organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(2-amino-1,3-thia­zolium) hydrogen sulfate sulfate monohydrate

aDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic, and bInstitute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: irena.mat@atlas.cz

(Received 12 October 2011; accepted 1 November 2011; online 5 November 2011)

The centrosymmetric crystal structure of the novel semi-organic compound, 3C3H5N2S+·HSO4·SO42−·H2O, is based on chains of alternating anions and water mol­ecules (formed by O—H⋯O hydrogen bonds). The chains are inter­connected with the 2-amino-1,3-thia­zolium cations via strong N—H⋯O and weak C—H⋯O hydrogen-bonding inter­actions into a three-dimensional network.

Related literature

For the use of 2-amino­thia­zole as organo-functionalized films of TiO2 or SiO2 particles for decontamination of aqueous media or ethanol fuel, see: Cristante et al. (2007[Cristante, V. M., Jorge, S. M. A., Valente, J. P. S., Saeki, M. J., Florentino, A. O. & Padilha, P. M. (2007). Thin Solid Films, 515, 5334-5340.]); Takeuchi et al. (2007[Takeuchi, R. M., Santos, A. L., Padilha, P. M. & Stradiotto, N. R. (2007). Talanta, 71, 771-777.]) and for the use of 2-amino­thia­zole and its derivatives as anti­corrosive films, see: Ciftci et al. (2011[Ciftci, H., Testereci, H. N. & Oktem, Z. (2011). Polym. Bull. 66, 747-760.]). For use of 2-amino­thia­zole and its derivatives in medicine, see: De et al. (2008[De, S., Adhikari, S., Tilak-Jain, J., Menon, V. P. & Devasagayam, T. P. A. (2008). Chem. Biol. Interact. 173, 215-223.]); Aridoss et al. (2009[Aridoss, G., Amirthaganesan, S., Kim, M. S., Kim, J. T. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 4199-4210.]); Franklin et al. (2008[Franklin, P. X., Pillai, A. D., Rathod, P. D., Yerande, S., Nivsarkar, M., Padh, H., Vasu, K. K. & Sudarsanam, V. (2008). Eur. J. Med. Chem. 43, 129-134.]); Li et al. (2009[Li, J., Du, J., Xia, L., Liu, H., Yao, X. & Liu, M. (2009). Anal. Chim. Acta, 631, 29-39.]); Alexandru et al. (2010[Alexandru, M.-G., Velikovic, T. C., Jitaru, I., Grguric-Sipka, S. & Draghici, C. (2010). Cent. Eur. J. Chem. 8, 639-645.]). For the non-linear optical properties of similar amino­triazole compounds, see: Yesilel et al. (2008[Yesilel, O. Y., Odabasoglu, M. & Buyukgungor, O. (2008). J. Mol. Struct. 874, 151-158.]); Matulková et al. (2007[Matulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2007). J. Mol. Struct. 834-836, 328-335.], 2008[Matulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 837, 46-60.]).

[Scheme 1]

Experimental

Crystal data
  • 3C3H5N2S+·HSO4·SO42−·H2O

  • Mr = 514.59

  • Monoclinic, P 21 /n

  • a = 11.6418 (1) Å

  • b = 9.8549 (1) Å

  • c = 17.4291 (1) Å

  • β = 90.3853 (7)°

  • V = 1999.57 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.89 mm−1

  • T = 120 K

  • 0.52 × 0.15 × 0.10 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.136, Tmax = 1.000

  • 25544 measured reflections

  • 3558 independent reflections

  • 3455 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.05

  • 3558 reflections

  • 280 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O9i 0.91 (2) 1.56 (2) 2.474 (2) 178 (2)
O5—H2O5⋯O8 0.84 (3) 1.91 (3) 2.7376 (19) 166 (2)
O5—H1O5⋯O4 0.75 (3) 2.03 (3) 2.7628 (19) 166 (3)
N1—H1N1⋯O2ii 0.83 (2) 2.12 (2) 2.904 (2) 158 (2)
N1—H2N1⋯O7iii 0.83 (3) 2.04 (3) 2.869 (2) 172 (2)
N2—H1N2⋯O6iii 0.80 (3) 1.89 (3) 2.695 (2) 175 (2)
N3—H1N3⋯O1iii 0.83 (3) 1.91 (3) 2.730 (2) 179 (3)
N4—H1N4⋯O7ii 0.80 (3) 2.23 (3) 2.968 (2) 156 (3)
N4—H2N4⋯O2iii 0.83 (3) 2.14 (3) 2.958 (2) 167 (2)
N5—H1N5⋯O8iv 0.88 (2) 2.01 (2) 2.870 (2) 165.0 (19)
N5—H2N5⋯O5 0.83 (3) 1.94 (3) 2.755 (2) 164 (2)
N6—H1N6⋯O6iv 0.83 (2) 2.02 (2) 2.814 (2) 160 (2)
C8—H8⋯O4iii 0.93 2.44 3.238 (2) 144
C9—H9⋯O5ii 0.93 2.53 3.380 (2) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recent ecological studies show interest in TiO2 or SiO2 particles modified by 2-aminothiazole. Sorption and photocatalytic reduction or degradation in aqueous solutions by 2-aminothiazole modified TiO2 particles has been described (Cristante et al., 2007). Metal impurities in ethanol fuel can be detected by the electrodes modified with 2-aminothiazole organo-functionalized silica (Takeuchi et al., 2007).

The last few years, there is a huge interest in the field of fundamental research of conducting polymers such as polyaminothiazoles (Ciftci et al., 2011).

Natural and synthetic thiazole derivatives find applications as antioxidants, antibacterial drugs and fungicide (De et al. 2008; Aridoss et al., 2009). Anti-inflammatory, analgesic and antipyretic activities were observed for thiazolyl and benzothiazolyl derivatives (Franklin et al., 2008). The medical application of metal complexes of 2-aminothiazole and its derivatives involve their use as inhibitors of human cancer, Alzheimers disease, antitumor activity and activity against leukemia (Li et al., 2009; Alexandru et al., 2010).

The salt, bis(2-aminothiazolium) squarate dihydrate (Yesilel et al., 2008), was widely studied for hydrogen bond interactions, which are very attractive in the biological activities, biochemical processes, material and supramolecular chemistry.

The preparation of the title compound was motivated by the previous study on salts or cocrystals of similar aminotriazoles (Matulková et al., 2007, 2008). 2-aminothiazole compounds easily build hydrogen bonding networks, very useful for the preparation of materials with potential non-linear optical properties. Unfortunately, the title compound crystallizes in the centrosymmetric space group P21/n, which excludes the second order non-linear optical properties.

The crystal structure of the title compound (Fig. 1) is based on chains of alternating anions and water molecules formed via O—H···O hydrogen bonds with donor-acceptor distances in the interval 2.474 (2)–2.7628 (19) Å (Fig. 2). The chains are interconnected with 2-aminothiazolium (1+) cations via strong N—H···O (2.695 (2)–2.968 (2) Å) and weak C—H···O (3.238 (2)–3.380 (2) Å) hydrogen interactions (Table 1) into a three-dimensional network (Fig. 3). The cation rings are oriented along the axis b and are perpendicular to the ac plane.

Related literature top

For the use of 2-aminothiazole as organo-functionalized films of TiO2 or SiO2 particles for decontamination of aqueous media or ethanol fuel, see: Cristante et al. (2007); Takeuchi et al. (2007) and for the use of 2-aminothiazole and its derivatives as anticorrosive films, see: Ciftci et al. (2011). For use of 2-aminothiazole and its derivatives in medicine, see: De et al. (2008); Aridoss et al. (2009); Franklin et al. (2008); Li et al. (2009); Alexandru et al. (2010). For the non-linear optical properties of similar aminotriazole compounds, see: Yesilel et al. (2008); Matulková et al. (2007, 2008).

Experimental top

Crystals of the title compound, were obtained from a solution of 1.0 g of 2-aminothiazole (97%, Aldrich) and 0.56 ml of sulfuric acid (96%, Lachema) in 200 ml of water. The solution was left to crystallize at room temperature for several weeks. The colourless crystals obtained were filtered off, washed with methanol and dried in a vacuum desiccator over KOH.

The infrared spectrum was recorded at room temperature using DRIFTS and the nujol or fluorolube mull techniques on a Nicolet Magna 6700 FTIR spectrometer with 2 cm-1 resolution and Happ-Genzel apodization in the 400–4000 cm-1 region.

FTIR spectrum (cm-1): 3315 s; 3235 s; 3119 s; 3085 s; 2980 m; 2930 m; 2850 m; 2758 m; 1727 w; 1621 s; 1576 m; 1434 m; 1398 w; 1339 w; 1276 m; 1189 mb; 1079 m; 1062 m; 1028 m; 1005 mb; 887 mb; 868 m; 860 m; 772 mb; 739 sh; 732 m; 698 m; 639 m; 600 s; 592 sh; 562 s; 550 sh; 494 m; 408 mb.

The Raman spectrum of polycrystalline sample was recorded at room temperature on a Thermo Scientific DXR Raman microscope interface to on Olympus microscope (3 cm-1 resolution, 780 nm diode laser excitation, 15–20 mW power at the sample) in the 50–3300 cm-1 region.

Raman spectrum (cm-1): 3164 m; 3157 m; 3085 m; 3082 m; 3074 w; 1684 w; 1606 w; 1557 m; 1410 w; 1366 m; 1282 m; 1174 m; 1076 mb; 1032 sh; 977 m; 901 wb; 879 wb; 863 wb; 748 vs; 708 m; 593 w; 568 m; 418 w; 395 m; 267 vw; 113 sh; 89 m; 79 m; 62 m.

Refinement top

H atoms attached to C and N atoms were calculated in geometrically idealized positions, Csp2 - H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C). The positions of H atoms attached to O and N atoms were localized in difference Fourier maps, the distances were left unrestrained and the hydrogen atom were refined isotropically with Uiso(H) = 1.2 Ueq of parent atom.

Structure description top

Recent ecological studies show interest in TiO2 or SiO2 particles modified by 2-aminothiazole. Sorption and photocatalytic reduction or degradation in aqueous solutions by 2-aminothiazole modified TiO2 particles has been described (Cristante et al., 2007). Metal impurities in ethanol fuel can be detected by the electrodes modified with 2-aminothiazole organo-functionalized silica (Takeuchi et al., 2007).

The last few years, there is a huge interest in the field of fundamental research of conducting polymers such as polyaminothiazoles (Ciftci et al., 2011).

Natural and synthetic thiazole derivatives find applications as antioxidants, antibacterial drugs and fungicide (De et al. 2008; Aridoss et al., 2009). Anti-inflammatory, analgesic and antipyretic activities were observed for thiazolyl and benzothiazolyl derivatives (Franklin et al., 2008). The medical application of metal complexes of 2-aminothiazole and its derivatives involve their use as inhibitors of human cancer, Alzheimers disease, antitumor activity and activity against leukemia (Li et al., 2009; Alexandru et al., 2010).

The salt, bis(2-aminothiazolium) squarate dihydrate (Yesilel et al., 2008), was widely studied for hydrogen bond interactions, which are very attractive in the biological activities, biochemical processes, material and supramolecular chemistry.

The preparation of the title compound was motivated by the previous study on salts or cocrystals of similar aminotriazoles (Matulková et al., 2007, 2008). 2-aminothiazole compounds easily build hydrogen bonding networks, very useful for the preparation of materials with potential non-linear optical properties. Unfortunately, the title compound crystallizes in the centrosymmetric space group P21/n, which excludes the second order non-linear optical properties.

The crystal structure of the title compound (Fig. 1) is based on chains of alternating anions and water molecules formed via O—H···O hydrogen bonds with donor-acceptor distances in the interval 2.474 (2)–2.7628 (19) Å (Fig. 2). The chains are interconnected with 2-aminothiazolium (1+) cations via strong N—H···O (2.695 (2)–2.968 (2) Å) and weak C—H···O (3.238 (2)–3.380 (2) Å) hydrogen interactions (Table 1) into a three-dimensional network (Fig. 3). The cation rings are oriented along the axis b and are perpendicular to the ac plane.

For the use of 2-aminothiazole as organo-functionalized films of TiO2 or SiO2 particles for decontamination of aqueous media or ethanol fuel, see: Cristante et al. (2007); Takeuchi et al. (2007) and for the use of 2-aminothiazole and its derivatives as anticorrosive films, see: Ciftci et al. (2011). For use of 2-aminothiazole and its derivatives in medicine, see: De et al. (2008); Aridoss et al. (2009); Franklin et al. (2008); Li et al. (2009); Alexandru et al. (2010). For the non-linear optical properties of similar aminotriazole compounds, see: Yesilel et al. (2008); Matulková et al. (2007, 2008).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The atom-labelling scheme of tris(2-aminothiazolium) hydrogen sulfate - sulfate monohydrate. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing scheme of the anions and water molecules in the crystals of tris(2-aminothiazolium) hydrogen sulfate - sulfate monohydrate (projection along [010]). The dashed lines indicates the hydrogen bonds.
[Figure 3] Fig. 3. A packing scheme of the structure of tris(2-aminothiazolium) hydrogen sulfate - sulfate monohydrate (projection along [010]). Hydrogen bonds are indicated by dashed lines.
Tris(2-amino-1,3-thiazolium) hydrogen sulfate sulfate monohydrate top
Crystal data top
3C3H5N2S+·HSO4·SO42·H2OF(000) = 1064
Mr = 514.59Dx = 1.709 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 19931 reflections
a = 11.6418 (1) Åθ = 3.8–66.9°
b = 9.8549 (1) ŵ = 5.89 mm1
c = 17.4291 (1) ÅT = 120 K
β = 90.3853 (7)°Plate, colourless
V = 1999.57 (3) Å30.52 × 0.15 × 0.10 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
3558 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3455 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.3784 pixels mm-1θmax = 67.0°, θmin = 4.6°
Rotation method data acquisition using ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.136, Tmax = 1.000l = 1820
25544 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0412P)2 + 1.5439P]
where P = (Fo2 + 2Fc2)/3
3558 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
3C3H5N2S+·HSO4·SO42·H2OV = 1999.57 (3) Å3
Mr = 514.59Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.6418 (1) ŵ = 5.89 mm1
b = 9.8549 (1) ÅT = 120 K
c = 17.4291 (1) Å0.52 × 0.15 × 0.10 mm
β = 90.3853 (7)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
3558 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3455 reflections with I > 2σ(I)
Tmin = 0.136, Tmax = 1.000Rint = 0.040
25544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
3558 reflectionsΔρmin = 0.68 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogen atoms were localized from the difference Fourier map. Despite of that,all hydrogen atoms connected to C were constrained to ideal positions. The N—H and O—H distances were left unrestrained. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29359 (14)0.74559 (18)0.51444 (9)0.0168 (3)
C20.16124 (15)0.69841 (19)0.60694 (10)0.0203 (4)
H20.10570.71910.64320.024*
C30.19494 (15)0.57200 (18)0.59119 (10)0.0207 (4)
H30.16620.49480.61500.025*
O10.10315 (11)0.07767 (13)0.22736 (8)0.0248 (3)
O20.03550 (11)0.11665 (13)0.12781 (7)0.0231 (3)
O30.10426 (12)0.29105 (13)0.15778 (8)0.0261 (3)
H1O30.153 (2)0.265 (2)0.1193 (14)0.031*
O40.04573 (11)0.24617 (13)0.24574 (7)0.0264 (3)
O50.11893 (12)0.41726 (14)0.36173 (8)0.0243 (3)
H2O50.127 (2)0.354 (3)0.3937 (14)0.029*
H1O50.091 (2)0.380 (3)0.3292 (15)0.029*
O60.16351 (11)0.06136 (12)0.56939 (7)0.0232 (3)
O70.29107 (11)0.10060 (13)0.46267 (8)0.0259 (3)
O80.10714 (11)0.21584 (13)0.46956 (7)0.0239 (3)
O90.25934 (12)0.27724 (13)0.55539 (8)0.0308 (3)
S10.02774 (3)0.17660 (4)0.19126 (2)0.01635 (10)
S20.20561 (3)0.16181 (4)0.51308 (2)0.01708 (10)
S30.29952 (4)0.57034 (4)0.52038 (2)0.01888 (10)
N10.35685 (14)0.82017 (17)0.46841 (9)0.0221 (3)
H1N10.399 (2)0.780 (2)0.4378 (14)0.026*
H2N10.344 (2)0.903 (3)0.4650 (13)0.026*
N20.21729 (13)0.79555 (16)0.56378 (8)0.0178 (3)
H1N20.2031 (19)0.875 (3)0.5679 (12)0.021*
C70.08543 (14)0.75482 (19)0.37523 (10)0.0180 (3)
C80.12455 (15)0.96823 (19)0.33003 (10)0.0223 (4)
H80.11621.06190.32670.027*
C90.19866 (16)0.89764 (19)0.28789 (11)0.0243 (4)
H90.24760.93560.25180.029*
S50.19216 (4)0.72483 (5)0.30915 (2)0.02143 (10)
N50.03629 (14)0.65995 (17)0.41708 (9)0.0223 (3)
H1N50.012 (2)0.683 (2)0.4538 (14)0.027*
H2N50.055 (2)0.580 (3)0.4078 (13)0.027*
N60.06105 (13)0.88732 (16)0.37947 (8)0.0200 (3)
H1N60.003 (2)0.915 (2)0.4024 (13)0.024*
S40.01139 (4)0.57716 (4)0.14954 (2)0.020
C40.00150 (14)0.75220 (18)0.15074 (10)0.017
C50.13895 (15)0.71377 (19)0.23921 (10)0.022
H50.19330.73790.27570.026*
C60.11839 (16)0.58563 (19)0.21834 (10)0.0230 (4)
H60.15650.51060.23810.028*
N30.07096 (12)0.80736 (16)0.20091 (8)0.0176 (3)
H1N30.0797 (19)0.889 (3)0.2095 (12)0.021*
N40.07243 (14)0.82190 (17)0.10758 (10)0.0238 (3)
H1N40.116 (2)0.782 (3)0.0809 (14)0.029*
H2N40.073 (2)0.906 (3)0.1111 (13)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0194 (8)0.0133 (8)0.0176 (8)0.0016 (6)0.0015 (6)0.0017 (6)
C20.0194 (8)0.0210 (9)0.0206 (8)0.0009 (7)0.0042 (7)0.0008 (7)
C30.0222 (8)0.0190 (9)0.0208 (8)0.0029 (7)0.0025 (7)0.0020 (7)
O10.0255 (6)0.0157 (6)0.0333 (7)0.0002 (5)0.0138 (5)0.0015 (5)
O20.0280 (7)0.0184 (6)0.0231 (6)0.0021 (5)0.0101 (5)0.0029 (5)
O30.0332 (7)0.0145 (6)0.0305 (7)0.0028 (5)0.0066 (6)0.0013 (5)
O40.0310 (7)0.0227 (7)0.0255 (7)0.0009 (6)0.0037 (5)0.0041 (5)
O50.0306 (7)0.0198 (7)0.0225 (7)0.0021 (5)0.0012 (6)0.0019 (6)
O60.0280 (6)0.0156 (6)0.0260 (6)0.0041 (5)0.0109 (5)0.0048 (5)
O70.0255 (7)0.0224 (7)0.0298 (7)0.0039 (5)0.0122 (5)0.0043 (6)
O80.0229 (6)0.0261 (7)0.0228 (6)0.0032 (5)0.0004 (5)0.0026 (5)
O90.0349 (7)0.0148 (7)0.0425 (8)0.0003 (5)0.0122 (6)0.0016 (6)
S10.0188 (2)0.0124 (2)0.0179 (2)0.00083 (15)0.00330 (16)0.00037 (15)
S20.0185 (2)0.0126 (2)0.0201 (2)0.00032 (15)0.00292 (16)0.00103 (15)
S30.0230 (2)0.0126 (2)0.0210 (2)0.00234 (15)0.00299 (16)0.00110 (15)
N10.0297 (8)0.0143 (8)0.0223 (8)0.0016 (6)0.0099 (6)0.0001 (6)
N20.0203 (7)0.0123 (7)0.0208 (7)0.0027 (6)0.0033 (6)0.0020 (6)
C70.0157 (8)0.0204 (9)0.0178 (8)0.0019 (7)0.0013 (6)0.0020 (7)
C80.0240 (9)0.0175 (9)0.0253 (9)0.0007 (7)0.0001 (7)0.0022 (7)
C90.0233 (9)0.0227 (10)0.0269 (9)0.0025 (7)0.0038 (7)0.0029 (8)
S50.0196 (2)0.0205 (2)0.0243 (2)0.00299 (16)0.00520 (17)0.00179 (17)
N50.0250 (8)0.0178 (8)0.0243 (8)0.0031 (6)0.0056 (6)0.0015 (6)
N60.0188 (7)0.0208 (8)0.0204 (7)0.0041 (6)0.0044 (6)0.0007 (6)
S40.0250.0130.0240.0000.0040.002
C40.0180.0130.0210.0000.0000.001
C50.0220.0220.0210.0010.0060.001
C60.0271 (9)0.0211 (9)0.0210 (9)0.0051 (7)0.0040 (7)0.0028 (7)
N30.0189 (7)0.0120 (7)0.0220 (7)0.0011 (6)0.0032 (6)0.0014 (6)
N40.0251 (8)0.0148 (8)0.0317 (9)0.0014 (6)0.0128 (7)0.0032 (7)
Geometric parameters (Å, º) top
C1—N11.317 (2)C7—N51.319 (2)
C1—N21.335 (2)C7—N61.338 (2)
C1—S31.7315 (18)C7—S51.7254 (17)
C2—C31.335 (3)C8—C91.333 (3)
C2—N21.384 (2)C8—N61.390 (2)
C2—H20.9300C8—H80.9300
C3—S31.7395 (18)C9—S51.7446 (19)
C3—H30.9300C9—H90.9300
O1—S11.4576 (13)N5—H1N50.88 (2)
O2—S11.4577 (12)N5—H2N50.83 (3)
O3—S11.5490 (13)N6—H1N60.83 (2)
O3—H1O30.91 (3)S4—C41.7316 (18)
O4—S11.4465 (13)S4—C61.7369 (18)
O5—H2O50.84 (3)C4—N41.314 (2)
O5—H1O50.75 (3)C4—N31.335 (2)
O6—S21.4797 (13)C5—C61.336 (3)
O7—S21.4620 (13)C5—N31.389 (2)
O8—S21.4701 (13)C5—H50.9300
O9—S21.4908 (14)C6—H60.9300
N1—H1N10.83 (3)N3—H1N30.83 (2)
N1—H2N10.83 (3)N4—H1N40.80 (3)
N2—H1N20.81 (2)N4—H2N40.83 (3)
N1—C1—N2124.34 (17)N5—C7—S5124.39 (14)
N1—C1—S3124.81 (14)N6—C7—S5110.97 (13)
N2—C1—S3110.84 (13)C9—C8—N6113.02 (17)
C3—C2—N2113.17 (16)C9—C8—H8123.5
C3—C2—H2123.4N6—C8—H8123.5
N2—C2—H2123.4C8—C9—S5111.31 (14)
C2—C3—S3111.26 (13)C8—C9—H9124.3
C2—C3—H3124.4S5—C9—H9124.3
S3—C3—H3124.4C7—S5—C990.40 (9)
S1—O3—H1O3115.0 (15)C7—N5—H1N5119.7 (15)
H2O5—O5—H1O5101 (3)C7—N5—H2N5116.7 (16)
O4—S1—O1112.89 (8)H1N5—N5—H2N5124 (2)
O4—S1—O2113.00 (8)C7—N6—C8114.30 (15)
O1—S1—O2111.42 (7)C7—N6—H1N6121.2 (16)
O4—S1—O3103.77 (8)C8—N6—H1N6123.1 (15)
O1—S1—O3107.65 (8)C4—S4—C690.36 (9)
O2—S1—O3107.55 (8)N4—C4—N3124.35 (17)
O7—S2—O8111.76 (8)N4—C4—S4124.64 (14)
O7—S2—O6110.62 (7)N3—C4—S4111.01 (13)
O8—S2—O6108.90 (8)C6—C5—N3113.14 (16)
O7—S2—O9109.09 (8)C6—C5—H5123.4
O8—S2—O9107.58 (8)N3—C5—H5123.4
O6—S2—O9108.80 (8)C5—C6—S4111.34 (14)
C1—S3—C390.30 (8)C5—C6—H6124.3
C1—N1—H1N1117.7 (16)S4—C6—H6124.3
C1—N1—H2N1119.3 (16)C4—N3—C5114.15 (15)
H1N1—N1—H2N1122 (2)C4—N3—H1N3126.5 (15)
C1—N2—C2114.42 (15)C5—N3—H1N3119.3 (15)
C1—N2—H1N2123.7 (16)C4—N4—H1N4118.6 (18)
C2—N2—H1N2121.9 (15)C4—N4—H2N4118.9 (16)
N5—C7—N6124.62 (16)H1N4—N4—H2N4122 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O9i0.91 (2)1.56 (2)2.474 (2)178 (2)
O5—H2O5···O80.84 (3)1.91 (3)2.7376 (19)166 (2)
O5—H1O5···O40.75 (3)2.03 (3)2.7628 (19)166 (3)
N1—H1N1···O2ii0.83 (2)2.12 (2)2.904 (2)158 (2)
N1—H2N1···O7iii0.83 (3)2.04 (3)2.869 (2)172 (2)
N2—H1N2···O6iii0.80 (3)1.89 (3)2.695 (2)175 (2)
N3—H1N3···O1iii0.83 (3)1.91 (3)2.730 (2)179 (3)
N4—H1N4···O7ii0.80 (3)2.23 (3)2.968 (2)156 (3)
N4—H2N4···O2iii0.83 (3)2.14 (3)2.958 (2)167 (2)
N5—H1N5···O8iv0.88 (2)2.01 (2)2.870 (2)165.0 (19)
N5—H2N5···O50.83 (3)1.94 (3)2.755 (2)164 (2)
N6—H1N6···O6iv0.83 (2)2.02 (2)2.814 (2)160 (2)
C8—H8···O4iii0.932.443.238 (2)144
C9—H9···O5ii0.932.533.380 (2)152
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula3C3H5N2S+·HSO4·SO42·H2O
Mr514.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)11.6418 (1), 9.8549 (1), 17.4291 (1)
β (°) 90.3853 (7)
V3)1999.57 (3)
Z4
Radiation typeCu Kα
µ (mm1)5.89
Crystal size (mm)0.52 × 0.15 × 0.10
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.136, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25544, 3558, 3455
Rint0.040
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.05
No. of reflections3558
No. of parameters280
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.68

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O9i0.91 (2)1.56 (2)2.474 (2)178 (2)
O5—H2O5···O80.84 (3)1.91 (3)2.7376 (19)166 (2)
O5—H1O5···O40.75 (3)2.03 (3)2.7628 (19)166 (3)
N1—H1N1···O2ii0.83 (2)2.12 (2)2.904 (2)158 (2)
N1—H2N1···O7iii0.83 (3)2.04 (3)2.869 (2)172 (2)
N2—H1N2···O6iii0.80 (3)1.89 (3)2.695 (2)175 (2)
N3—H1N3···O1iii0.83 (3)1.91 (3)2.730 (2)179 (3)
N4—H1N4···O7ii0.80 (3)2.23 (3)2.968 (2)156 (3)
N4—H2N4···O2iii0.83 (3)2.14 (3)2.958 (2)167 (2)
N5—H1N5···O8iv0.88 (2)2.01 (2)2.870 (2)165.0 (19)
N5—H2N5···O50.83 (3)1.94 (3)2.755 (2)164 (2)
N6—H1N6···O6iv0.83 (2)2.02 (2)2.814 (2)160 (2)
C8—H8···O4iii0.932.443.238 (2)144
C9—H9···O5ii0.932.533.380 (2)152
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z+1.
 

Acknowledgements

This work was supported financially by the Czech Science Foundation (grant No. 203/09/0878) and is part of the Long-term Research Plan of the Ministry of Education of the Czech Republic (No. MSM 0021620857), the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Science of the Czech Republic.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlexandru, M.-G., Velikovic, T. C., Jitaru, I., Grguric-Sipka, S. & Draghici, C. (2010). Cent. Eur. J. Chem. 8, 639–645.  Web of Science CSD CrossRef CAS Google Scholar
First citationAridoss, G., Amirthaganesan, S., Kim, M. S., Kim, J. T. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 4199–4210.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCiftci, H., Testereci, H. N. & Oktem, Z. (2011). Polym. Bull. 66, 747–760.  CAS Google Scholar
First citationCristante, V. M., Jorge, S. M. A., Valente, J. P. S., Saeki, M. J., Florentino, A. O. & Padilha, P. M. (2007). Thin Solid Films, 515, 5334–5340.  CrossRef CAS Google Scholar
First citationDe, S., Adhikari, S., Tilak-Jain, J., Menon, V. P. & Devasagayam, T. P. A. (2008). Chem. Biol. Interact. 173, 215–223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFranklin, P. X., Pillai, A. D., Rathod, P. D., Yerande, S., Nivsarkar, M., Padh, H., Vasu, K. K. & Sudarsanam, V. (2008). Eur. J. Med. Chem. 43, 129–134.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, J., Du, J., Xia, L., Liu, H., Yao, X. & Liu, M. (2009). Anal. Chim. Acta, 631, 29–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2007). J. Mol. Struct. 834–836, 328–335.  Google Scholar
First citationMatulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 837, 46–60.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakeuchi, R. M., Santos, A. L., Padilha, P. M. & Stradiotto, N. R. (2007). Talanta, 71, 771–777.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYesilel, O. Y., Odabasoglu, M. & Buyukgungor, O. (2008). J. Mol. Struct. 874, 151–158.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds