metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[penta­kis­(μ-cyanido-κ2N:C)tris­­(5-phenyl-2,2′-bi­pyridine-κ2N,N′)penta­copper(I)]

aCollege of Chemistry and Chemical Engineering, Mu Danjiang Normal University, Mu Danjiang 157012, People's Republic of China, and bFaculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: cuisx981@yahoo.cn, cuisx981@yahoo.cn

(Received 6 October 2011; accepted 1 November 2011; online 9 November 2011)

The hydro­thermal reaction of Cu(acetate)2 and K3[Fe(CN)6] with 5-phenyl-2,2′-bipyridine (5-ph-2,2′-bpy) in water yields the polymeric title complex, [Cu5(CN)5(C16H12N2)3]n, which consists of ribbons along the a axis, constructed from 26-membered {Cu10(CN)8} rings. In these rings, the metal atoms are bridged by cyanide groups, except for one close Cu⋯Cu contact [2.7535 (12) Å], which can be considered as ligand-unsupported. Within the rings, one Cu atom has a distorted tetra­hedral geometry through the coordination to two N atoms from 5-ph-2,2′-bpy and two N/C atoms from two cyanide groups. Two Cu atoms have a trigonal planar environment being coordinated by three cyanide groups and two other Cu atoms have a distorted square planar geometry through coordination to two N atoms from 5-ph-2,2′-bpy and two N/C atoms from two cyanide groups.

Related literature

For applications of coordination metal complexes related to the title complex, see: Kong et al. (2008[Kong, X. J., Ren, Y. P., Chen, W. X., Long, L. S., Zheng, Z., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 2398-2401.]); Ohba et al. (2008[Ohba, M., Kaneko, W., Kitagawa, S., Maeda, T. & Mito, M. (2008). J. Am. Chem. Soc. 130, 4475-4484.]). For related complexes containing short unsupported Cu⋯Cu contacts, see: Zhang et al. (2005[Zhang, J. P., Wang, Y. B., Huang, X. C., Lin, Y. Y. & Chen, X. M. (2005). Chem. Eur. J. 11, 552-561.], 2008[Zhang, X. M., Qing, Y. L. & Wu, H. S. (2008). Inorg. Chem. 47, 2255-2257.]); Chen et al. (2009[Chen, Y., Chen, J. S., Gan, X. & Fu, W. F. (2009). Inorg. Chim. Acta, 362, 2492-2498.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu5(CN)5(C16H12N2)3]

  • Mr = 1144.63

  • Orthorhombic, P b c a

  • a = 32.132 (8) Å

  • b = 8.361 (2) Å

  • c = 34.836 (9) Å

  • V = 9359 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 153 K

  • 0.39 × 0.09 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.777, Tmax = 0.884

  • 50069 measured reflections

  • 9334 independent reflections

  • 5271 reflections with I > 2σ(I)

  • Rint = 0.101

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.124

  • S = 1.05

  • 9334 reflections

  • 622 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—C16 1.871 (5)
Cu1—N11 1.978 (6)
Cu1—N2 2.095 (5)
Cu1—N1 2.098 (4)
Cu2—C17 1.857 (6)
Cu2—N8 1.924 (4)
Cu2—N7 1.958 (5)
Cu3—C18 1.862 (5)
Cu3—N4 2.029 (4)
Cu3—N3 2.044 (4)
Cu3—Cu4 2.7535 (12)
Cu4—C36 1.859 (6)
Cu4—N6 2.041 (4)
Cu4—N5 2.062 (4)
Cu5—C35 1.874 (6)
Cu5—N9 1.942 (4)
Cu5—N10 1.982 (5)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The coordination metal complexes containing cyanide-bridged Cu atoms have been shown to exhibit fascinating structures and interesting magnetic properties (Kong et al., 2008; Ohba et al., 2008). Our studies here aimed at constructing such a copper compound using cyanide and 5-phenyl-2,2'-bipyridine (5-ph-2,2'-bpy) as the ligands. We report here the crystal structure of the title complex (I).

The asymmetric unit of the structure of (I) together with the atomic labeling scheme is given in Figure 1. The structure consists of a one-dimensional ribbon (Figure 2), constructed from {Cu10(CN)8} rings. The 26-membered {Cu10(CN)8} rings are defined by the sequence {(Cu5)3—Cu4—Cu3—Cu2—Cu1—Cu2—Cu3—Cu4}, in which metal centers except Cu3 and Cu4 centers are bridged by cyanide groups. Each 26-membered ring shares 4 edges with 4 adjacent 26-membered rings to form a unique herringbone pattern (Figure 2). The 26-membered rings have dimensions of ca 11.8 * 10.8 Å from vertex to opposing vertex. Within these rings, the Cu1 atom show distorted tetrahedral geometry through coordination to two N atoms from 5-ph-2,2'-bpy as terminal ligand and two N/C atoms from two cyanide groups, bridging Cu1 to two Cu2 (Cu2 and Cu2i) [symmetry codes: (i)+x, -1+y,+z] atoms. Cu2 and Cu5 atoms exhibit trigonal planar environment, being coordinated by three cyanide groups, two bridging Cu2 to two Cu1 (Cu1 and Cu1ii) [symmetry codes: (ii)+x, 1+y,+z] atoms and the third one bridging Cu2 and Cu3 atoms; Cu5 is bridged in this way to two of its symmetry-related atoms (Cu5iii and Cu5iv) [symmetry codes: (iii) 3/2+x, 1/2-y, -1/2-z; (iv) 3/2+x, 3/2-y, -1/2-z] while the third one bridges to the Cu4 atoms. Cu3 and Cu4 atoms show a distorted trigonal planar geometry through coordination to two N atoms from 5-ph-2,2'-bpy and two N/C atoms from two cyanide groups. The Cu3—Cu4 distance is 2.7535 (12) Å, which is not associated with ligand-bridged, hydrogen-bonded, electrostatic-attracted, or /p-/p-stacked effects, indicating a genuine unsupported CuI—CuI contact. The unsupported CuI—CuI contacts are formed between three-coordinate CuI centers. Furthermore, the ligand-unsupported Cu3—Cu4 distance of 2.7535 (12) Å in (I) is more shorter than those of similar systems containing the unsupported CuI—CuI interactions (2.9934 (5) Å) (Chen et al., 2009; Zhang et al., 2005), but longer than some other distances found in the literature (2.651 (4) Å) (Zhang et al., 2008).

The adjacent ribbons are packed through intercalation of the lateral 5-ph-2,2'-bpy ligands, in a zipper-like fashion, into two dimensional layers parallel to the ab plane (Figure 3).

Related literature top

For applications of coordination metal complexes related to the title complex, see: Kong et al. (2008); Ohba et al. (2008). For related complexes containing short unsupported Cu···Cu contacts, see: Zhang et al. (2005, 2008); Chen et al. (2009).

Experimental top

A mixture of Cu(Ac)2 (0.086 g, 0.64 mmol), 5-ph-2,2'-bpy (0.0231 g, 0.1 mmol), K3[Fe(CN)6] (0.21 g, 0.64 mmol), and water (8 ml) was added to a 15-ml teflon-lined autoclave and heated at 443 K for 3 d. The autoclave was then cooled to room temperature. Orange block crystals of (I) deposited on the wall of container were collected and air-dried.

Refinement top

Hydrogen atoms bound to carbon were placed in calculated positions and refined using a riding model with an isotropic displacement parameter fixed at 1.2 times Ueq of the atom to which they are attached.

Structure description top

The coordination metal complexes containing cyanide-bridged Cu atoms have been shown to exhibit fascinating structures and interesting magnetic properties (Kong et al., 2008; Ohba et al., 2008). Our studies here aimed at constructing such a copper compound using cyanide and 5-phenyl-2,2'-bipyridine (5-ph-2,2'-bpy) as the ligands. We report here the crystal structure of the title complex (I).

The asymmetric unit of the structure of (I) together with the atomic labeling scheme is given in Figure 1. The structure consists of a one-dimensional ribbon (Figure 2), constructed from {Cu10(CN)8} rings. The 26-membered {Cu10(CN)8} rings are defined by the sequence {(Cu5)3—Cu4—Cu3—Cu2—Cu1—Cu2—Cu3—Cu4}, in which metal centers except Cu3 and Cu4 centers are bridged by cyanide groups. Each 26-membered ring shares 4 edges with 4 adjacent 26-membered rings to form a unique herringbone pattern (Figure 2). The 26-membered rings have dimensions of ca 11.8 * 10.8 Å from vertex to opposing vertex. Within these rings, the Cu1 atom show distorted tetrahedral geometry through coordination to two N atoms from 5-ph-2,2'-bpy as terminal ligand and two N/C atoms from two cyanide groups, bridging Cu1 to two Cu2 (Cu2 and Cu2i) [symmetry codes: (i)+x, -1+y,+z] atoms. Cu2 and Cu5 atoms exhibit trigonal planar environment, being coordinated by three cyanide groups, two bridging Cu2 to two Cu1 (Cu1 and Cu1ii) [symmetry codes: (ii)+x, 1+y,+z] atoms and the third one bridging Cu2 and Cu3 atoms; Cu5 is bridged in this way to two of its symmetry-related atoms (Cu5iii and Cu5iv) [symmetry codes: (iii) 3/2+x, 1/2-y, -1/2-z; (iv) 3/2+x, 3/2-y, -1/2-z] while the third one bridges to the Cu4 atoms. Cu3 and Cu4 atoms show a distorted trigonal planar geometry through coordination to two N atoms from 5-ph-2,2'-bpy and two N/C atoms from two cyanide groups. The Cu3—Cu4 distance is 2.7535 (12) Å, which is not associated with ligand-bridged, hydrogen-bonded, electrostatic-attracted, or /p-/p-stacked effects, indicating a genuine unsupported CuI—CuI contact. The unsupported CuI—CuI contacts are formed between three-coordinate CuI centers. Furthermore, the ligand-unsupported Cu3—Cu4 distance of 2.7535 (12) Å in (I) is more shorter than those of similar systems containing the unsupported CuI—CuI interactions (2.9934 (5) Å) (Chen et al., 2009; Zhang et al., 2005), but longer than some other distances found in the literature (2.651 (4) Å) (Zhang et al., 2008).

The adjacent ribbons are packed through intercalation of the lateral 5-ph-2,2'-bpy ligands, in a zipper-like fashion, into two dimensional layers parallel to the ab plane (Figure 3).

For applications of coordination metal complexes related to the title complex, see: Kong et al. (2008); Ohba et al. (2008). For related complexes containing short unsupported Cu···Cu contacts, see: Zhang et al. (2005, 2008); Chen et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Complex (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A perspective view of polymer ribbon of complex (I).
[Figure 3] Fig. 3. A view along the c axis of the network structure of complex (I).
Poly[pentakis(µ-cyanido-κ2N:C)tris(5-phenyl-2,2'-bipyridine- κ2N,N')pentacopper(I)] top
Crystal data top
[Cu5(CN)5(C16H12N2)3]F(000) = 4608
Mr = 1144.63Dx = 1.625 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 50069 reflections
a = 32.132 (8) Åθ = 1.3–26.2°
b = 8.361 (2) ŵ = 2.29 mm1
c = 34.836 (9) ÅT = 153 K
V = 9359 (4) Å3Block, orange
Z = 80.39 × 0.09 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
9334 independent reflections
Radiation source: fine-focus sealed tube5271 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
Detector resolution: 9 pixels mm-1θmax = 26.2°, θmin = 1.3°
ω scansh = 3936
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 109
Tmin = 0.777, Tmax = 0.884l = 4236
50069 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.180P]
where P = (Fo2 + 2Fc2)/3
9334 reflections(Δ/σ)max = 0.001
622 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu5(CN)5(C16H12N2)3]V = 9359 (4) Å3
Mr = 1144.63Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 32.132 (8) ŵ = 2.29 mm1
b = 8.361 (2) ÅT = 153 K
c = 34.836 (9) Å0.39 × 0.09 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
9334 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5271 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.884Rint = 0.101
50069 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.05Δρmax = 0.57 e Å3
9334 reflectionsΔρmin = 0.31 e Å3
622 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu50.292066 (19)0.21827 (8)0.14667 (2)0.0551 (2)
Cu20.575404 (18)0.29585 (8)0.114668 (19)0.0545 (2)
Cu40.42588 (2)0.44209 (8)0.10509 (2)0.0606 (2)
Cu30.433205 (18)0.12621 (9)0.083800 (19)0.0580 (2)
Cu10.655244 (19)0.20679 (9)0.13454 (2)0.0599 (2)
N40.39861 (11)0.0545 (5)0.10598 (12)0.0424 (10)
C160.62665 (15)0.0124 (6)0.13124 (14)0.0449 (13)
N90.34812 (13)0.2789 (5)0.13178 (14)0.0582 (12)
C240.36963 (14)0.1127 (6)0.08183 (15)0.0459 (13)
C350.26205 (15)0.0271 (7)0.15134 (16)0.0552 (15)
C420.48698 (15)0.6928 (6)0.10595 (15)0.0440 (13)
N70.60739 (13)0.1016 (6)0.12532 (13)0.0593 (13)
N100.25923 (14)0.4172 (6)0.15297 (15)0.0704 (15)
N20.69099 (14)0.2899 (5)0.18068 (14)0.0601 (12)
N30.40027 (12)0.0642 (5)0.03587 (12)0.0480 (11)
N80.51846 (13)0.2479 (5)0.10208 (12)0.0525 (12)
N50.46821 (11)0.5935 (5)0.13071 (12)0.0436 (10)
C280.39785 (15)0.1030 (6)0.14208 (16)0.0485 (13)
H280.41840.06400.15830.058*
C180.48546 (16)0.2108 (6)0.09488 (14)0.0474 (13)
C250.33932 (16)0.2137 (7)0.09461 (18)0.0622 (16)
H250.31900.24990.07770.075*
N10.71598 (12)0.1934 (5)0.11268 (13)0.0498 (11)
C170.60120 (15)0.4946 (7)0.11589 (19)0.0649 (18)
C450.50910 (14)0.7006 (6)0.18255 (15)0.0453 (13)
C520.47889 (15)0.6003 (6)0.16736 (16)0.0492 (14)
H520.46510.53250.18430.059*
C360.37882 (16)0.3315 (6)0.12120 (16)0.0518 (14)
C230.37369 (15)0.0561 (6)0.04180 (15)0.0485 (13)
C70.79813 (16)0.1420 (7)0.09363 (19)0.0655 (17)
H70.82600.12620.08760.079*
N110.62156 (14)0.3936 (7)0.11873 (17)0.0855 (17)
C60.74613 (16)0.2244 (6)0.13818 (16)0.0533 (14)
C440.52808 (15)0.8019 (6)0.15633 (16)0.0552 (15)
H440.54840.87300.16470.066*
C110.81251 (16)0.0388 (7)0.01947 (19)0.0633 (16)
H110.83100.06350.03910.076*
C220.78763 (16)0.1962 (7)0.12873 (18)0.0633 (17)
H220.80830.21500.14690.076*
C80.76785 (15)0.1092 (6)0.06620 (17)0.0511 (14)
C530.35257 (17)0.1255 (7)0.01122 (18)0.0679 (17)
H530.33390.20880.01540.082*
C270.36864 (16)0.2079 (6)0.15779 (16)0.0504 (14)
C460.51951 (16)0.7017 (6)0.22369 (15)0.0494 (13)
C410.47349 (15)0.6814 (6)0.06576 (15)0.0459 (13)
C150.75103 (18)0.0843 (7)0.00283 (19)0.0686 (17)
H150.72720.14460.00180.082*
C90.72712 (14)0.1379 (6)0.07856 (17)0.0537 (15)
H90.70590.11590.06120.064*
C50.73229 (17)0.2867 (7)0.17556 (17)0.0587 (15)
C260.33865 (17)0.2626 (6)0.1325 (2)0.0647 (17)
H260.31810.33230.14100.078*
C120.82026 (18)0.0917 (7)0.0173 (2)0.077 (2)
H120.84390.15230.02210.093*
N60.44479 (13)0.5695 (5)0.05824 (13)0.0543 (12)
C100.77700 (15)0.0519 (6)0.02745 (17)0.0531 (15)
C480.5685 (2)0.7490 (7)0.2747 (2)0.0748 (19)
H480.59500.77910.28270.090*
C430.51730 (16)0.7987 (6)0.11825 (16)0.0562 (15)
H430.53020.86710.10090.067*
C470.55874 (16)0.7462 (6)0.23649 (18)0.0603 (16)
H470.57890.77490.21860.072*
C370.43204 (17)0.5525 (8)0.02189 (19)0.0722 (18)
H370.41180.47600.01680.087*
C400.48883 (19)0.7769 (8)0.03678 (18)0.0720 (17)
H400.50800.85660.04250.086*
C190.40649 (17)0.1156 (7)0.00006 (18)0.0647 (16)
H190.42550.19790.00380.078*
C290.36960 (16)0.2550 (7)0.19858 (18)0.0564 (15)
C200.38641 (19)0.0541 (8)0.03157 (17)0.0740 (18)
H200.39090.09440.05610.089*
C390.4762 (2)0.7557 (8)0.00028 (19)0.080 (2)
H390.48730.81840.01980.096*
C20.7015 (2)0.4057 (9)0.2428 (2)0.101 (2)
H20.69000.44340.26560.122*
C300.35350 (19)0.3999 (8)0.2106 (2)0.085 (2)
H300.34170.46940.19280.102*
C490.5390 (2)0.7073 (7)0.30098 (19)0.0761 (19)
H490.54560.70820.32700.091*
C130.7936 (2)0.0564 (8)0.0466 (2)0.0778 (19)
H130.79930.09220.07140.093*
C140.75837 (19)0.0323 (8)0.03953 (19)0.0748 (18)
H140.73990.05660.05920.090*
C510.49049 (19)0.6607 (7)0.25143 (18)0.0681 (17)
H510.46390.63000.24390.082*
C310.3550 (3)0.4413 (12)0.2488 (3)0.117 (3)
H310.34380.53830.25670.141*
C380.44699 (19)0.6412 (9)0.00840 (18)0.0751 (18)
H380.43770.62410.03330.090*
C320.3725 (3)0.3431 (14)0.2749 (3)0.112 (4)
H320.37390.37360.30060.134*
C10.67688 (19)0.3510 (7)0.2134 (2)0.0776 (19)
H10.64820.35720.21660.093*
C340.38697 (19)0.1556 (8)0.22580 (19)0.0785 (19)
H340.39800.05760.21840.094*
C30.7433 (2)0.4026 (10)0.2372 (2)0.118 (3)
H30.76130.44010.25620.142*
C500.5001 (2)0.6645 (8)0.2898 (2)0.080 (2)
H500.48010.63780.30810.096*
C40.75863 (19)0.3441 (9)0.2037 (2)0.099 (3)
H40.78720.34260.19960.119*
C210.3595 (2)0.0700 (8)0.02488 (19)0.0773 (19)
H210.34570.11710.04550.093*
C330.3880 (2)0.2005 (11)0.2638 (2)0.107 (3)
H330.39960.13200.28190.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu50.0456 (4)0.0434 (4)0.0763 (5)0.0033 (3)0.0000 (3)0.0026 (4)
Cu20.0432 (4)0.0579 (4)0.0625 (5)0.0053 (3)0.0059 (3)0.0009 (3)
Cu40.0566 (4)0.0606 (5)0.0647 (5)0.0177 (4)0.0014 (4)0.0082 (4)
Cu30.0487 (4)0.0706 (5)0.0546 (4)0.0198 (3)0.0097 (3)0.0056 (4)
Cu10.0414 (4)0.0608 (5)0.0773 (5)0.0021 (3)0.0003 (4)0.0037 (4)
N40.042 (2)0.040 (3)0.045 (3)0.004 (2)0.003 (2)0.002 (2)
C160.040 (3)0.046 (3)0.049 (3)0.002 (3)0.005 (3)0.000 (3)
N90.045 (3)0.045 (3)0.085 (4)0.003 (2)0.003 (3)0.003 (2)
C240.038 (3)0.042 (3)0.058 (4)0.005 (2)0.004 (3)0.011 (3)
C350.039 (3)0.043 (4)0.084 (4)0.004 (3)0.000 (3)0.002 (3)
C420.042 (3)0.037 (3)0.052 (4)0.000 (2)0.013 (3)0.002 (3)
N70.057 (3)0.059 (3)0.062 (3)0.013 (3)0.010 (2)0.000 (3)
N100.052 (3)0.042 (3)0.117 (5)0.003 (2)0.003 (3)0.002 (3)
N20.054 (3)0.057 (3)0.070 (4)0.005 (2)0.010 (3)0.007 (3)
N30.041 (2)0.060 (3)0.043 (3)0.002 (2)0.004 (2)0.003 (2)
N80.042 (3)0.054 (3)0.061 (3)0.007 (2)0.010 (2)0.004 (2)
N50.044 (2)0.042 (3)0.044 (3)0.007 (2)0.005 (2)0.004 (2)
C280.050 (3)0.044 (3)0.052 (4)0.002 (3)0.004 (3)0.006 (3)
C180.049 (3)0.055 (3)0.039 (3)0.004 (3)0.000 (3)0.003 (3)
C250.046 (3)0.063 (4)0.078 (5)0.017 (3)0.009 (3)0.008 (3)
N10.040 (2)0.051 (3)0.058 (3)0.001 (2)0.003 (2)0.003 (2)
C170.034 (3)0.043 (4)0.117 (6)0.009 (3)0.001 (3)0.009 (3)
C450.040 (3)0.041 (3)0.055 (4)0.001 (3)0.004 (3)0.003 (3)
C520.052 (3)0.043 (3)0.053 (4)0.001 (3)0.007 (3)0.010 (3)
C360.044 (3)0.050 (4)0.062 (4)0.003 (3)0.007 (3)0.006 (3)
C230.045 (3)0.052 (4)0.048 (4)0.004 (3)0.009 (3)0.007 (3)
C70.032 (3)0.083 (5)0.082 (5)0.009 (3)0.003 (3)0.016 (4)
N110.052 (3)0.064 (4)0.140 (5)0.016 (3)0.007 (3)0.011 (4)
C60.044 (3)0.056 (4)0.060 (4)0.000 (3)0.004 (3)0.011 (3)
C440.048 (3)0.054 (4)0.064 (4)0.014 (3)0.007 (3)0.004 (3)
C110.051 (3)0.057 (4)0.082 (5)0.003 (3)0.016 (3)0.009 (3)
C220.039 (3)0.084 (5)0.066 (4)0.004 (3)0.008 (3)0.003 (4)
C80.037 (3)0.047 (3)0.069 (4)0.005 (3)0.006 (3)0.012 (3)
C530.069 (4)0.063 (4)0.071 (5)0.007 (3)0.018 (4)0.010 (4)
C270.044 (3)0.042 (3)0.066 (4)0.004 (3)0.010 (3)0.000 (3)
C460.056 (3)0.042 (3)0.050 (4)0.001 (3)0.002 (3)0.006 (3)
C410.042 (3)0.048 (4)0.047 (4)0.004 (3)0.012 (3)0.006 (3)
C150.060 (4)0.075 (5)0.071 (5)0.014 (3)0.017 (4)0.010 (4)
C90.033 (3)0.056 (4)0.072 (4)0.001 (3)0.009 (3)0.006 (3)
C50.050 (3)0.060 (4)0.067 (4)0.002 (3)0.011 (3)0.006 (3)
C260.057 (4)0.046 (4)0.091 (5)0.014 (3)0.007 (4)0.005 (3)
C120.056 (4)0.058 (4)0.117 (6)0.002 (3)0.029 (4)0.004 (4)
N60.051 (3)0.059 (3)0.053 (3)0.003 (2)0.009 (2)0.006 (2)
C100.039 (3)0.051 (4)0.069 (4)0.002 (3)0.013 (3)0.012 (3)
C480.075 (4)0.076 (5)0.073 (5)0.005 (4)0.018 (4)0.006 (4)
C430.063 (4)0.052 (4)0.053 (4)0.013 (3)0.010 (3)0.007 (3)
C470.048 (3)0.068 (4)0.066 (4)0.003 (3)0.002 (3)0.001 (3)
C370.067 (4)0.082 (5)0.067 (5)0.009 (3)0.011 (4)0.006 (4)
C400.082 (4)0.079 (5)0.055 (4)0.015 (4)0.016 (4)0.000 (4)
C190.056 (3)0.082 (5)0.057 (4)0.001 (3)0.004 (3)0.002 (4)
C290.056 (3)0.056 (4)0.057 (4)0.012 (3)0.014 (3)0.010 (3)
C200.086 (5)0.089 (5)0.047 (4)0.017 (4)0.007 (4)0.007 (4)
C390.093 (5)0.088 (6)0.059 (5)0.001 (4)0.018 (4)0.016 (4)
C20.093 (5)0.130 (7)0.081 (6)0.004 (5)0.004 (5)0.031 (5)
C300.088 (5)0.055 (5)0.112 (6)0.003 (4)0.040 (4)0.022 (4)
C490.116 (6)0.056 (4)0.056 (4)0.011 (4)0.016 (5)0.006 (3)
C130.078 (5)0.071 (5)0.085 (5)0.005 (4)0.035 (4)0.002 (4)
C140.075 (4)0.082 (5)0.067 (5)0.006 (4)0.012 (4)0.011 (4)
C510.077 (4)0.070 (5)0.057 (4)0.018 (3)0.001 (4)0.001 (3)
C310.102 (7)0.111 (8)0.139 (9)0.032 (6)0.053 (6)0.067 (7)
C380.081 (5)0.097 (5)0.047 (4)0.001 (4)0.005 (4)0.005 (4)
C320.091 (7)0.165 (11)0.079 (7)0.047 (6)0.032 (5)0.056 (7)
C10.066 (4)0.077 (5)0.090 (5)0.007 (3)0.005 (4)0.022 (4)
C340.092 (5)0.088 (5)0.055 (4)0.006 (4)0.011 (4)0.010 (4)
C30.085 (6)0.166 (9)0.103 (7)0.007 (6)0.030 (5)0.066 (6)
C500.098 (5)0.081 (5)0.060 (5)0.013 (4)0.009 (4)0.004 (4)
C40.057 (4)0.144 (7)0.097 (6)0.013 (4)0.021 (4)0.040 (5)
C210.088 (5)0.081 (5)0.063 (5)0.006 (4)0.030 (4)0.020 (4)
C330.108 (6)0.146 (9)0.067 (6)0.022 (6)0.013 (5)0.003 (5)
Geometric parameters (Å, º) top
Cu1—C161.871 (5)C53—C211.359 (8)
Cu1—N111.978 (6)C53—H530.9300
Cu1—N22.095 (5)C27—C261.384 (7)
Cu1—N12.098 (4)C27—C291.475 (7)
Cu2—C171.857 (6)C46—C511.386 (7)
Cu2—N81.924 (4)C46—C471.388 (7)
Cu2—N71.958 (5)C41—N61.340 (6)
Cu3—C181.862 (5)C41—C401.378 (7)
Cu3—N42.029 (4)C15—C141.371 (8)
Cu3—N32.044 (4)C15—C101.372 (7)
Cu3—Cu42.7535 (12)C15—H150.9300
Cu4—C361.859 (6)C9—H90.9300
Cu4—N62.041 (4)C5—C41.381 (8)
Cu4—N52.062 (4)C26—H260.9300
Cu5—C351.874 (6)C12—C131.367 (8)
Cu5—N91.942 (4)C12—H120.9300
Cu5—N101.982 (5)N6—C371.338 (6)
N4—C281.321 (6)C48—C491.363 (8)
N4—C241.346 (6)C48—C471.368 (8)
C16—N71.155 (6)C48—H480.9300
N9—C361.141 (6)C43—H430.9300
C24—C251.364 (7)C47—H470.9300
C24—C231.478 (7)C37—C381.376 (8)
C35—N10i1.147 (6)C37—H370.9300
C42—N51.340 (6)C40—C391.365 (8)
C42—C431.385 (7)C40—H400.9300
C42—C411.469 (7)C19—C201.377 (7)
N10—C35ii1.147 (6)C19—H190.9300
N2—C11.328 (7)C29—C341.379 (8)
N2—C51.339 (6)C29—C301.382 (7)
N3—C191.335 (6)C20—C211.370 (8)
N3—C231.335 (6)C20—H200.9300
N8—C181.133 (5)C39—C381.370 (8)
N5—C521.323 (6)C39—H390.9300
C28—C271.396 (7)C2—C31.358 (8)
C28—H280.9300C2—C11.373 (8)
C25—C261.382 (7)C2—H20.9300
C25—H250.9300C30—C311.378 (10)
N1—C91.326 (6)C30—H300.9300
N1—C61.340 (6)C49—C501.356 (8)
C17—N11iii1.146 (6)C49—H490.9300
C45—C441.387 (7)C13—C141.376 (8)
C45—C521.388 (6)C13—H130.9300
C45—C461.472 (7)C14—H140.9300
C52—H520.9300C51—C501.374 (8)
C23—C531.390 (7)C51—H510.9300
C7—C221.347 (7)C31—C321.349 (11)
C7—C81.391 (7)C31—H310.9300
C7—H70.9300C38—H380.9300
N11—C17iv1.146 (6)C32—C331.350 (11)
C6—C221.393 (7)C32—H320.9300
C6—C51.471 (7)C1—H10.9300
C44—C431.371 (7)C34—C331.375 (9)
C44—H440.9300C34—H340.9300
C11—C121.376 (8)C3—C41.360 (9)
C11—C101.398 (7)C3—H30.9300
C11—H110.9300C50—H500.9300
C22—H220.9300C4—H40.9300
C8—C91.398 (6)C21—H210.9300
C8—C101.463 (7)C33—H330.9300
C35—Cu5—N9136.3 (2)N6—C41—C42115.8 (5)
C35—Cu5—N10115.6 (2)C40—C41—C42123.7 (5)
N9—Cu5—N10107.72 (18)C14—C15—C10123.4 (6)
C17—Cu2—N8128.0 (2)C14—C15—H15118.3
C17—Cu2—N7120.2 (2)C10—C15—H15118.3
N8—Cu2—N7111.70 (18)N1—C9—C8126.1 (5)
C36—Cu4—N6138.0 (2)N1—C9—H9117.0
C36—Cu4—N5135.3 (2)C8—C9—H9117.0
N6—Cu4—N580.17 (17)N2—C5—C4120.4 (6)
C36—Cu4—Cu370.95 (17)N2—C5—C6115.1 (5)
N6—Cu4—Cu3105.05 (13)C4—C5—C6124.4 (6)
N5—Cu4—Cu3130.49 (11)C25—C26—C27120.0 (5)
C18—Cu3—N4134.27 (19)C25—C26—H26120.0
C18—Cu3—N3137.10 (19)C27—C26—H26120.0
N4—Cu3—N380.70 (17)C13—C12—C11120.9 (6)
C18—Cu3—Cu469.94 (16)C13—C12—H12119.6
N4—Cu3—Cu4124.40 (11)C11—C12—H12119.6
N3—Cu3—Cu4114.78 (12)C37—N6—C41118.0 (5)
C16—Cu1—N11113.6 (2)C37—N6—Cu4127.6 (4)
C16—Cu1—N2127.2 (2)C41—N6—Cu4114.4 (4)
N11—Cu1—N2104.6 (2)C15—C10—C11116.8 (6)
C16—Cu1—N1112.85 (19)C15—C10—C8121.5 (5)
N11—Cu1—N1116.74 (18)C11—C10—C8121.7 (5)
N2—Cu1—N177.64 (18)C49—C48—C47119.3 (6)
C28—N4—C24118.1 (4)C49—C48—H48120.3
C28—N4—Cu3126.9 (3)C47—C48—H48120.3
C24—N4—Cu3114.2 (3)C44—C43—C42119.3 (5)
N7—C16—Cu1172.4 (5)C44—C43—H43120.4
C36—N9—Cu5171.4 (4)C42—C43—H43120.4
N4—C24—C25120.9 (5)C48—C47—C46121.7 (6)
N4—C24—C23114.4 (4)C48—C47—H47119.2
C25—C24—C23124.7 (5)C46—C47—H47119.2
N10i—C35—Cu5174.1 (5)N6—C37—C38124.2 (6)
N5—C42—C43120.9 (5)N6—C37—H37117.9
N5—C42—C41116.2 (4)C38—C37—H37117.9
C43—C42—C41122.9 (5)C39—C40—C41120.8 (6)
C16—N7—Cu2179.1 (5)C39—C40—H40119.6
C35ii—N10—Cu5169.9 (5)C41—C40—H40119.6
C1—N2—C5117.4 (5)N3—C19—C20123.9 (6)
C1—N2—Cu1126.8 (4)N3—C19—H19118.1
C5—N2—Cu1115.7 (4)C20—C19—H19118.1
C19—N3—C23118.9 (5)C34—C29—C30118.2 (6)
C19—N3—Cu3127.2 (4)C34—C29—C27120.7 (6)
C23—N3—Cu3113.3 (4)C30—C29—C27121.1 (6)
C18—N8—Cu2176.1 (5)C21—C20—C19116.3 (6)
C52—N5—C42118.6 (4)C21—C20—H20121.9
C52—N5—Cu4128.0 (3)C19—C20—H20121.9
C42—N5—Cu4113.5 (3)C40—C39—C38119.3 (6)
N4—C28—C27125.3 (5)C40—C39—H39120.3
N4—C28—H28117.3C38—C39—H39120.3
C27—C28—H28117.3C3—C2—C1117.2 (7)
N8—C18—Cu3173.6 (5)C3—C2—H2121.4
C24—C25—C26120.4 (5)C1—C2—H2121.4
C24—C25—H25119.8C31—C30—C29119.9 (8)
C26—C25—H25119.8C31—C30—H30120.0
C9—N1—C6117.8 (4)C29—C30—H30120.0
C9—N1—Cu1126.5 (3)C50—C49—C48121.1 (6)
C6—N1—Cu1115.0 (4)C50—C49—H49119.5
N11iii—C17—Cu2170.8 (5)C48—C49—H49119.5
C44—C45—C52115.2 (5)C12—C13—C14119.8 (6)
C44—C45—C46122.5 (5)C12—C13—H13120.1
C52—C45—C46122.3 (5)C14—C13—H13120.1
N5—C52—C45125.1 (5)C15—C14—C13118.7 (6)
N5—C52—H52117.4C15—C14—H14120.6
C45—C52—H52117.4C13—C14—H14120.6
N9—C36—Cu4172.8 (5)C50—C51—C46121.5 (6)
N3—C23—C53120.6 (5)C50—C51—H51119.3
N3—C23—C24116.3 (5)C46—C51—H51119.3
C53—C23—C24123.1 (5)C32—C31—C30121.0 (9)
C22—C7—C8121.0 (5)C32—C31—H31119.5
C22—C7—H7119.5C30—C31—H31119.5
C8—C7—H7119.5C39—C38—C37117.2 (6)
C17iv—N11—Cu1168.8 (6)C39—C38—H38121.4
N1—C6—C22120.2 (5)C37—C38—H38121.4
N1—C6—C5115.9 (5)C31—C32—C33119.8 (9)
C22—C6—C5123.9 (5)C31—C32—H32120.1
C43—C44—C45120.9 (5)C33—C32—H32120.1
C43—C44—H44119.5N2—C1—C2124.8 (6)
C45—C44—H44119.5N2—C1—H1117.6
C12—C11—C10120.5 (6)C2—C1—H1117.6
C12—C11—H11119.8C33—C34—C29120.5 (7)
C10—C11—H11119.8C33—C34—H34119.8
C7—C22—C6120.7 (5)C29—C34—H34119.8
C7—C22—H22119.6C2—C3—C4119.1 (7)
C6—C22—H22119.6C2—C3—H3120.4
C7—C8—C9114.2 (5)C4—C3—H3120.4
C7—C8—C10123.9 (5)C49—C50—C51119.5 (6)
C9—C8—C10121.9 (5)C49—C50—H50120.3
C21—C53—C23119.1 (6)C51—C50—H50120.3
C21—C53—H53120.4C3—C4—C5120.9 (6)
C23—C53—H53120.4C3—C4—H4119.6
C26—C27—C28115.2 (5)C5—C4—H4119.6
C26—C27—C29122.7 (5)C53—C21—C20121.3 (6)
C28—C27—C29122.1 (5)C53—C21—H21119.4
C51—C46—C47117.0 (5)C20—C21—H21119.4
C51—C46—C45121.6 (5)C32—C33—C34120.6 (9)
C47—C46—C45121.4 (5)C32—C33—H33119.7
N6—C41—C40120.5 (5)C34—C33—H33119.7
C36—Cu4—Cu3—C18147.4 (2)C44—C45—C46—C4728.7 (8)
N6—Cu4—Cu3—C1876.5 (2)C52—C45—C46—C47152.8 (5)
N5—Cu4—Cu3—C1813.3 (2)N5—C42—C41—N62.0 (6)
C36—Cu4—Cu3—N416.8 (2)C43—C42—C41—N6178.0 (5)
N6—Cu4—Cu3—N4152.93 (18)N5—C42—C41—C40178.5 (5)
N5—Cu4—Cu3—N4117.2 (2)C43—C42—C41—C401.6 (8)
C36—Cu4—Cu3—N379.0 (2)C6—N1—C9—C80.6 (8)
N6—Cu4—Cu3—N357.16 (18)Cu1—N1—C9—C8170.7 (4)
N5—Cu4—Cu3—N3147.0 (2)C7—C8—C9—N11.0 (8)
C18—Cu3—N4—C2832.4 (5)C10—C8—C9—N1178.2 (5)
N3—Cu3—N4—C28176.4 (4)C1—N2—C5—C40.5 (9)
Cu4—Cu3—N4—C2862.6 (4)Cu1—N2—C5—C4177.7 (5)
C18—Cu3—N4—C24157.7 (3)C1—N2—C5—C6177.4 (5)
N3—Cu3—N4—C246.4 (3)Cu1—N2—C5—C60.2 (6)
Cu4—Cu3—N4—C24107.3 (3)N1—C6—C5—N26.2 (7)
C28—N4—C24—C252.6 (7)C22—C6—C5—N2173.3 (5)
Cu3—N4—C24—C25168.3 (4)N1—C6—C5—C4171.6 (6)
C28—N4—C24—C23178.1 (4)C22—C6—C5—C48.9 (9)
Cu3—N4—C24—C2311.0 (5)C24—C25—C26—C270.6 (9)
C35—Cu5—N10—C35ii74 (3)C28—C27—C26—C250.4 (8)
N9—Cu5—N10—C35ii101 (3)C29—C27—C26—C25179.8 (5)
C16—Cu1—N2—C177.1 (6)C10—C11—C12—C130.3 (9)
N11—Cu1—N2—C158.7 (5)C40—C41—N6—C370.8 (8)
N1—Cu1—N2—C1173.5 (5)C42—C41—N6—C37178.8 (5)
C16—Cu1—N2—C5106.0 (4)C40—C41—N6—Cu4179.6 (4)
N11—Cu1—N2—C5118.2 (4)C42—C41—N6—Cu40.8 (5)
N1—Cu1—N2—C53.4 (4)C36—Cu4—N6—C3727.8 (6)
C18—Cu3—N3—C1921.0 (6)N5—Cu4—N6—C37179.8 (5)
N4—Cu3—N3—C19170.6 (5)Cu3—Cu4—N6—C3750.3 (5)
Cu4—Cu3—N3—C1965.7 (5)C36—Cu4—N6—C41152.6 (4)
C18—Cu3—N3—C23149.8 (4)N5—Cu4—N6—C410.2 (3)
N4—Cu3—N3—C230.2 (3)Cu3—Cu4—N6—C41129.3 (3)
Cu4—Cu3—N3—C23123.5 (3)C14—C15—C10—C110.1 (9)
C43—C42—N5—C520.8 (7)C14—C15—C10—C8179.7 (5)
C41—C42—N5—C52179.2 (4)C12—C11—C10—C150.1 (8)
C43—C42—N5—Cu4177.9 (4)C12—C11—C10—C8179.7 (5)
C41—C42—N5—Cu42.1 (5)C7—C8—C10—C15151.7 (5)
C36—Cu4—N5—C5226.3 (5)C9—C8—C10—C1527.4 (8)
N6—Cu4—N5—C52179.8 (4)C7—C8—C10—C1128.5 (8)
Cu3—Cu4—N5—C5278.4 (4)C9—C8—C10—C11152.4 (5)
C36—Cu4—N5—C42155.1 (3)C45—C44—C43—C420.1 (8)
N6—Cu4—N5—C421.3 (3)N5—C42—C43—C440.1 (8)
Cu3—Cu4—N5—C42100.2 (3)C41—C42—C43—C44179.9 (5)
C24—N4—C28—C271.6 (7)C49—C48—C47—C460.1 (9)
Cu3—N4—C28—C27168.0 (4)C51—C46—C47—C480.2 (8)
N4—C24—C25—C262.2 (8)C45—C46—C47—C48179.3 (5)
C23—C24—C25—C26178.6 (5)C41—N6—C37—C381.1 (9)
C16—Cu1—N1—C951.8 (5)Cu4—N6—C37—C38178.5 (5)
N11—Cu1—N1—C982.6 (5)N6—C41—C40—C392.3 (9)
N2—Cu1—N1—C9177.2 (5)C42—C41—C40—C39177.3 (5)
C16—Cu1—N1—C6118.6 (4)C23—N3—C19—C201.3 (8)
N11—Cu1—N1—C6107.1 (4)Cu3—N3—C19—C20171.7 (4)
N2—Cu1—N1—C66.8 (4)C26—C27—C29—C34152.8 (6)
C42—N5—C52—C451.6 (7)C28—C27—C29—C3426.5 (8)
Cu4—N5—C52—C45176.9 (4)C26—C27—C29—C3027.7 (8)
C44—C45—C52—N51.5 (7)C28—C27—C29—C30153.0 (5)
C46—C45—C52—N5179.9 (5)N3—C19—C20—C211.8 (9)
C19—N3—C23—C530.6 (7)C41—C40—C39—C382.0 (10)
Cu3—N3—C23—C53172.3 (4)C34—C29—C30—C310.2 (9)
C19—N3—C23—C24177.2 (4)C27—C29—C30—C31179.7 (6)
Cu3—N3—C23—C245.6 (5)C47—C48—C49—C500.6 (9)
N4—C24—C23—N311.1 (6)C11—C12—C13—C140.4 (9)
C25—C24—C23—N3168.1 (5)C10—C15—C14—C130.3 (9)
N4—C24—C23—C53166.6 (5)C12—C13—C14—C150.4 (9)
C25—C24—C23—C5314.1 (8)C47—C46—C51—C500.2 (8)
C16—Cu1—N11—C17iv100 (2)C45—C46—C51—C50178.9 (5)
N2—Cu1—N11—C17iv43 (2)C29—C30—C31—C320.9 (12)
N1—Cu1—N11—C17iv126 (2)C40—C39—C38—C370.2 (10)
C9—N1—C6—C220.8 (8)N6—C37—C38—C391.3 (10)
Cu1—N1—C6—C22170.4 (4)C30—C31—C32—C331.5 (14)
C9—N1—C6—C5179.7 (5)C5—N2—C1—C22.4 (10)
Cu1—N1—C6—C59.1 (6)Cu1—N2—C1—C2179.3 (5)
C52—C45—C44—C430.6 (7)C3—C2—C1—N22.7 (12)
C46—C45—C44—C43179.3 (5)C30—C29—C34—C330.1 (9)
C8—C7—C22—C61.5 (9)C27—C29—C34—C33179.6 (5)
N1—C6—C22—C71.9 (8)C1—C2—C3—C41.1 (13)
C5—C6—C22—C7178.7 (6)C48—C49—C50—C511.0 (10)
C22—C7—C8—C90.1 (8)C46—C51—C50—C490.8 (9)
C22—C7—C8—C10179.3 (5)C2—C3—C4—C50.7 (13)
N3—C23—C53—C210.4 (8)N2—C5—C4—C31.0 (11)
C24—C23—C53—C21177.3 (5)C6—C5—C4—C3178.7 (7)
N4—C28—C27—C260.0 (8)C23—C53—C21—C200.9 (9)
N4—C28—C27—C29179.3 (5)C19—C20—C21—C531.5 (9)
C44—C45—C46—C51150.4 (5)C31—C32—C33—C341.4 (13)
C52—C45—C46—C5128.2 (8)C29—C34—C33—C320.7 (11)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu5(CN)5(C16H12N2)3]
Mr1144.63
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)153
a, b, c (Å)32.132 (8), 8.361 (2), 34.836 (9)
V3)9359 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.29
Crystal size (mm)0.39 × 0.09 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.777, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
50069, 9334, 5271
Rint0.101
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.124, 1.05
No. of reflections9334
No. of parameters622
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.31

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—C161.871 (5)Cu3—N32.044 (4)
Cu1—N111.978 (6)Cu3—Cu42.7535 (12)
Cu1—N22.095 (5)Cu4—C361.859 (6)
Cu1—N12.098 (4)Cu4—N62.041 (4)
Cu2—C171.857 (6)Cu4—N52.062 (4)
Cu2—N81.924 (4)Cu5—C351.874 (6)
Cu2—N71.958 (5)Cu5—N91.942 (4)
Cu3—C181.862 (5)Cu5—N101.982 (5)
Cu3—N42.029 (4)
 

Acknowledgements

This research was supported by the Science and Technology Research Project of the Education Department of Heilong jiang Province (11551511) and the Key Innovational Prediction Study of Mudanjiang Normal Unversity (SY201003, msb200907).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Chen, J. S., Gan, X. & Fu, W. F. (2009). Inorg. Chim. Acta, 362, 2492–2498.  Web of Science CSD CrossRef CAS Google Scholar
First citationKong, X. J., Ren, Y. P., Chen, W. X., Long, L. S., Zheng, Z., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 2398–2401.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhba, M., Kaneko, W., Kitagawa, S., Maeda, T. & Mito, M. (2008). J. Am. Chem. Soc. 130, 4475–4484.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. M., Qing, Y. L. & Wu, H. S. (2008). Inorg. Chem. 47, 2255–2257.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, J. P., Wang, Y. B., Huang, X. C., Lin, Y. Y. & Chen, X. M. (2005). Chem. Eur. J. 11, 552–561.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds