metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(1-ethyl-1H-imidazole-κN3)cadmium]-di-μ-chlorido-[(1-ethyl-1H-imidazole-κN3)cadmium]-di-μ-chlorido-[(1-ethyl-1H-imidazole-κN3)cadmium]-di-μ-chlorido-[bis­­(1-ethyl-1H-imidazole-κN3)cadmium]]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xqchem@yahoo.com.cn

(Received 15 September 2011; accepted 17 November 2011; online 30 November 2011)

The asymmetric unit of the crystal structure of the title compound, [Cd2Cl4(C5H8N2)3]n, contains two CdII cations, three 1-ethyl-1H-imidazole ligands, and four Cl anions. The two CdII atoms have quite different coordination environments: one is octa­hedrally coordinated by four Cl atoms and two N atoms from two 1-ethyl-1H-imidazole ligands, and the second is in a severely distorted fivefold coordination by four Cl atoms and one N atom from a 1-ethyl-1H-imidazole ligand. Adjacent CdII cations are inter­connected alternately by pairs of chloride bridges, generating an infinite step-like chain along the a axis. One ethyl group of the 1-ethyl-1H-imidazole ligand is disordered over two sets of sites with a 0.668 (13):0.332 (13) site-occupancy ratio.

Related literature

For general background to compounds with organic framework structures and with ferroelectric properties, see: Ye et al. (2009[Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42-43.]); Zhang et al. (2009[Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2Cl4(C5H8N2)3]

  • Mr = 655.02

  • Monoclinic, P 21 /c

  • a = 15.227 (3) Å

  • b = 8.8651 (18) Å

  • c = 18.069 (4) Å

  • β = 110.34 (3)°

  • V = 2286.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.501, Tmax = 0.626

  • 23098 measured reflections

  • 5241 independent reflections

  • 4674 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.059

  • S = 1.17

  • 5241 reflections

  • 251 parameters

  • 33 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.250 (2)
Cd1—N3 2.267 (2)
Cd1—Cl1 2.6259 (11)
Cd1—Cl1i 2.6995 (8)
Cd1—Cl2 2.7203 (8)
Cd1—Cl3 2.8930 (12)
Cd2—N5 2.227 (2)
Cd2—Cl3 2.4713 (8)
Cd2—Cl4 2.5120 (8)
Cd2—Cl2 2.6340 (11)
Cd2—Cl4ii 2.7526 (11)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x, -y+2, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, [C15H24Cd2Cl4N6], (I), was prepared from 1-ethyl-1H-imidazole and cadmium(II) chloride in N,N-dimethylformamide. The X-ray crystal structure of the title complex at 298 K (Fig. 1) shows a novel infinite one-dimensional coordination chain along the a axis (Fig. 2). There are two types of Cd atoms with different coordination environments: Cd(1) is coordinated by two 2-ethyl imidazole ligands and four bridging Cl atoms, and Cd(2) is in severely distorted pentahedral coordination by four bridging Cl atoms, and one 2-ethyl imidazole ligand.

In order to examine possible structure phase transitions of compound (I), we measured its temperature-dependent dielectric constant. Large dielectric anomalies usually indicate structural changes such as paraelectric-to-ferroelectric phase transitions. Unfortunately, the dielectric constant of compound (I) goes smoothly in the temperature range 93–273 K, suggesting the absence of distinct phase transitions (Ye et al., 2009; Zhang et al., 2009).

Related literature top

For general background to ferroelectric organic frameworks, see: Ye et al. (2009); Zhang et al. (2009).

Experimental top

A mixture of CdCl2 (2.27 g, 10 mmol) and 2-ethyl imidazole (1.82 g, 20 mmol) in water was stirred for several minutes at room temperature, to which was then added 10 ml N,N-dimethylformamide. Colourless block-shaped crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solution at room temperature over 2 weeks.

Refinement top

Positional parameters of all H atoms except for H1A, H1B and H1C were calculated geometrically and the H atoms were set to ride the C atoms to which they are bonded, with Uiso(H) = 1.2 Uiso(C) and 1.5Uiso(C) for methyl H atoms. The positional parameters of the H atoms (C1) were refined freely. And in the last stage of the refinement, they were restrained with the C—H = 0.96 (2)Å with Uiso(H)=1.5Uiso(C).

Structure description top

The title compound, [C15H24Cd2Cl4N6], (I), was prepared from 1-ethyl-1H-imidazole and cadmium(II) chloride in N,N-dimethylformamide. The X-ray crystal structure of the title complex at 298 K (Fig. 1) shows a novel infinite one-dimensional coordination chain along the a axis (Fig. 2). There are two types of Cd atoms with different coordination environments: Cd(1) is coordinated by two 2-ethyl imidazole ligands and four bridging Cl atoms, and Cd(2) is in severely distorted pentahedral coordination by four bridging Cl atoms, and one 2-ethyl imidazole ligand.

In order to examine possible structure phase transitions of compound (I), we measured its temperature-dependent dielectric constant. Large dielectric anomalies usually indicate structural changes such as paraelectric-to-ferroelectric phase transitions. Unfortunately, the dielectric constant of compound (I) goes smoothly in the temperature range 93–273 K, suggesting the absence of distinct phase transitions (Ye et al., 2009; Zhang et al., 2009).

For general background to ferroelectric organic frameworks, see: Ye et al. (2009); Zhang et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Labeling scheme of (I). Thermal displacement ellipsoids depicted at 50% probability.
[Figure 2] Fig. 2. : Packing diagram of the title compound.
catena-Poly[[bis(1-ethyl-1H-imidazole-κN3)cadmium]- di-µ-chlorido-[(1-ethyl-1H-imidazole-κN3)cadmium]-di-µ- chlorido-[(1-ethyl-1H-imidazole-κN3)cadmium]-di-µ-chlorido- [bis(1-ethyl-1H-imidazole-κN3)cadmium]] top
Crystal data top
[Cd2Cl4(C5H8N2)3]F(000) = 1280
Mr = 655.02Dx = 1.893 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5246 reflections
a = 15.227 (3) Åθ = 2.8–27.5°
b = 8.8651 (18) ŵ = 2.34 mm1
c = 18.069 (4) ÅT = 293 K
β = 110.34 (3)°Block, colourless
V = 2286.9 (8) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
4674 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ω scansh = 1919
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.501, Tmax = 0.626l = 2323
23098 measured reflections2 standard reflections every 150 reflections
5241 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0209P)2 + 1.5151P]
where P = (Fo2 + 2Fc2)/3
5241 reflections(Δ/σ)max = 0.002
251 parametersΔρmax = 0.51 e Å3
33 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Cd2Cl4(C5H8N2)3]V = 2286.9 (8) Å3
Mr = 655.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.227 (3) ŵ = 2.34 mm1
b = 8.8651 (18) ÅT = 293 K
c = 18.069 (4) Å0.30 × 0.25 × 0.20 mm
β = 110.34 (3)°
Data collection top
Rigaku SCXmini
diffractometer
4674 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.027
Tmin = 0.501, Tmax = 0.6262 standard reflections every 150 reflections
23098 measured reflections intensity decay: none
5241 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02833 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.17Δρmax = 0.51 e Å3
5241 reflectionsΔρmin = 0.78 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2535 (3)0.3210 (4)0.7812 (2)0.0622 (10)
H1A0.21850.23000.77900.093*
H1C0.31220.29690.77540.093*
H1B0.21850.38730.73940.093*
C2A0.2704 (3)0.3936 (4)0.8556 (2)0.042 (3)0.332 (13)
H2A0.32780.35390.89350.050*0.332 (13)
H2B0.21970.36930.87440.050*0.332 (13)
C2B0.2259 (6)0.4184 (8)0.8346 (5)0.066 (2)0.668 (13)
H2C0.23600.36500.88370.079*0.668 (13)
H2D0.15950.44000.81120.079*0.668 (13)
C30.2872 (2)0.6581 (4)0.79499 (18)0.0450 (7)
H3A0.27280.63600.74180.054*
C40.3207 (2)0.7902 (3)0.83155 (17)0.0398 (7)
H4A0.33330.87550.80700.048*
C50.3075 (2)0.6412 (3)0.91979 (18)0.0417 (7)
H5A0.30900.60200.96800.050*
C60.5076 (3)1.5520 (6)1.2355 (2)0.0877 (16)
H6A0.54581.64061.25140.132*
H6B0.54391.46451.25860.132*
H6C0.45501.55951.25300.132*
C70.4739 (2)1.5390 (4)1.1487 (2)0.0498 (8)
H7A0.43851.62881.12580.060*
H7B0.52731.53351.13130.060*
C80.3308 (2)1.3745 (3)1.12864 (19)0.0428 (7)
H8A0.29981.43431.15400.051*
C90.3018 (2)1.2413 (3)1.09349 (19)0.0421 (7)
H9A0.24651.19281.09060.050*
C100.43245 (19)1.2905 (3)1.08022 (17)0.0374 (7)
H10A0.48581.28331.06650.045*
C110.0447 (3)0.3094 (4)0.7616 (2)0.0550 (9)
H11A0.09350.25620.72170.083*
H11B0.00160.23880.79210.083*
H11C0.01600.38050.73690.083*
C120.0856 (2)0.3921 (4)0.81485 (19)0.0451 (7)
H12A0.13350.46130.78360.054*
H12B0.11520.32000.83910.054*
C130.0617 (2)0.4182 (3)0.93522 (18)0.0396 (7)
H13A0.07710.31660.94410.048*
C140.10997 (19)0.5361 (3)0.97753 (17)0.0365 (6)
H14A0.16490.52911.02110.044*
C150.00935 (19)0.6269 (3)0.88567 (16)0.0336 (6)
H15A0.05300.69370.85330.040*
N10.36568 (15)1.1879 (3)1.06256 (14)0.0337 (5)
N20.41452 (16)1.4056 (3)1.12006 (14)0.0339 (5)
N30.33331 (15)0.7790 (3)0.91045 (13)0.0334 (5)
N40.2787 (2)0.5636 (3)0.85209 (16)0.0463 (6)
N50.06491 (15)0.6681 (2)0.94594 (13)0.0321 (5)
N60.01384 (16)0.4769 (3)0.87701 (14)0.0339 (5)
Cd10.369012 (13)0.97139 (2)0.998629 (12)0.03133 (6)
Cd20.109824 (13)0.90222 (2)0.986382 (12)0.02988 (6)
Cl10.53919 (5)0.88774 (8)1.08530 (4)0.03651 (15)
Cl20.27753 (4)0.82083 (8)1.08130 (4)0.03515 (15)
Cl30.17898 (5)1.05852 (8)0.90744 (4)0.03683 (15)
Cl40.06876 (5)1.00365 (9)1.10005 (4)0.03945 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.084 (3)0.043 (2)0.057 (2)0.0094 (19)0.021 (2)0.0090 (17)
C2A0.058 (7)0.018 (4)0.054 (6)0.007 (4)0.024 (5)0.003 (4)
C2B0.077 (5)0.055 (4)0.087 (5)0.031 (3)0.053 (4)0.030 (3)
C30.0518 (18)0.0498 (18)0.0333 (15)0.0009 (15)0.0147 (14)0.0061 (14)
C40.0474 (17)0.0365 (16)0.0372 (16)0.0016 (13)0.0167 (14)0.0028 (13)
C50.0579 (19)0.0358 (16)0.0404 (16)0.0077 (14)0.0283 (15)0.0069 (13)
C60.082 (3)0.118 (4)0.072 (3)0.053 (3)0.037 (2)0.048 (3)
C70.0517 (19)0.0323 (16)0.064 (2)0.0108 (14)0.0185 (17)0.0093 (15)
C80.0355 (15)0.0426 (18)0.0537 (19)0.0034 (13)0.0200 (14)0.0109 (14)
C90.0312 (15)0.0424 (17)0.0555 (19)0.0057 (13)0.0188 (14)0.0137 (15)
C100.0304 (14)0.0373 (16)0.0479 (17)0.0011 (12)0.0178 (13)0.0074 (13)
C110.062 (2)0.058 (2)0.0451 (19)0.0062 (17)0.0177 (17)0.0156 (16)
C120.0444 (17)0.0395 (17)0.0491 (18)0.0096 (14)0.0131 (15)0.0090 (14)
C130.0464 (17)0.0247 (14)0.0499 (18)0.0041 (12)0.0195 (15)0.0022 (13)
C140.0339 (14)0.0331 (15)0.0413 (15)0.0063 (12)0.0116 (13)0.0026 (13)
C150.0373 (15)0.0268 (14)0.0361 (15)0.0006 (11)0.0119 (12)0.0023 (11)
N10.0282 (11)0.0316 (13)0.0418 (13)0.0014 (9)0.0129 (10)0.0061 (10)
N20.0337 (12)0.0286 (12)0.0377 (13)0.0014 (10)0.0102 (10)0.0036 (10)
N30.0328 (12)0.0329 (12)0.0357 (13)0.0032 (10)0.0135 (10)0.0038 (10)
N40.0614 (17)0.0392 (14)0.0496 (15)0.0139 (12)0.0336 (14)0.0150 (12)
N50.0347 (12)0.0251 (11)0.0375 (12)0.0001 (9)0.0137 (10)0.0004 (10)
N60.0382 (13)0.0267 (12)0.0389 (13)0.0028 (10)0.0161 (11)0.0040 (10)
Cd10.02946 (11)0.02810 (11)0.03840 (12)0.00269 (8)0.01428 (9)0.00548 (8)
Cd20.02865 (10)0.02620 (10)0.03691 (11)0.00126 (8)0.01409 (8)0.00228 (8)
Cl10.0308 (3)0.0377 (4)0.0418 (4)0.0001 (3)0.0136 (3)0.0090 (3)
Cl20.0298 (3)0.0415 (4)0.0343 (3)0.0030 (3)0.0114 (3)0.0043 (3)
Cl30.0335 (3)0.0341 (3)0.0436 (4)0.0006 (3)0.0143 (3)0.0083 (3)
Cl40.0342 (3)0.0471 (4)0.0354 (4)0.0105 (3)0.0099 (3)0.0062 (3)
Geometric parameters (Å, º) top
C1—C2A1.4306C10—N11.318 (3)
C1—C2B1.460 (7)C10—N21.331 (4)
C1—H1A0.9600C10—H10A0.9300
C1—H1C0.9600C11—C121.506 (4)
C1—H1B0.9600C11—H11A0.9600
C2A—N41.515 (4)C11—H11B0.9600
C2A—H2A0.9700C11—H11C0.9600
C2A—H2B0.9700C12—N61.472 (4)
C2B—N41.492 (6)C12—H12A0.9700
C2B—H2C0.9700C12—H12B0.9700
C2B—H2D0.9700C13—C141.351 (4)
C3—C41.354 (4)C13—N61.364 (4)
C3—N41.370 (4)C13—H13A0.9300
C3—H3A0.9300C14—N51.377 (4)
C4—N31.374 (4)C14—H14A0.9300
C4—H4A0.9300C15—N51.320 (3)
C5—N31.313 (4)C15—N61.338 (3)
C5—N41.338 (4)C15—H15A0.9300
C5—H5A0.9300Cd1—N12.250 (2)
C6—C71.475 (5)Cd1—N32.267 (2)
C6—H6A0.9600Cd2—N52.227 (2)
C6—H6B0.9600Cd1—Cl12.6259 (11)
C6—H6C0.9600Cd1—Cl1i2.6995 (8)
C7—N21.469 (4)Cd1—Cl22.7203 (8)
C7—H7A0.9700Cd1—Cl32.8930 (12)
C7—H7B0.9700Cd2—Cl32.4713 (8)
C8—C91.341 (4)Cd2—Cl42.5120 (8)
C8—N21.365 (4)Cd2—Cl22.6340 (11)
C8—H8A0.9300Cd2—Cl4ii2.7526 (11)
C9—N11.364 (3)Cd1—Cl1i2.6995 (8)
C9—H9A0.9300Cd2—Cl4ii2.7526 (11)
C2A—C1—C2B27.5 (4)C11—C12—H12B109.2
C2A—C1—H1A109.5H12A—C12—H12B107.9
C2B—C1—H1A104.0C14—C13—N6106.7 (2)
C2A—C1—H1C109.5C14—C13—H13A126.6
C2B—C1—H1C134.2N6—C13—H13A126.6
H1A—C1—H1C109.5C13—C14—N5109.2 (3)
C2A—C1—H1B109.5C13—C14—H14A125.4
C2B—C1—H1B87.1N5—C14—H14A125.4
H1A—C1—H1B109.5N5—C15—N6111.5 (2)
H1C—C1—H1B109.5N5—C15—H15A124.3
C1—C2A—N4113.50 (16)N6—C15—H15A124.3
C1—C2A—H2A108.9C10—N1—C9105.1 (2)
N4—C2A—H2A108.9C10—N1—Cd1124.04 (18)
C1—C2A—H2B108.9C9—N1—Cd1130.79 (19)
N4—C2A—H2B108.9C10—N2—C8106.4 (2)
H2A—C2A—H2B107.7C10—N2—C7126.3 (3)
C1—C2B—N4113.2 (5)C8—N2—C7127.3 (3)
C1—C2B—H2C108.9C5—N3—C4105.1 (2)
N4—C2B—H2C108.9C5—N3—Cd1128.25 (19)
C1—C2B—H2D108.9C4—N3—Cd1126.01 (19)
N4—C2B—H2D108.9C5—N4—C3106.7 (3)
H2C—C2B—H2D107.8C5—N4—C2B128.2 (4)
C4—C3—N4106.2 (3)C3—N4—C2B123.6 (4)
C4—C3—H3A126.9C5—N4—C2A118.6 (3)
N4—C3—H3A126.9C3—N4—C2A132.1 (3)
C3—C4—N3109.7 (3)C2B—N4—C2A26.4 (4)
C3—C4—H4A125.2C15—N5—C14105.5 (2)
N3—C4—H4A125.2C15—N5—Cd2127.30 (18)
N3—C5—N4112.3 (3)C14—N5—Cd2127.19 (19)
N3—C5—H5A123.9C15—N6—C13107.1 (2)
N4—C5—H5A123.9C15—N6—C12126.2 (2)
C7—C6—H6A109.5C13—N6—C12126.6 (2)
C7—C6—H6B109.5N1—Cd1—N3163.71 (8)
H6A—C6—H6B109.5N1—Cd1—Cl197.38 (6)
C7—C6—H6C109.5N3—Cd1—Cl198.78 (6)
H6A—C6—H6C109.5N1—Cd1—Cl1i90.14 (6)
H6B—C6—H6C109.5N3—Cd1—Cl1i89.86 (6)
N2—C7—C6112.5 (3)Cl1—Cd1—Cl1i82.49 (3)
N2—C7—H7A109.1N1—Cd1—Cl291.68 (6)
C6—C7—H7A109.1N3—Cd1—Cl288.48 (6)
N2—C7—H7B109.1Cl1—Cd1—Cl296.98 (3)
C6—C7—H7B109.1Cl1i—Cd1—Cl2178.16 (2)
H7A—C7—H7B107.8N1—Cd1—Cl382.42 (6)
C9—C8—N2106.9 (3)N3—Cd1—Cl381.52 (6)
C9—C8—H8A126.6Cl1—Cd1—Cl3177.86 (2)
N2—C8—H8A126.6Cl1i—Cd1—Cl399.63 (3)
C8—C9—N1109.6 (3)Cl2—Cd1—Cl380.91 (3)
C8—C9—H9A125.2N5—Cd2—Cl3118.48 (6)
N1—C9—H9A125.2N5—Cd2—Cl4117.80 (6)
N1—C10—N2112.0 (2)Cl3—Cd2—Cl4123.25 (3)
N1—C10—H10A124.0N5—Cd2—Cl294.36 (6)
N2—C10—H10A124.0Cl3—Cd2—Cl291.04 (3)
C12—C11—H11A109.5Cl4—Cd2—Cl291.50 (3)
C12—C11—H11B109.5N5—Cd2—Cl4ii88.06 (6)
H11A—C11—H11B109.5Cl3—Cd2—Cl4ii92.16 (3)
C12—C11—H11C109.5Cl4—Cd2—Cl4ii82.98 (3)
H11A—C11—H11C109.5Cl2—Cd2—Cl4ii174.48 (2)
H11B—C11—H11C109.5Cd1—Cl1—Cd1i97.51 (3)
N6—C12—C11111.9 (3)Cd2—Cl2—Cd194.22 (3)
N6—C12—H12A109.2Cd2—Cl3—Cd193.68 (3)
C11—C12—H12A109.2Cd2—Cl4—Cd2ii97.02 (3)
N6—C12—H12B109.2
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Cd2Cl4(C5H8N2)3]
Mr655.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.227 (3), 8.8651 (18), 18.069 (4)
β (°) 110.34 (3)
V3)2286.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.501, 0.626
No. of measured, independent and
observed [I > 2σ(I)] reflections
23098, 5241, 4674
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.059, 1.17
No. of reflections5241
No. of parameters251
No. of restraints33
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.78

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999).

Selected bond lengths (Å) top
Cd1—N12.250 (2)Cd2—Cl32.4713 (8)
Cd1—N32.267 (2)Cd2—Cl42.5120 (8)
Cd2—N52.227 (2)Cd2—Cl22.6340 (11)
Cd1—Cl12.6259 (11)Cd2—Cl4ii2.7526 (11)
Cd1—Cl1i2.6995 (8)Cd1—Cl1i2.6995 (8)
Cd1—Cl22.7203 (8)Cd2—Cl4ii2.7526 (11)
Cd1—Cl32.8930 (12)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+2.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds