metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ2-1-(2-carb­­oxy­benzo­yl)thio­semi­carbazide(3−)]hexa­pyridine­trinickel(II) pyridine monosolvate monohydrate

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng@lcu.edu.cn

(Received 7 November 2011; accepted 15 November 2011; online 23 November 2011)

The reaction of Ni(OAc)2·4H2O with 1-(2-carb­oxy­benzo­yl)thio­semicarbazide (H3L) produces the title complex, [Ni3(C9H6N3O3S)2(C5H5N)6]·C5H5N·2H2O, which contains an linear array of three NiII atoms. The asymmetric unit contains half of the complex mol­ecule, a water mol­ecule and a half-mol­ecule of pyridine. The central NiII atom, located on a crystallographic inversion centre, has an octa­hedral N4O2 environment. The other two NiII atoms have a square-pyramidal N3OS environment, each bridged to the central NiII atom via the L3− group. The carboxyl­ate groups coordinate to the metal atoms in a monodentate fashion. The water mol­ecule is linked to the complex mol­ecule via O—H⋯O hydrogen bonds. The mol­ecules further assemble into a one-dimensional network parallel to [001] via inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related structures and the synthesis of the 1-(2-carb­oxy­benzo­yl)thio­semicarbazide ligand, see: Shen et al. (1997[Shen, X., Wu, D. & Huang, X. (1997). Polyhedron, 16, 1477-1482.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni3(C9H6N3O3S)2(C5H5N)6]·C5H5N·2H2O

  • Mr = 1238.32

  • Monoclinic, C 2/c

  • a = 34.490 (3) Å

  • b = 8.8510 (7) Å

  • c = 17.8941 (16) Å

  • β = 90.912 (1)°

  • V = 5461.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 293 K

  • 0.38 × 0.33 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.666, Tmax = 0.844

  • 13285 measured reflections

  • 4808 independent reflections

  • 2586 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.105

  • S = 0.99

  • 4808 reflections

  • 359 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.86 2.10 2.913 (4) 158
N3—H3B⋯O3ii 0.86 2.13 2.975 (5) 168
O4—H4C⋯O2 0.85 2.41 3.088 (5) 137
O4—H4D⋯O3 0.85 2.35 3.020 (5) 136
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit of the title complex contains a half complex, a water molecule and a half pyridine molecule (symmetry codes to generate second half of complex and pyridine are -x + 1/2,-y + 1/2,-z + 1 and -x, y, -z + 1/2, respectively). The three nickel atoms are linked together linearly by two µ2- bridged L groups. The central Ni2 atom is in a six-coordinated octahedral geometry with two pyridine molecules in axial positions and two amido-carbonyl oxygen atoms and two nitrogen atoms in the equatorial plane. The terminal Ni1 atom is coordinated in a trigonal-bipyramidal geometry composed of two nitrogen atoms from two pyridine molecules, one sulfur atom from the thiourea, one amido-carbonyl nitrogen atom, as well as one oxygen atom from the carboxylate. Thus, the carbonyl oxygen O1 and amine nitrogen N2 atoms of one ligand are bound to Ni2 forming a five-membered chelate ring, while the benzoyloxy oxygen O2, amine nitrogen N1 and sulfydryl sulfur S1 atoms are bound to terminal Ni1 atom forming a five-membered chelate ring and a seven-membered ring. The special position of the central Ni atom generates the linear organization of the three Ni atoms. The molecules further assemble into a one-dimensional network via intermolecular N—H···O hydrogen bonds (Table 1).

Related literature top

For related structures and the synthesis of the 1-(2-carboxybenzoyl)thiosemicarbazide ligand, see: Shen et al. (1997).

Experimental top

The title compound, [Ni3L2(Py)6].Py.H2O, was synthesized by the reaction of 3 mmol Ni(OAc)2.4H2O and 2 mmol 1-(2-carboxybenzoyl) thiosemicarbazide (H3L, synthesis described in Shen et al., 1997) in 10 ml methanol and 5 ml pyridine. The solution was stired for 6 hours. After slow evaporation of the solution over one month, deep red crystals suitable for X-ray diffraction were obtained. (yield 42.3%, m.p. 534-538 K).

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H 0.93, N—H 0.86, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N). The H atoms of the water molecule were located from the Fourier map and refined constraining the O-H distances at 0.85 Å and Uiso(H) = 1.2Ueq(O) .

Structure description top

The asymmetric unit of the title complex contains a half complex, a water molecule and a half pyridine molecule (symmetry codes to generate second half of complex and pyridine are -x + 1/2,-y + 1/2,-z + 1 and -x, y, -z + 1/2, respectively). The three nickel atoms are linked together linearly by two µ2- bridged L groups. The central Ni2 atom is in a six-coordinated octahedral geometry with two pyridine molecules in axial positions and two amido-carbonyl oxygen atoms and two nitrogen atoms in the equatorial plane. The terminal Ni1 atom is coordinated in a trigonal-bipyramidal geometry composed of two nitrogen atoms from two pyridine molecules, one sulfur atom from the thiourea, one amido-carbonyl nitrogen atom, as well as one oxygen atom from the carboxylate. Thus, the carbonyl oxygen O1 and amine nitrogen N2 atoms of one ligand are bound to Ni2 forming a five-membered chelate ring, while the benzoyloxy oxygen O2, amine nitrogen N1 and sulfydryl sulfur S1 atoms are bound to terminal Ni1 atom forming a five-membered chelate ring and a seven-membered ring. The special position of the central Ni atom generates the linear organization of the three Ni atoms. The molecules further assemble into a one-dimensional network via intermolecular N—H···O hydrogen bonds (Table 1).

For related structures and the synthesis of the 1-(2-carboxybenzoyl)thiosemicarbazide ligand, see: Shen et al. (1997).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids (symmetry codes to generate second half of complex and pyridine are -x + 1/2,-y + 1/2,-z + 1 and -x, y, -z + 1/2, respectively).
Bis[µ2-1-(2-carboxybenzoyl)thiosemicarbazide(3-)]hexapyridinetrinickel(II) pyridine monosolvate monohydrate top
Crystal data top
[Ni3(C9H6N3O3S)2(C5H5N)6]·C5H5N·2H2OF(000) = 2560
Mr = 1238.32Dx = 1.506 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1906 reflections
a = 34.490 (3) Åθ = 2.3–23.5°
b = 8.8510 (7) ŵ = 1.17 mm1
c = 17.8941 (16) ÅT = 293 K
β = 90.912 (1)°Block, black
V = 5461.9 (8) Å30.38 × 0.33 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4808 independent reflections
Radiation source: fine-focus sealed tube2586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4032
Tmin = 0.666, Tmax = 0.844k = 1010
13285 measured reflectionsl = 1821
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.032P)2]
where P = (Fo2 + 2Fc2)/3
4808 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ni3(C9H6N3O3S)2(C5H5N)6]·C5H5N·2H2OV = 5461.9 (8) Å3
Mr = 1238.32Z = 4
Monoclinic, C2/cMo Kα radiation
a = 34.490 (3) ŵ = 1.17 mm1
b = 8.8510 (7) ÅT = 293 K
c = 17.8941 (16) Å0.38 × 0.33 × 0.15 mm
β = 90.912 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4808 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2586 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.844Rint = 0.073
13285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 0.99Δρmax = 0.65 e Å3
4808 reflectionsΔρmin = 0.47 e Å3
359 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.112323 (15)0.26236 (7)0.43526 (3)0.03118 (19)
Ni20.25000.25000.50000.0262 (2)
S10.11994 (3)0.37106 (14)0.55102 (7)0.0381 (3)
N10.17092 (9)0.2355 (4)0.44216 (18)0.0268 (8)
N20.19160 (9)0.2959 (4)0.50367 (19)0.0267 (9)
N30.18838 (10)0.4244 (4)0.61357 (19)0.0389 (10)
H3A0.21320.42110.61760.058*
H3B0.17500.46800.64760.058*
N40.05243 (11)0.3042 (5)0.4317 (2)0.0410 (11)
N50.10345 (10)0.0358 (4)0.4379 (2)0.0381 (10)
N60.25781 (10)0.4472 (4)0.4275 (2)0.0323 (9)
O10.22954 (8)0.1319 (3)0.41037 (15)0.0287 (7)
O20.11502 (9)0.3467 (4)0.33229 (17)0.0438 (9)
O30.15374 (11)0.4067 (4)0.2398 (2)0.0701 (12)
C10.17038 (12)0.3613 (5)0.5543 (2)0.0275 (11)
C20.19307 (12)0.1557 (5)0.3982 (2)0.0277 (11)
C30.14056 (14)0.3153 (6)0.2833 (3)0.0432 (13)
C40.17538 (11)0.0773 (5)0.3323 (2)0.0263 (10)
C50.15244 (12)0.1517 (5)0.2784 (2)0.0327 (11)
C60.13875 (14)0.0710 (7)0.2166 (3)0.0513 (14)
H60.12410.12000.17990.062*
C70.14671 (16)0.0802 (7)0.2094 (3)0.0591 (16)
H70.13690.13370.16860.071*
C80.16930 (15)0.1533 (6)0.2626 (3)0.0574 (16)
H80.17460.25590.25790.069*
C90.18387 (13)0.0729 (5)0.3224 (3)0.0391 (12)
H90.19990.12150.35720.047*
C100.02994 (14)0.2411 (6)0.4830 (3)0.0618 (16)
H100.04140.17770.51840.074*
C110.00927 (16)0.2651 (8)0.4862 (4)0.078 (2)
H110.02370.21860.52320.094*
C120.02678 (17)0.3547 (8)0.4363 (4)0.081 (2)
H120.05340.37160.43790.098*
C130.00470 (17)0.4215 (7)0.3825 (4)0.076 (2)
H130.01590.48510.34690.091*
C140.03455 (15)0.3917 (6)0.3827 (3)0.0557 (15)
H140.04930.43640.34570.067*
C150.12039 (13)0.0501 (6)0.4910 (3)0.0475 (14)
H150.13160.00210.53210.057*
C160.12199 (16)0.2043 (7)0.4878 (4)0.0645 (17)
H160.13350.25950.52640.077*
C170.10612 (17)0.2764 (6)0.4261 (4)0.0678 (18)
H170.10770.38080.42140.081*
C180.08817 (15)0.1917 (6)0.3723 (3)0.0560 (16)
H180.07660.23780.33090.067*
C190.08739 (13)0.0390 (6)0.3799 (3)0.0428 (13)
H190.07500.01710.34270.051*
C200.27422 (15)0.5707 (6)0.4541 (3)0.0625 (17)
H200.28220.57150.50400.075*
C210.28014 (16)0.6987 (6)0.4121 (4)0.0709 (19)
H210.29170.78360.43350.085*
C220.26900 (14)0.6994 (6)0.3394 (3)0.0495 (14)
H220.27270.78420.30960.059*
C230.25230 (16)0.5732 (7)0.3113 (3)0.0612 (16)
H230.24430.56950.26140.073*
C240.24728 (15)0.4514 (6)0.3566 (3)0.0562 (15)
H240.23570.36580.33610.067*
O40.07741 (10)0.5704 (5)0.2203 (2)0.0882 (13)
H4C0.07510.51890.26010.106*
H4D0.09990.55330.20360.106*
N80.00000.8034 (18)0.25000.172 (5)
C250.0223 (3)0.8744 (16)0.2004 (7)0.159 (5)
H250.03670.82130.16570.191*
C260.0227 (5)1.0234 (17)0.2033 (11)0.222 (10)
H260.03941.07490.17190.266*
C270.00001.106 (3)0.25000.28 (3)
H270.00001.21100.25000.339*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0281 (3)0.0351 (4)0.0305 (4)0.0010 (3)0.0041 (3)0.0008 (3)
Ni20.0239 (4)0.0297 (5)0.0251 (5)0.0005 (4)0.0025 (3)0.0042 (4)
S10.0323 (7)0.0486 (8)0.0336 (7)0.0086 (6)0.0070 (5)0.0043 (6)
N10.024 (2)0.037 (2)0.0192 (19)0.0002 (18)0.0037 (15)0.0073 (18)
N20.027 (2)0.030 (2)0.023 (2)0.0005 (16)0.0031 (17)0.0047 (18)
N30.034 (2)0.053 (3)0.030 (2)0.001 (2)0.0039 (18)0.016 (2)
N40.032 (2)0.050 (3)0.041 (3)0.002 (2)0.004 (2)0.000 (2)
N50.036 (2)0.045 (3)0.034 (3)0.006 (2)0.0023 (19)0.001 (2)
N60.031 (2)0.033 (2)0.033 (2)0.0000 (18)0.0058 (18)0.002 (2)
O10.0252 (18)0.0301 (18)0.0309 (18)0.0012 (14)0.0002 (13)0.0051 (15)
O20.041 (2)0.056 (2)0.034 (2)0.0098 (17)0.0117 (16)0.0110 (18)
O30.083 (3)0.064 (3)0.065 (3)0.010 (2)0.036 (2)0.034 (2)
C10.032 (3)0.026 (3)0.025 (3)0.006 (2)0.003 (2)0.005 (2)
C20.029 (3)0.023 (3)0.031 (3)0.006 (2)0.002 (2)0.004 (2)
C30.035 (3)0.058 (4)0.036 (3)0.001 (3)0.004 (3)0.009 (3)
C40.024 (3)0.034 (3)0.021 (3)0.004 (2)0.0070 (19)0.009 (2)
C50.029 (3)0.046 (3)0.023 (3)0.006 (2)0.007 (2)0.002 (2)
C60.051 (4)0.072 (4)0.031 (3)0.010 (3)0.003 (2)0.000 (3)
C70.068 (4)0.074 (5)0.035 (4)0.017 (3)0.000 (3)0.029 (3)
C80.061 (4)0.050 (4)0.062 (4)0.002 (3)0.001 (3)0.029 (3)
C90.039 (3)0.039 (3)0.039 (3)0.003 (2)0.005 (2)0.015 (3)
C100.036 (3)0.082 (5)0.068 (4)0.007 (3)0.007 (3)0.016 (4)
C110.036 (4)0.108 (6)0.092 (5)0.007 (4)0.020 (3)0.017 (4)
C120.030 (4)0.100 (6)0.115 (6)0.014 (4)0.012 (4)0.000 (5)
C130.044 (4)0.092 (5)0.093 (5)0.021 (4)0.009 (4)0.014 (4)
C140.041 (3)0.062 (4)0.065 (4)0.003 (3)0.002 (3)0.010 (3)
C150.051 (4)0.053 (4)0.039 (3)0.007 (3)0.000 (3)0.004 (3)
C160.070 (4)0.045 (4)0.078 (5)0.001 (3)0.000 (3)0.022 (3)
C170.078 (5)0.027 (3)0.099 (5)0.007 (3)0.019 (4)0.001 (4)
C180.051 (4)0.048 (4)0.069 (4)0.018 (3)0.007 (3)0.014 (3)
C190.035 (3)0.046 (4)0.047 (4)0.009 (2)0.005 (2)0.004 (3)
C200.080 (4)0.048 (4)0.059 (4)0.016 (3)0.018 (3)0.005 (3)
C210.085 (5)0.043 (4)0.084 (5)0.025 (3)0.019 (4)0.014 (4)
C220.053 (4)0.043 (4)0.053 (4)0.002 (3)0.013 (3)0.018 (3)
C230.076 (4)0.066 (4)0.042 (4)0.009 (3)0.001 (3)0.006 (3)
C240.083 (4)0.051 (4)0.035 (3)0.021 (3)0.003 (3)0.004 (3)
O40.077 (3)0.111 (4)0.076 (3)0.015 (3)0.011 (2)0.011 (3)
N80.155 (14)0.194 (17)0.164 (15)0.0000.023 (10)0.000
C250.157 (12)0.174 (12)0.146 (11)0.012 (11)0.020 (8)0.040 (11)
C260.253 (18)0.17 (2)0.23 (2)0.107 (18)0.143 (14)0.094 (17)
C270.46 (6)0.10 (2)0.28 (5)0.0000.29 (4)0.000
Geometric parameters (Å, º) top
Ni1—O21.992 (3)C9—H90.9300
Ni1—N52.029 (4)C10—C111.371 (6)
Ni1—N12.037 (3)C10—H100.9300
Ni1—N42.099 (4)C11—C121.332 (8)
Ni1—S12.2953 (13)C11—H110.9300
Ni2—O12.032 (3)C12—C131.371 (8)
Ni2—O1i2.032 (3)C12—H120.9300
Ni2—N2i2.057 (3)C13—C141.379 (6)
Ni2—N22.057 (3)C13—H130.9300
Ni2—N62.194 (4)C14—H140.9300
Ni2—N6i2.194 (4)C15—C161.367 (7)
S1—C11.742 (4)C15—H150.9300
N1—C21.311 (5)C16—C171.380 (7)
N1—N21.408 (4)C16—H160.9300
N2—C11.309 (5)C17—C181.361 (7)
N3—C11.342 (5)C17—H170.9300
N3—H3A0.8600C18—C191.359 (6)
N3—H3B0.8600C18—H180.9300
N4—C141.317 (6)C19—H190.9300
N4—C101.334 (6)C20—C211.377 (7)
N5—C191.343 (5)C20—H200.9300
N5—C151.343 (5)C21—C221.351 (7)
N6—C241.314 (5)C21—H210.9300
N6—C201.317 (6)C22—C231.350 (6)
O1—C21.290 (4)C22—H220.9300
O2—C31.283 (5)C23—C241.362 (7)
O3—C31.216 (5)C23—H230.9300
C2—C41.492 (5)C24—H240.9300
C3—C51.508 (6)O4—H4C0.8501
C4—C91.374 (6)O4—H4D0.8498
C4—C51.402 (6)N8—C25ii1.338 (11)
C5—C61.392 (6)N8—C251.338 (11)
C6—C71.373 (7)C25—C261.320 (16)
C6—H60.9300C25—H250.9300
C7—C81.381 (7)C26—C271.366 (19)
C7—H70.9300C26—H260.9300
C8—C91.374 (6)C27—C26ii1.366 (19)
C8—H80.9300C27—H270.9300
O2—Ni1—N5113.67 (15)C6—C7—H7119.9
O2—Ni1—N192.23 (13)C8—C7—H7119.9
N5—Ni1—N191.89 (14)C9—C8—C7119.3 (5)
O2—Ni1—N488.08 (14)C9—C8—H8120.3
N5—Ni1—N491.52 (15)C7—C8—H8120.3
N1—Ni1—N4176.13 (14)C4—C9—C8121.6 (5)
O2—Ni1—S1132.18 (10)C4—C9—H9119.2
N5—Ni1—S1114.10 (12)C8—C9—H9119.2
N1—Ni1—S183.98 (10)N4—C10—C11123.3 (5)
N4—Ni1—S192.95 (11)N4—C10—H10118.4
O1—Ni2—O1i180.000 (1)C11—C10—H10118.4
O1—Ni2—N2i101.60 (12)C12—C11—C10120.1 (6)
O1i—Ni2—N2i78.40 (12)C12—C11—H11120.0
O1—Ni2—N278.40 (12)C10—C11—H11120.0
O1i—Ni2—N2101.60 (12)C11—C12—C13118.5 (6)
N2i—Ni2—N2180.000 (1)C11—C12—H12120.8
O1—Ni2—N689.26 (13)C13—C12—H12120.8
O1i—Ni2—N690.74 (13)C12—C13—C14118.2 (6)
N2i—Ni2—N690.51 (13)C12—C13—H13120.9
N2—Ni2—N689.49 (13)C14—C13—H13120.9
O1—Ni2—N6i90.74 (13)N4—C14—C13124.3 (5)
O1i—Ni2—N6i89.25 (13)N4—C14—H14117.9
N2i—Ni2—N6i89.49 (13)C13—C14—H14117.9
N2—Ni2—N6i90.51 (13)N5—C15—C16123.6 (5)
N6—Ni2—N6i180.000 (1)N5—C15—H15118.2
C1—S1—Ni196.29 (15)C16—C15—H15118.2
C2—N1—N2112.4 (3)C15—C16—C17118.6 (5)
C2—N1—Ni1127.9 (3)C15—C16—H16120.7
N2—N1—Ni1119.5 (2)C17—C16—H16120.7
C1—N2—N1115.3 (3)C18—C17—C16118.8 (5)
C1—N2—Ni2131.9 (3)C18—C17—H17120.6
N1—N2—Ni2112.6 (2)C16—C17—H17120.6
C1—N3—H3A120.0C19—C18—C17119.1 (5)
C1—N3—H3B120.0C19—C18—H18120.5
H3A—N3—H3B120.0C17—C18—H18120.5
C14—N4—C10115.7 (4)N5—C19—C18124.0 (5)
C14—N4—Ni1125.1 (4)N5—C19—H19118.0
C10—N4—Ni1119.2 (4)C18—C19—H19118.0
C19—N5—C15115.9 (4)N6—C20—C21123.5 (5)
C19—N5—Ni1122.0 (3)N6—C20—H20118.3
C15—N5—Ni1120.8 (3)C21—C20—H20118.3
C24—N6—C20115.9 (4)C22—C21—C20119.2 (5)
C24—N6—Ni2124.0 (3)C22—C21—H21120.4
C20—N6—Ni2120.2 (3)C20—C21—H21120.4
C2—O1—Ni2112.0 (3)C23—C22—C21117.9 (5)
C3—O2—Ni1126.4 (3)C23—C22—H22121.0
N2—C1—N3118.3 (4)C21—C22—H22121.0
N2—C1—S1124.6 (3)C22—C23—C24119.4 (5)
N3—C1—S1117.1 (3)C22—C23—H23120.3
O1—C2—N1124.3 (4)C24—C23—H23120.3
O1—C2—C4116.3 (4)N6—C24—C23124.2 (5)
N1—C2—C4119.3 (4)N6—C24—H24117.9
O3—C3—O2124.1 (5)C23—C24—H24117.9
O3—C3—C5119.8 (5)H4C—O4—H4D107.3
O2—C3—C5116.0 (4)C25ii—N8—C25124 (2)
C9—C4—C5119.1 (4)C26—C25—N8116.7 (19)
C9—C4—C2117.8 (4)C26—C25—H25121.6
C5—C4—C2123.1 (4)N8—C25—H25121.6
C6—C5—C4119.1 (5)C25—C26—C27123 (3)
C6—C5—C3116.8 (4)C25—C26—H26118.3
C4—C5—C3124.1 (4)C27—C26—H26118.3
C7—C6—C5120.6 (5)C26ii—C27—C26115 (3)
C7—C6—H6119.7C26ii—C27—H27122.3
C5—C6—H6119.7C26—C27—H27122.3
C6—C7—C8120.2 (5)
O2—Ni1—S1—C183.36 (19)N1—N2—C1—N3178.5 (3)
N5—Ni1—S1—C193.57 (18)Ni2—N2—C1—N36.7 (6)
N1—Ni1—S1—C14.19 (18)N1—N2—C1—S12.2 (5)
N4—Ni1—S1—C1173.44 (18)Ni2—N2—C1—S1172.6 (2)
O2—Ni1—N1—C258.4 (4)Ni1—S1—C1—N24.9 (4)
N5—Ni1—N1—C255.3 (4)Ni1—S1—C1—N3175.8 (3)
N4—Ni1—N1—C2153 (2)Ni2—O1—C2—N15.8 (5)
S1—Ni1—N1—C2169.4 (4)Ni2—O1—C2—C4178.4 (3)
O2—Ni1—N1—N2127.7 (3)N2—N1—C2—O11.4 (6)
N5—Ni1—N1—N2118.6 (3)Ni1—N1—C2—O1172.8 (3)
N4—Ni1—N1—N233 (2)N2—N1—C2—C4177.1 (3)
S1—Ni1—N1—N24.5 (3)Ni1—N1—C2—C42.8 (6)
C2—N1—N2—C1172.1 (4)Ni1—O2—C3—O3143.0 (4)
Ni1—N1—N2—C12.7 (4)Ni1—O2—C3—C540.6 (6)
C2—N1—N2—Ni23.7 (4)O1—C2—C4—C945.9 (5)
Ni1—N1—N2—Ni2178.48 (16)N1—C2—C4—C9130.1 (4)
O1—Ni2—N2—C1169.9 (4)O1—C2—C4—C5130.6 (4)
O1i—Ni2—N2—C110.1 (4)N1—C2—C4—C553.4 (6)
N2i—Ni2—N2—C134 (81)C9—C4—C5—C60.3 (6)
N6—Ni2—N2—C1100.7 (4)C2—C4—C5—C6176.7 (4)
N6i—Ni2—N2—C179.3 (4)C9—C4—C5—C3178.9 (4)
O1—Ni2—N2—N15.0 (2)C2—C4—C5—C34.7 (7)
O1i—Ni2—N2—N1175.0 (2)O3—C3—C5—C670.0 (6)
N2i—Ni2—N2—N1141 (81)O2—C3—C5—C6106.5 (5)
N6—Ni2—N2—N184.3 (3)O3—C3—C5—C4111.4 (6)
N6i—Ni2—N2—N195.7 (3)O2—C3—C5—C472.1 (6)
O2—Ni1—N4—C1415.1 (4)C4—C5—C6—C71.7 (7)
N5—Ni1—N4—C14128.8 (4)C3—C5—C6—C7177.0 (5)
N1—Ni1—N4—C1480 (2)C5—C6—C7—C81.7 (8)
S1—Ni1—N4—C14117.0 (4)C6—C7—C8—C90.3 (8)
O2—Ni1—N4—C10166.0 (4)C5—C4—C9—C82.4 (7)
N5—Ni1—N4—C1052.4 (4)C2—C4—C9—C8179.0 (4)
N1—Ni1—N4—C1099 (2)C7—C8—C9—C42.4 (8)
S1—Ni1—N4—C1061.9 (4)C14—N4—C10—C110.6 (8)
O2—Ni1—N5—C1922.5 (4)Ni1—N4—C10—C11178.3 (4)
N1—Ni1—N5—C19115.8 (3)N4—C10—C11—C120.3 (10)
N4—Ni1—N5—C1966.1 (4)C10—C11—C12—C130.1 (10)
S1—Ni1—N5—C19160.0 (3)C11—C12—C13—C140.3 (10)
O2—Ni1—N5—C15143.8 (3)C10—N4—C14—C130.9 (8)
N1—Ni1—N5—C1550.5 (4)Ni1—N4—C14—C13178.0 (4)
N4—Ni1—N5—C15127.7 (4)C12—C13—C14—N40.8 (9)
S1—Ni1—N5—C1533.7 (4)C19—N5—C15—C160.5 (7)
O1—Ni2—N6—C244.2 (4)Ni1—N5—C15—C16166.6 (4)
O1i—Ni2—N6—C24175.8 (4)N5—C15—C16—C171.4 (8)
N2i—Ni2—N6—C24105.8 (4)C15—C16—C17—C182.5 (8)
N2—Ni2—N6—C2474.2 (4)C16—C17—C18—C191.8 (8)
N6i—Ni2—N6—C24168 (100)C15—N5—C19—C181.2 (7)
O1—Ni2—N6—C20175.2 (4)Ni1—N5—C19—C18165.7 (4)
O1i—Ni2—N6—C204.8 (4)C17—C18—C19—N50.1 (8)
N2i—Ni2—N6—C2073.6 (4)C24—N6—C20—C210.5 (8)
N2—Ni2—N6—C20106.4 (4)Ni2—N6—C20—C21179.9 (4)
N6i—Ni2—N6—C2011 (100)N6—C20—C21—C220.5 (9)
O1i—Ni2—O1—C2132 (100)C20—C21—C22—C230.2 (8)
N2i—Ni2—O1—C2174.4 (3)C21—C22—C23—C240.1 (8)
N2—Ni2—O1—C25.6 (3)C20—N6—C24—C230.2 (8)
N6—Ni2—O1—C284.0 (3)Ni2—N6—C24—C23179.5 (4)
N6i—Ni2—O1—C296.0 (3)C22—C23—C24—N60.2 (9)
N5—Ni1—O2—C363.3 (4)C25ii—N8—C25—C262.2 (9)
N1—Ni1—O2—C329.7 (4)N8—C25—C26—C274.6 (18)
N4—Ni1—O2—C3154.1 (4)C25—C26—C27—C26ii2.4 (10)
S1—Ni1—O2—C3113.6 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.862.102.913 (4)158
N3—H3B···O3iii0.862.132.975 (5)168
O4—H4C···O20.852.413.088 (5)137
O4—H4D···O30.852.353.020 (5)136
Symmetry codes: (i) x+1/2, y+1/2, z+1; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni3(C9H6N3O3S)2(C5H5N)6]·C5H5N·2H2O
Mr1238.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)34.490 (3), 8.8510 (7), 17.8941 (16)
β (°) 90.912 (1)
V3)5461.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.38 × 0.33 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.666, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
13285, 4808, 2586
Rint0.073
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.105, 0.99
No. of reflections4808
No. of parameters359
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.47

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.862.102.913 (4)158
N3—H3B···O3ii0.862.132.975 (5)168
O4—H4C···O20.852.413.088 (5)137
O4—H4D···O30.852.353.020 (5)136
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 20671048, 21041002) and the Shandong Province Higher School Science and Technology Plan Projects (No. J10LB61).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, X., Wu, D. & Huang, X. (1997). Polyhedron, 16, 1477–1482.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds