metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new AgI complex based on 1-[(1H-benzimidazol-1-yl)meth­yl]-1H-1,2,4-triazole

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: mxr@zzu.edu.cn

(Received 8 November 2011; accepted 15 November 2011; online 19 November 2011)

In the title complex, bis­{μ-1-[(1H-benzimidazol-1-yl)meth­yl]-1H-1,2,4-triazole}disilver(I) dinitrate, [Ag2(C10H9N5)2](NO3)2, the AgI ion is nearly linearly coordinated [N—Ag—N angle is 155.72 (14)°] by two 1-[(1H-benzimidazole-1-yl)meth­yl]-1H-1,2,4-triazole (bmt) ligands. In addition, two bmt ligands link two AgI ions, forming a dinuclear unit with an Ag⋯Ag distance of 5.0179 (15) Å. The whole complex is generated by an inversion centre. The dinuclear units and the NO3 counter-ions are connected by N—H⋯O hydrogen bonds and weak Ag⋯O inter­actions [2.831 (5), 2.887 (5) and 2.908 (5) Å], leading to a three-dimensional structure.

Related literature

For background to complexes based on benzimidazole or triazole and their derivatives, see: Yang et al. (2010[Yang, H.-X., Zhang, J., Ding, Y.-N. & Meng, X.-R. (2010). Acta Cryst. E66, m578.]); Li et al. (2010[Li, Y., Yang, H., Ding, Y. & Meng, X. (2010). Acta Cryst. E66, m1155.]); Tian et al. (2011[Tian, L., Yan, L. & Liu, S. Y. (2011). J. Coord. Chem. 64, 2945-2952.]); Zhang et al. (2011[Zhang, P., Li, D. S., Zhao, J., Wu, Y. P., Li, C., Zou, K. & Lu, J. Y. (2011). J. Coord. Chem. 64, 2329-2341.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C10H9N5)2](NO3)2

  • Mr = 738.20

  • Monoclinic, P 21 /c

  • a = 9.4947 (19) Å

  • b = 13.569 (3) Å

  • c = 10.174 (2) Å

  • β = 114.56 (3)°

  • V = 1192.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 293 K

  • 0.19 × 0.17 × 0.14 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.737, Tmax = 0.796

  • 9572 measured reflections

  • 2158 independent reflections

  • 1952 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.095

  • S = 1.09

  • 2158 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2 0.86 2.08 2.849 (6) 148

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many complexes based on benzimidazole or triazole and their derivatives have been synthesized and characterized owing to the strong coordination abilities of these multidentate N-heterocyclic ligands and the interesting properties and potential applications of these complexes (Yang et al., 2010; Li et al., 2010; Tian et al., 2011; Zhang et al., 2011). We are engaged in the synthesis of unsymmetrical N-heterocyclic ligands and have synthesized the compound 1-[(1H-benzimidazole-1-yl)methyl]-1H-1,2,4-triazole (bmt). In this work, we selected this compound as ligand and generated a new complex [Ag2(C10H9N5)2](NO3)2, (I), which is reported here.

In complex (I) each AgI ion is two-coordinated by two N atom from one triazole group and one benzimidazole group of two different 1-[(1H-benzimidazole-1-yl)methyl]-1H-1,2,4-triazole ligands and the nitrate anion does not coordinate to the AgI ion (Fig. 1). Two bmt ligands bridge two AgI ions leading to a dinuclear unit [Ag2(C10H9N5)2] with Ag1—Ag1i distance of 5.0179 (15) Å (symmetry code: (i) -x-1, -y+2, -z). [Ag2(C10H9N5)2] units and NO3- groups are linked through weak Ag···O interactions and N—H···O hydrogen bonds (Table 1) resulting in a three-dimensional packing in solid state.

Related literature top

For background to complexes based on benzimidazole or triazole and their derivatives, see: Yang et al. (2010); Li et al. (2010); Tian et al. (2011); Zhang et al. (2011).

Experimental top

The ligand 1-[(1H-benzimidazole-1-yl)methyl]-1H-1,2,4-triazole (0.1 mmol) in methanol (4 ml) was added dropwise to an aqueous solution (3 ml) of AgNO3 (0.1 mmol). The resulting solution was allowed to stand at room temperature in the dark. After four weeks good quality colorless crystals were obtained from the filtrate and dried in air.

Refinement top

H atoms are positioned geometrically and refined as riding atoms, with C-H = 0.93 (aromatic) and 0.97 (CH2) Å and N-H = 0.86 Å and with Uiso(H) = 1.2 Ueq(C,N).

Structure description top

Many complexes based on benzimidazole or triazole and their derivatives have been synthesized and characterized owing to the strong coordination abilities of these multidentate N-heterocyclic ligands and the interesting properties and potential applications of these complexes (Yang et al., 2010; Li et al., 2010; Tian et al., 2011; Zhang et al., 2011). We are engaged in the synthesis of unsymmetrical N-heterocyclic ligands and have synthesized the compound 1-[(1H-benzimidazole-1-yl)methyl]-1H-1,2,4-triazole (bmt). In this work, we selected this compound as ligand and generated a new complex [Ag2(C10H9N5)2](NO3)2, (I), which is reported here.

In complex (I) each AgI ion is two-coordinated by two N atom from one triazole group and one benzimidazole group of two different 1-[(1H-benzimidazole-1-yl)methyl]-1H-1,2,4-triazole ligands and the nitrate anion does not coordinate to the AgI ion (Fig. 1). Two bmt ligands bridge two AgI ions leading to a dinuclear unit [Ag2(C10H9N5)2] with Ag1—Ag1i distance of 5.0179 (15) Å (symmetry code: (i) -x-1, -y+2, -z). [Ag2(C10H9N5)2] units and NO3- groups are linked through weak Ag···O interactions and N—H···O hydrogen bonds (Table 1) resulting in a three-dimensional packing in solid state.

For background to complexes based on benzimidazole or triazole and their derivatives, see: Yang et al. (2010); Li et al. (2010); Tian et al. (2011); Zhang et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex showing labeling and 30% probability displacement ellipsoids. Hydrogen bonds are indicated by dashed lines. Symmetry code: (i) -x - 1, -y + 2, -z.
bis{µ-1-[(1H-benzimidazol-1-yl)methyl]-1H-1,2,4- triazole}disilver(I) dinitrate top
Crystal data top
[Ag2(C10H9N5)2](NO3)2F(000) = 728
Mr = 738.20Dx = 2.057 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3140 reflections
a = 9.4947 (19) Åθ = 2.4–27.9°
b = 13.569 (3) ŵ = 1.71 mm1
c = 10.174 (2) ÅT = 293 K
β = 114.56 (3)°Prism, colourless
V = 1192.1 (4) Å30.19 × 0.17 × 0.14 mm
Z = 2
Data collection top
Rigaku Saturn
diffractometer
2158 independent reflections
Radiation source: fine-focus sealed tube1952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 28.5714 pixels mm-1θmax = 25.3°, θmin = 2.4°
ω scansh = 1110
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 1616
Tmin = 0.737, Tmax = 0.796l = 1211
9572 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0419P)2 + 1.7006P]
where P = (Fo2 + 2Fc2)/3
2158 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Ag2(C10H9N5)2](NO3)2V = 1192.1 (4) Å3
Mr = 738.20Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.4947 (19) ŵ = 1.71 mm1
b = 13.569 (3) ÅT = 293 K
c = 10.174 (2) Å0.19 × 0.17 × 0.14 mm
β = 114.56 (3)°
Data collection top
Rigaku Saturn
diffractometer
2158 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
1952 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.796Rint = 0.034
9572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.09Δρmax = 0.70 e Å3
2158 reflectionsΔρmin = 0.28 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.34103 (4)0.89095 (3)0.20814 (4)0.04938 (17)
N10.0927 (4)0.9097 (2)0.3164 (4)0.0326 (8)
N20.1479 (4)0.9666 (3)0.3996 (4)0.0354 (8)
H2B0.22481.00350.40800.043*
N30.1878 (4)1.0476 (2)0.0747 (4)0.0320 (8)
N40.1943 (5)0.9813 (3)0.0280 (4)0.0449 (10)
N50.4205 (4)1.0613 (3)0.0931 (4)0.0374 (8)
N60.3779 (5)1.1840 (3)0.4722 (5)0.0470 (10)
O10.3112 (6)1.1880 (4)0.3398 (4)0.0877 (14)
O20.3944 (6)1.1033 (3)0.5326 (5)0.0818 (14)
O30.4245 (5)1.2605 (3)0.5397 (5)0.0801 (13)
C10.0033 (5)0.8484 (3)0.4281 (4)0.0320 (9)
C20.0334 (6)0.7641 (3)0.4866 (5)0.0387 (10)
H2A0.13390.73960.45150.046*
C30.0871 (6)0.7193 (3)0.5989 (5)0.0446 (12)
H3A0.06700.66330.64090.054*
C40.2383 (6)0.7552 (3)0.6518 (5)0.0454 (12)
H4A0.31580.72230.72770.055*
C50.2760 (5)0.8380 (3)0.5946 (5)0.0415 (11)
H5A0.37690.86180.62950.050*
C60.1542 (5)0.8840 (3)0.4813 (5)0.0345 (10)
C70.0011 (5)0.9789 (3)0.3042 (4)0.0306 (9)
C80.0451 (5)1.0643 (3)0.2027 (4)0.0352 (10)
H8A0.05741.12220.25280.042*
H8B0.03791.07740.17320.042*
C90.3227 (5)1.0931 (3)0.0341 (5)0.0353 (10)
H9A0.34521.14090.08810.042*
C100.3371 (6)0.9929 (4)0.1265 (5)0.0450 (11)
H10A0.37720.95690.21200.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0295 (2)0.0625 (3)0.0471 (3)0.00013 (17)0.00685 (17)0.00857 (18)
N10.0290 (19)0.0329 (19)0.0328 (19)0.0005 (16)0.0098 (16)0.0039 (15)
N20.030 (2)0.038 (2)0.036 (2)0.0027 (16)0.0114 (16)0.0009 (16)
N30.0292 (19)0.0302 (17)0.0335 (19)0.0019 (15)0.0100 (16)0.0020 (15)
N40.040 (2)0.046 (2)0.047 (2)0.0002 (19)0.016 (2)0.0166 (19)
N50.030 (2)0.041 (2)0.036 (2)0.0014 (17)0.0097 (17)0.0027 (17)
N60.036 (2)0.056 (3)0.047 (3)0.007 (2)0.015 (2)0.004 (2)
O10.103 (4)0.097 (3)0.048 (2)0.023 (3)0.016 (2)0.003 (2)
O20.089 (3)0.060 (3)0.088 (3)0.008 (2)0.029 (3)0.028 (2)
O30.067 (3)0.064 (3)0.094 (3)0.025 (2)0.019 (2)0.029 (2)
C10.033 (2)0.032 (2)0.028 (2)0.0053 (18)0.0098 (18)0.0064 (18)
C20.040 (3)0.034 (2)0.040 (2)0.000 (2)0.014 (2)0.0028 (19)
C30.060 (3)0.033 (2)0.037 (3)0.004 (2)0.018 (2)0.000 (2)
C40.055 (3)0.041 (3)0.034 (2)0.018 (2)0.012 (2)0.001 (2)
C50.034 (3)0.049 (3)0.035 (2)0.005 (2)0.008 (2)0.007 (2)
C60.036 (3)0.035 (2)0.031 (2)0.0020 (19)0.013 (2)0.0054 (18)
C70.030 (2)0.031 (2)0.028 (2)0.0005 (18)0.0106 (18)0.0052 (17)
C80.031 (2)0.034 (2)0.036 (2)0.0011 (19)0.0093 (19)0.0042 (19)
C90.037 (3)0.037 (2)0.032 (2)0.003 (2)0.015 (2)0.0031 (19)
C100.040 (3)0.049 (3)0.043 (3)0.007 (2)0.014 (2)0.010 (2)
Geometric parameters (Å, º) top
Ag1—N12.163 (4)N6—O21.233 (5)
Ag1—N5i2.171 (4)C1—C61.390 (6)
N1—C71.321 (5)C1—C21.399 (6)
N1—C11.397 (5)C2—C31.377 (6)
N2—C71.353 (5)C2—H2A0.9300
N2—C61.382 (5)C3—C41.395 (7)
N2—H2B0.8600C3—H3A0.9300
N3—C91.325 (5)C4—C51.380 (7)
N3—N41.361 (5)C4—H4A0.9300
N3—C81.454 (5)C5—C61.396 (6)
N4—C101.318 (6)C5—H5A0.9300
N5—C91.313 (6)C7—C81.492 (6)
N5—C101.352 (6)C8—H8A0.9700
N5—Ag1i2.171 (4)C8—H8B0.9700
N6—O31.222 (5)C9—H9A0.9300
N6—O11.229 (5)C10—H10A0.9300
N1—Ag1—N5i155.72 (14)C4—C3—H3A118.9
C7—N1—C1105.5 (4)C5—C4—C3121.9 (4)
C7—N1—Ag1131.1 (3)C5—C4—H4A119.1
C1—N1—Ag1123.3 (3)C3—C4—H4A119.1
C7—N2—C6107.6 (4)C4—C5—C6116.2 (4)
C7—N2—H2B126.2C4—C5—H5A121.9
C6—N2—H2B126.2C6—C5—H5A121.9
C9—N3—N4109.8 (4)N2—C6—C1105.5 (4)
C9—N3—C8128.8 (4)N2—C6—C5132.3 (4)
N4—N3—C8121.2 (3)C1—C6—C5122.2 (4)
C10—N4—N3102.1 (4)N1—C7—N2112.2 (4)
C9—N5—C10103.0 (4)N1—C7—C8127.7 (4)
C9—N5—Ag1i125.8 (3)N2—C7—C8120.1 (4)
C10—N5—Ag1i131.1 (3)N3—C8—C7112.8 (3)
O3—N6—O1118.6 (5)N3—C8—H8A109.0
O3—N6—O2122.2 (5)C7—C8—H8A109.0
O1—N6—O2119.1 (5)N3—C8—H8B109.0
C6—C1—N1109.2 (4)C7—C8—H8B109.0
C6—C1—C2121.1 (4)H8A—C8—H8B107.8
N1—C1—C2129.7 (4)N5—C9—N3110.5 (4)
C3—C2—C1116.5 (4)N5—C9—H9A124.8
C3—C2—H2A121.8N3—C9—H9A124.8
C1—C2—H2A121.8N4—C10—N5114.6 (4)
C2—C3—C4122.2 (4)N4—C10—H10A122.7
C2—C3—H3A118.9N5—C10—H10A122.7
N5i—Ag1—N1—C724.9 (5)C4—C5—C6—N2179.8 (4)
N5i—Ag1—N1—C1149.8 (3)C4—C5—C6—C10.4 (6)
C9—N3—N4—C100.5 (5)C1—N1—C7—N20.3 (4)
C8—N3—N4—C10176.4 (4)Ag1—N1—C7—N2175.7 (3)
C7—N1—C1—C60.1 (4)C1—N1—C7—C8178.8 (4)
Ag1—N1—C1—C6175.7 (3)Ag1—N1—C7—C83.3 (6)
C7—N1—C1—C2179.6 (4)C6—N2—C7—N10.7 (5)
Ag1—N1—C1—C23.7 (6)C6—N2—C7—C8178.5 (3)
C6—C1—C2—C30.2 (6)C9—N3—C8—C7114.0 (5)
N1—C1—C2—C3179.2 (4)N4—N3—C8—C769.8 (5)
C1—C2—C3—C40.4 (6)N1—C7—C8—N323.6 (6)
C2—C3—C4—C50.1 (7)N2—C7—C8—N3157.4 (4)
C3—C4—C5—C60.3 (6)C10—N5—C9—N30.7 (5)
C7—N2—C6—C10.7 (4)Ag1i—N5—C9—N3178.7 (3)
C7—N2—C6—C5179.5 (4)N4—N3—C9—N50.8 (5)
N1—C1—C6—N20.5 (4)C8—N3—C9—N5175.8 (4)
C2—C1—C6—N2180.0 (4)N3—N4—C10—N50.0 (5)
N1—C1—C6—C5179.6 (4)C9—N5—C10—N40.4 (5)
C2—C1—C6—C50.1 (6)Ag1i—N5—C10—N4178.3 (3)
Symmetry code: (i) x1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.862.082.849 (6)148

Experimental details

Crystal data
Chemical formula[Ag2(C10H9N5)2](NO3)2
Mr738.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.4947 (19), 13.569 (3), 10.174 (2)
β (°) 114.56 (3)
V3)1192.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.19 × 0.17 × 0.14
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.737, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
9572, 2158, 1952
Rint0.034
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.095, 1.09
No. of reflections2158
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.28

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.862.082.849 (6)148.1
 

Acknowledgements

The authors thank the Science and Technology Department of Henan Province (082102330003).

References

First citationLi, Y., Yang, H., Ding, Y. & Meng, X. (2010). Acta Cryst. E66, m1155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Yan, L. & Liu, S. Y. (2011). J. Coord. Chem. 64, 2945–2952.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, H.-X., Zhang, J., Ding, Y.-N. & Meng, X.-R. (2010). Acta Cryst. E66, m578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, P., Li, D. S., Zhao, J., Wu, Y. P., Li, C., Zou, K. & Lu, J. Y. (2011). J. Coord. Chem. 64, 2329–2341.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds