organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­benzo­yl)-3-methyl-1-phenyl-1H-pyrazol-5-yl 4-chloro­benzoate

aInstitute of Functional Materials, Jiangxi University of Finance & Economics, Nanchang 330013, People's Republic of China
*Correspondence e-mail: xiaoxialichen@yahoo.cn

(Received 3 November 2011; accepted 13 November 2011; online 23 November 2011)

In the title compound, C24H16Cl2N2O3, the three benzene rings are twisted with respect to the central pyrazole ring, making dihedral angles of 71.56 (9) (4-chloro­benzo­yloxy), 57.55 (8) (4-chloro­benzo­yl) and 39.33 (1)° (phen­yl).

Related literature

For the anti­bacterial and biological activity of 5-acyl­oxy­pyrazoles, see Bai et al. (2002[Bai, Y. J., Lu, J., Gan, H. Y., Wang, Z. J. & Ma, H. R. (2002). Chin. J. Org. Chem. 22, 638-641.]); Varma (1999[Varma, R. S. (1999). J. Heterocycl. Chem. 36, 1565-1571.]).

[Scheme 1]

Experimental

Crystal data
  • C24H16Cl2N2O3

  • Mr = 451.29

  • Monoclinic, P 21 /c

  • a = 11.4481 (4) Å

  • b = 29.4169 (13) Å

  • c = 6.4120 (3) Å

  • β = 99.669 (3)°

  • V = 2128.68 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.23 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]) Tmin = 0.930, Tmax = 0.948

  • 16531 measured reflections

  • 3765 independent reflections

  • 1884 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.093

  • S = 1.03

  • 3765 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

5-Acyloxypyrazoles have received considerable attention due to their high antibacterial and biological activities (Bai et al., 2002, Varma, 1999). As part of our ongoing search for biologically active molecules, the title compound was synthesized and characterized by X-ray diffraction (Fig. 1).

The three phenyl rings (C1—C6, r.m.s. deviation = 0.0047 Å; C12—C17, r.m.s. deviation = 0.0061 Å; C19—C24, r.m.s. deviation = 0.0045 Å) are twisted with respect to the central pyrazole ring (N1,2/C8—C10, r.m.s. deviation = 0.0065 Å) making dihedral angles of 71.56 (9)°, 57.55 (8)° and 39.33 (1)°, respectively. As expected, there are no classic hydrogen bonds in the structure.

Related literature top

For the antibacterial and biological activity of 5-acyloxypyrazoles, see Bai et al. (2002); Varma (1999).

Experimental top

1.74 g of 1-phenyl-3-methyl-5-pyrazolone was dissolved in 10 ml dioxane by heating to 80 °C, and 1.5 g of calcium hydroxide was added, then 2 ml of 4-chlorobenzoylchloride was added dropwise within 20 min. After refluxing for 2 h, the reaction mixture was poured into 30 ml diluted hydrochloric acid (3 N). A cream colored powder was obtained by filtration, and used for recrystallization from ethanol to give colorless needle crystals.

Refinement top

All H atoms were placed in calculated positions, with the carrier atom-H distances = 0.96 Å for the methyl and 0.93 Å for aryl, and refined as riding, with the Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C) for aryl groups.

Structure description top

5-Acyloxypyrazoles have received considerable attention due to their high antibacterial and biological activities (Bai et al., 2002, Varma, 1999). As part of our ongoing search for biologically active molecules, the title compound was synthesized and characterized by X-ray diffraction (Fig. 1).

The three phenyl rings (C1—C6, r.m.s. deviation = 0.0047 Å; C12—C17, r.m.s. deviation = 0.0061 Å; C19—C24, r.m.s. deviation = 0.0045 Å) are twisted with respect to the central pyrazole ring (N1,2/C8—C10, r.m.s. deviation = 0.0065 Å) making dihedral angles of 71.56 (9)°, 57.55 (8)° and 39.33 (1)°, respectively. As expected, there are no classic hydrogen bonds in the structure.

For the antibacterial and biological activity of 5-acyloxypyrazoles, see Bai et al. (2002); Varma (1999).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids shown at the 30% probability level.
4-(4-Chlorobenzoyl)-3-methyl-1-phenyl-1H-pyrazol-5-yl 4-chlorobenzoate top
Crystal data top
C24H16Cl2N2O3F(000) = 928
Mr = 451.29Dx = 1.408 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1569 reflections
a = 11.4481 (4) Åθ = 2.8–19.2°
b = 29.4169 (13) ŵ = 0.33 mm1
c = 6.4120 (3) ÅT = 296 K
β = 99.669 (3)°Needle, colorless
V = 2128.68 (16) Å30.23 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3765 independent reflections
Radiation source: fine-focus sealed tube1884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
φ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1313
Tmin = 0.930, Tmax = 0.948k = 3534
16531 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0199P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
3765 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C24H16Cl2N2O3V = 2128.68 (16) Å3
Mr = 451.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4481 (4) ŵ = 0.33 mm1
b = 29.4169 (13) ÅT = 296 K
c = 6.4120 (3) Å0.23 × 0.18 × 0.16 mm
β = 99.669 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3765 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1884 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.948Rint = 0.067
16531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
3765 reflectionsΔρmin = 0.19 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.69348 (7)0.00005 (3)0.62066 (14)0.0918 (3)
C10.7963 (2)0.02529 (11)0.8140 (5)0.0605 (8)
C20.8162 (3)0.00773 (10)1.0144 (6)0.0689 (9)
H2A0.77390.01751.04690.083*
C30.8991 (2)0.02759 (10)1.1679 (5)0.0609 (8)
H3A0.91180.01601.30480.073*
C40.9635 (2)0.06468 (9)1.1194 (5)0.0499 (7)
C50.9413 (2)0.08216 (10)0.9159 (5)0.0605 (8)
H5A0.98320.10740.88200.073*
C60.8580 (3)0.06247 (10)0.7642 (5)0.0672 (9)
H6A0.84350.07430.62790.081*
C71.0529 (2)0.08436 (9)1.2859 (5)0.0530 (8)
C81.1952 (2)0.14311 (9)1.3390 (4)0.0506 (7)
C91.1780 (2)0.17194 (9)1.4968 (4)0.0501 (7)
C101.2931 (3)0.18817 (9)1.5767 (4)0.0550 (8)
C111.0674 (3)0.18198 (9)1.5742 (5)0.0587 (8)
C120.9553 (3)0.18520 (9)1.4215 (5)0.0533 (7)
C130.9556 (3)0.19948 (9)1.2166 (5)0.0580 (8)
H13A1.02710.20581.17220.070*
C140.8509 (3)0.20449 (10)1.0771 (5)0.0695 (9)
H14A0.85120.21460.93980.083*
C150.7463 (3)0.19438 (12)1.1436 (6)0.0824 (11)
C160.7438 (3)0.18042 (11)1.3472 (7)0.0853 (11)
H16A0.67210.17391.39080.102*
C170.8479 (3)0.17622 (10)1.4846 (5)0.0679 (9)
H17A0.84670.16711.62310.081*
C181.3268 (3)0.22254 (10)1.7484 (5)0.0731 (9)
H18A1.40140.23601.73440.110*
H18C1.26710.24571.73720.110*
H18B1.33340.20791.88370.110*
C191.3721 (3)0.11677 (9)1.1883 (5)0.0533 (7)
C201.4818 (3)0.09849 (11)1.2704 (5)0.0726 (9)
H20A1.51520.10281.41150.087*
C211.5397 (3)0.07371 (13)1.1369 (7)0.0947 (12)
H21A1.61360.06131.18840.114*
C221.4902 (4)0.06699 (12)0.9297 (7)0.0928 (12)
H22A1.53010.04980.84220.111*
C231.3817 (3)0.08555 (11)0.8510 (6)0.0753 (9)
H23A1.34820.08100.71010.090*
C241.3226 (3)0.11086 (10)0.9802 (5)0.0602 (8)
H24A1.24960.12390.92700.072*
O11.11813 (15)0.11725 (6)1.2022 (3)0.0523 (5)
O21.07060 (18)0.07494 (7)1.4689 (3)0.0757 (6)
O31.06779 (17)0.18818 (7)1.7646 (3)0.0763 (6)
N11.3736 (2)0.17134 (8)1.4732 (4)0.0589 (7)
N21.3115 (2)0.14249 (8)1.3265 (4)0.0524 (6)
Cl20.61559 (9)0.19901 (5)0.9673 (2)0.1547 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0762 (6)0.0896 (6)0.1072 (7)0.0202 (5)0.0090 (5)0.0366 (6)
C10.0492 (18)0.055 (2)0.077 (2)0.0040 (15)0.0114 (18)0.0182 (19)
C20.064 (2)0.053 (2)0.094 (3)0.0148 (17)0.026 (2)0.007 (2)
C30.067 (2)0.053 (2)0.067 (2)0.0022 (16)0.0214 (18)0.0036 (17)
C40.0458 (17)0.0458 (18)0.060 (2)0.0009 (14)0.0139 (15)0.0008 (16)
C50.0576 (19)0.057 (2)0.066 (2)0.0128 (15)0.0060 (17)0.0045 (17)
C60.066 (2)0.066 (2)0.066 (2)0.0115 (18)0.0011 (18)0.0014 (18)
C70.0514 (19)0.0457 (19)0.064 (2)0.0031 (15)0.0158 (18)0.0042 (18)
C80.0475 (19)0.0554 (19)0.0473 (19)0.0039 (15)0.0028 (15)0.0034 (16)
C90.0492 (18)0.0528 (18)0.0465 (19)0.0039 (15)0.0025 (15)0.0007 (15)
C100.064 (2)0.0504 (19)0.0459 (19)0.0000 (16)0.0031 (16)0.0006 (15)
C110.069 (2)0.055 (2)0.052 (2)0.0016 (16)0.0106 (18)0.0029 (17)
C120.0540 (19)0.0517 (19)0.054 (2)0.0058 (15)0.0089 (16)0.0002 (16)
C130.0527 (18)0.062 (2)0.058 (2)0.0050 (15)0.0068 (17)0.0002 (17)
C140.068 (2)0.071 (2)0.066 (2)0.0045 (18)0.0012 (19)0.0051 (17)
C150.055 (2)0.085 (3)0.098 (3)0.0035 (19)0.016 (2)0.016 (2)
C160.056 (2)0.088 (3)0.111 (3)0.0097 (19)0.011 (2)0.014 (2)
C170.062 (2)0.069 (2)0.074 (2)0.0028 (17)0.015 (2)0.0066 (18)
C180.073 (2)0.070 (2)0.070 (2)0.0026 (17)0.0050 (18)0.0079 (18)
C190.0528 (19)0.0463 (18)0.064 (2)0.0010 (15)0.0180 (17)0.0075 (16)
C200.056 (2)0.081 (2)0.080 (2)0.0097 (18)0.0120 (19)0.011 (2)
C210.069 (2)0.104 (3)0.116 (4)0.034 (2)0.031 (3)0.017 (3)
C220.102 (3)0.081 (3)0.107 (3)0.020 (2)0.050 (3)0.001 (2)
C230.091 (3)0.064 (2)0.077 (2)0.001 (2)0.031 (2)0.0006 (19)
C240.0638 (19)0.057 (2)0.062 (2)0.0030 (16)0.0170 (18)0.0064 (17)
O10.0490 (11)0.0569 (12)0.0507 (12)0.0087 (10)0.0076 (10)0.0031 (10)
O20.0890 (15)0.0802 (16)0.0559 (14)0.0158 (12)0.0069 (13)0.0154 (12)
O30.0765 (14)0.0987 (17)0.0542 (14)0.0110 (12)0.0128 (12)0.0034 (13)
N10.0559 (15)0.0540 (16)0.0626 (17)0.0024 (13)0.0020 (14)0.0010 (13)
N20.0463 (15)0.0524 (15)0.0580 (16)0.0006 (12)0.0073 (13)0.0002 (13)
Cl20.0745 (7)0.1987 (13)0.1694 (12)0.0168 (7)0.0416 (7)0.0614 (10)
Geometric parameters (Å, º) top
Cl1—C11.728 (3)C13—C141.377 (4)
C1—C21.368 (4)C13—H13A0.9300
C1—C61.369 (4)C14—C151.369 (4)
C2—C31.377 (4)C14—H14A0.9300
C2—H2A0.9300C15—C161.374 (4)
C3—C41.381 (3)C15—Cl21.723 (3)
C3—H3A0.9300C16—C171.363 (4)
C4—C51.386 (4)C16—H16A0.9300
C4—C71.468 (4)C17—H17A0.9300
C5—C61.370 (3)C18—H18A0.9600
C5—H5A0.9300C18—H18C0.9600
C6—H6A0.9300C18—H18B0.9600
C7—O21.189 (3)C19—C241.370 (4)
C7—O11.384 (3)C19—C201.386 (4)
C8—N21.348 (3)C19—N21.430 (3)
C8—C91.359 (3)C20—C211.376 (4)
C8—O11.366 (3)C20—H20A0.9300
C9—C101.414 (3)C21—C221.368 (4)
C9—C111.466 (4)C21—H21A0.9300
C10—N11.319 (3)C22—C231.373 (4)
C10—C181.496 (4)C22—H22A0.9300
C11—O31.233 (3)C23—C241.374 (4)
C11—C121.481 (4)C23—H23A0.9300
C12—C131.380 (4)C24—H24A0.9300
C12—C171.383 (4)N1—N21.373 (3)
C2—C1—C6120.6 (3)C15—C14—H14A120.5
C2—C1—Cl1119.8 (3)C13—C14—H14A120.5
C6—C1—Cl1119.6 (3)C14—C15—C16121.3 (3)
C1—C2—C3119.8 (3)C14—C15—Cl2119.2 (3)
C1—C2—H2A120.1C16—C15—Cl2119.5 (3)
C3—C2—H2A120.1C17—C16—C15119.0 (3)
C2—C3—C4120.2 (3)C17—C16—H16A120.5
C2—C3—H3A119.9C15—C16—H16A120.5
C4—C3—H3A119.9C16—C17—C12121.2 (3)
C3—C4—C5119.0 (3)C16—C17—H17A119.4
C3—C4—C7118.7 (3)C12—C17—H17A119.4
C5—C4—C7122.2 (3)C10—C18—H18A109.5
C6—C5—C4120.5 (3)C10—C18—H18C109.5
C6—C5—H5A119.8H18A—C18—H18C109.5
C4—C5—H5A119.8C10—C18—H18B109.5
C5—C6—C1119.8 (3)H18A—C18—H18B109.5
C5—C6—H6A120.1H18C—C18—H18B109.5
C1—C6—H6A120.1C24—C19—C20121.4 (3)
O2—C7—O1122.1 (3)C24—C19—N2120.4 (3)
O2—C7—C4127.4 (3)C20—C19—N2118.2 (3)
O1—C7—C4110.4 (3)C21—C20—C19118.0 (3)
N2—C8—C9108.7 (2)C21—C20—H20A121.0
N2—C8—O1119.5 (3)C19—C20—H20A121.0
C9—C8—O1131.8 (3)C22—C21—C20121.1 (3)
C8—C9—C10103.7 (3)C22—C21—H21A119.5
C8—C9—C11128.2 (3)C20—C21—H21A119.5
C10—C9—C11127.9 (3)C21—C22—C23120.1 (4)
N1—C10—C9112.2 (3)C21—C22—H22A120.0
N1—C10—C18120.5 (3)C23—C22—H22A120.0
C9—C10—C18127.1 (3)C24—C23—C22120.0 (3)
O3—C11—C9120.3 (3)C24—C23—H23A120.0
O3—C11—C12120.3 (3)C22—C23—H23A120.0
C9—C11—C12119.4 (3)C19—C24—C23119.4 (3)
C13—C12—C17118.8 (3)C19—C24—H24A120.3
C13—C12—C11120.6 (3)C23—C24—H24A120.3
C17—C12—C11120.6 (3)C8—O1—C7118.2 (2)
C14—C13—C12120.6 (3)C10—N1—N2104.6 (2)
C14—C13—H13A119.7C8—N2—N1110.7 (2)
C12—C13—H13A119.7C8—N2—C19129.1 (2)
C15—C14—C13119.1 (3)N1—N2—C19120.2 (2)
C6—C1—C2—C30.0 (4)C12—C13—C14—C151.1 (4)
Cl1—C1—C2—C3179.2 (2)C13—C14—C15—C161.6 (5)
C1—C2—C3—C41.0 (4)C13—C14—C15—Cl2178.1 (2)
C2—C3—C4—C51.5 (4)C14—C15—C16—C170.6 (5)
C2—C3—C4—C7178.7 (2)Cl2—C15—C16—C17179.0 (2)
C3—C4—C5—C61.0 (4)C15—C16—C17—C120.8 (5)
C7—C4—C5—C6179.2 (3)C13—C12—C17—C161.3 (4)
C4—C5—C6—C10.0 (4)C11—C12—C17—C16177.9 (3)
C2—C1—C6—C50.5 (4)C24—C19—C20—C210.6 (4)
Cl1—C1—C6—C5178.7 (2)N2—C19—C20—C21179.9 (3)
C3—C4—C7—O27.8 (4)C19—C20—C21—C220.5 (5)
C5—C4—C7—O2171.9 (3)C20—C21—C22—C230.8 (6)
C3—C4—C7—O1172.5 (2)C21—C22—C23—C240.1 (5)
C5—C4—C7—O17.8 (3)C20—C19—C24—C231.3 (4)
N2—C8—C9—C100.1 (3)N2—C19—C24—C23179.2 (2)
O1—C8—C9—C10179.6 (3)C22—C23—C24—C191.0 (4)
N2—C8—C9—C11177.1 (3)N2—C8—O1—C7120.0 (3)
O1—C8—C9—C113.5 (5)C9—C8—O1—C760.6 (4)
C8—C9—C10—N11.2 (3)O2—C7—O1—C87.8 (4)
C11—C9—C10—N1178.2 (3)C4—C7—O1—C8171.9 (2)
C8—C9—C10—C18177.5 (3)C9—C10—N1—N21.7 (3)
C11—C9—C10—C185.5 (5)C18—C10—N1—N2178.3 (2)
C8—C9—C11—O3142.7 (3)C9—C8—N2—N10.9 (3)
C10—C9—C11—O333.6 (4)O1—C8—N2—N1178.6 (2)
C8—C9—C11—C1238.1 (4)C9—C8—N2—C19178.7 (2)
C10—C9—C11—C12145.7 (3)O1—C8—N2—C191.8 (4)
O3—C11—C12—C13149.5 (3)C10—N1—N2—C81.6 (3)
C9—C11—C12—C1329.7 (4)C10—N1—N2—C19178.0 (2)
O3—C11—C12—C1727.1 (4)C24—C19—N2—C840.2 (4)
C9—C11—C12—C17153.6 (3)C20—C19—N2—C8140.2 (3)
C17—C12—C13—C140.3 (4)C24—C19—N2—N1140.2 (3)
C11—C12—C13—C14177.0 (3)C20—C19—N2—N139.3 (3)

Experimental details

Crystal data
Chemical formulaC24H16Cl2N2O3
Mr451.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.4481 (4), 29.4169 (13), 6.4120 (3)
β (°) 99.669 (3)
V3)2128.68 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.23 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.930, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
16531, 3765, 1884
Rint0.067
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.093, 1.03
No. of reflections3765
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Jiangxi Province for financial support (No. 2010GQS0064).

References

First citationBai, Y. J., Lu, J., Gan, H. Y., Wang, Z. J. & Ma, H. R. (2002). Chin. J. Org. Chem. 22, 638–641.  CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarma, R. S. (1999). J. Heterocycl. Chem. 36, 1565–1571.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds