2N1 | 122 (2) | C4—N3—H1N3 | 126.5 (15) |
C1—N2—C2 | 114.42 (15) | C5—N3—H1N3 | 119.3 (15) |
C1—N2—H1N2 | 123.7 (16) | C4—N4—H1N4 | 118.6 (18) |
C2—N2—H1N2 | 121.9 (15) | C4—N4—H2N4 | 118.9 (16) |
N5—C7—N6 | 124.62 (16) | H1N4—N4—H2N4 | 122 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O9i | 0.91 (2) | 1.56 (2) | 2.474 (2) | 178 (2) |
O5—H2O5···O8 | 0.84 (3) | 1.91 (3) | 2.7376 (19) | 166 (2) |
O5—H1O5···O4 | 0.75 (3) | 2.03 (3) | 2.7628 (19) | 166 (3) |
N1—H1N1···O2ii | 0.83 (2) | 2.12 (2) | 2.904 (2) | 158 (2) |
N1—H2N1···O7iii | 0.83 (3) | 2.04 (3) | 2.869 (2) | 172 (2) |
N2—H1N2···O6iii | 0.80 (3) | 1.89 (3) | 2.695 (2) | 175 (2) |
N3—H1N3···O1iii | 0.83 (3) | 1.91 (3) | 2.730 (2) | 179 (3) |
N4—H1N4···O7ii | 0.80 (3) | 2.23 (3) | 2.968 (2) | 156 (3) |
N4—H2N4···O2iii | 0.83 (3) | 2.14 (3) | 2.958 (2) | 167 (2) |
N5—H1N5···O8iv | 0.88 (2) | 2.01 (2) | 2.870 (2) | 165.0 (19) |
N5—H2N5···O5 | 0.83 (3) | 1.94 (3) | 2.755 (2) | 164 (2) |
N6—H1N6···O6iv | 0.83 (2) | 2.02 (2) | 2.814 (2) | 160 (2) |
C8—H8···O4iii | 0.93 | 2.44 | 3.238 (2) | 144 |
C9—H9···O5ii | 0.93 | 2.53 | 3.380 (2) | 152 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x, y+1, z; (iv) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | 3C3H5N2S+·HSO4−·SO42−·H2O |
Mr | 514.59 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 11.6418 (1), 9.8549 (1), 17.4291 (1) |
β (°) | 90.3853 (7) |
V (Å3) | 1999.57 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 5.89 |
Crystal size (mm) | 0.52 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Agilent Xcalibur Atlas Gemini ultra |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.136, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25544, 3558, 3455 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.075, 1.05 |
No. of reflections | 3558 |
No. of parameters | 280 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.68 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O9i | 0.91 (2) | 1.56 (2) | 2.474 (2) | 178 (2) |
O5—H2O5···O8 | 0.84 (3) | 1.91 (3) | 2.7376 (19) | 166 (2) |
O5—H1O5···O4 | 0.75 (3) | 2.03 (3) | 2.7628 (19) | 166 (3) |
N1—H1N1···O2ii | 0.83 (2) | 2.12 (2) | 2.904 (2) | 158 (2) |
N1—H2N1···O7iii | 0.83 (3) | 2.04 (3) | 2.869 (2) | 172 (2) |
N2—H1N2···O6iii | 0.80 (3) | 1.89 (3) | 2.695 (2) | 175 (2) |
N3—H1N3···O1iii | 0.83 (3) | 1.91 (3) | 2.730 (2) | 179 (3) |
N4—H1N4···O7ii | 0.80 (3) | 2.23 (3) | 2.968 (2) | 156 (3) |
N4—H2N4···O2iii | 0.83 (3) | 2.14 (3) | 2.958 (2) | 167 (2) |
N5—H1N5···O8iv | 0.88 (2) | 2.01 (2) | 2.870 (2) | 165.0 (19) |
N5—H2N5···O5 | 0.83 (3) | 1.94 (3) | 2.755 (2) | 164 (2) |
N6—H1N6···O6iv | 0.83 (2) | 2.02 (2) | 2.814 (2) | 160 (2) |
C8—H8···O4iii | 0.93 | 2.44 | 3.238 (2) | 144 |
C9—H9···O5ii | 0.93 | 2.53 | 3.380 (2) | 152 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x, y+1, z; (iv) −x, −y+1, −z+1. |
Acknowledgements
This work was supported financially by the Czech Science Foundation (grant No. 203/09/0878) and is part of the Long-term Research Plan of the Ministry of Education of the Czech Republic (No. MSM 0021620857), the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Science of the Czech Republic.
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Alexandru, M.-G., Velikovic, T. C., Jitaru, I., Grguric-Sipka, S. & Draghici, C. (2010). Cent. Eur. J. Chem. 8, 639–645. Web of Science CSD CrossRef CAS Google Scholar
Aridoss, G., Amirthaganesan, S., Kim, M. S., Kim, J. T. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 4199–4210. Web of Science CrossRef PubMed CAS Google Scholar
Ciftci, H., Testereci, H. N. & Oktem, Z. (2011). Polym. Bull. 66, 747–760. CAS Google Scholar
Cristante, V. M., Jorge, S. M. A., Valente, J. P. S., Saeki, M. J., Florentino, A. O. & Padilha, P. M. (2007). Thin Solid Films, 515, 5334–5340. CrossRef CAS Google Scholar
De, S., Adhikari, S., Tilak-Jain, J., Menon, V. P. & Devasagayam, T. P. A. (2008). Chem. Biol. Interact. 173, 215–223. Web of Science CrossRef PubMed CAS Google Scholar
Franklin, P. X., Pillai, A. D., Rathod, P. D., Yerande, S., Nivsarkar, M., Padh, H., Vasu, K. K. & Sudarsanam, V. (2008). Eur. J. Med. Chem. 43, 129–134. Web of Science CrossRef PubMed CAS Google Scholar
Li, J., Du, J., Xia, L., Liu, H., Yao, X. & Liu, M. (2009). Anal. Chim. Acta, 631, 29–39. Web of Science CrossRef PubMed CAS Google Scholar
Matulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2007). J. Mol. Struct. 834–836, 328–335. Google Scholar
Matulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 837, 46–60. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takeuchi, R. M., Santos, A. L., Padilha, P. M. & Stradiotto, N. R. (2007). Talanta, 71, 771–777. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yesilel, O. Y., Odabasoglu, M. & Buyukgungor, O. (2008). J. Mol. Struct. 874, 151–158. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recent ecological studies show interest in TiO2 or SiO2 particles modified by 2-aminothiazole. Sorption and photocatalytic reduction or degradation in aqueous solutions by 2-aminothiazole modified TiO2 particles has been described (Cristante et al., 2007). Metal impurities in ethanol fuel can be detected by the electrodes modified with 2-aminothiazole organo-functionalized silica (Takeuchi et al., 2007).
The last few years, there is a huge interest in the field of fundamental research of conducting polymers such as polyaminothiazoles (Ciftci et al., 2011).
Natural and synthetic thiazole derivatives find applications as antioxidants, antibacterial drugs and fungicide (De et al. 2008; Aridoss et al., 2009). Anti-inflammatory, analgesic and antipyretic activities were observed for thiazolyl and benzothiazolyl derivatives (Franklin et al., 2008). The medical application of metal complexes of 2-aminothiazole and its derivatives involve their use as inhibitors of human cancer, Alzheimers disease, antitumor activity and activity against leukemia (Li et al., 2009; Alexandru et al., 2010).
The salt, bis(2-aminothiazolium) squarate dihydrate (Yesilel et al., 2008), was widely studied for hydrogen bond interactions, which are very attractive in the biological activities, biochemical processes, material and supramolecular chemistry.
The preparation of the title compound was motivated by the previous study on salts or cocrystals of similar aminotriazoles (Matulková et al., 2007, 2008). 2-aminothiazole compounds easily build hydrogen bonding networks, very useful for the preparation of materials with potential non-linear optical properties. Unfortunately, the title compound crystallizes in the centrosymmetric space group P21/n, which excludes the second order non-linear optical properties.
The crystal structure of the title compound (Fig. 1) is based on chains of alternating anions and water molecules formed via O—H···O hydrogen bonds with donor-acceptor distances in the interval 2.474 (2)–2.7628 (19) Å (Fig. 2). The chains are interconnected with 2-aminothiazolium (1+) cations via strong N—H···O (2.695 (2)–2.968 (2) Å) and weak C—H···O (3.238 (2)–3.380 (2) Å) hydrogen interactions (Table 1) into a three-dimensional network (Fig. 3). The cation rings are oriented along the axis b and are perpendicular to the ac plane.