metal-organic compounds
Dicyclohexylammonium trimethylbis(hydrogen phenylphosphonato)stannate(IV)
aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
*Correspondence e-mail: dlibasse@gmail.com
In the title compound, (C12H24N)[Sn(CH3)3(C6H6O3P)2], the SnMe3 residues are axially coordinated by two monodentate [PhPO3H]− anions, leading to a trigonal–bipyramidal geometry for the SnIV atom. The two [SnMe3(PhPO3H)2]− anions in the are associated into infinite chains along the a axis by O—H⋯O hydrogen bonds involving the hydroxy group of the hydrogen phenylphosphonate ion. The chains interact with one another via O—H⋯O hydrogen bonds along the c axis. These networks of anions assemble with the dicyclohexylammonium ion through N—H⋯O hydrogen bonds, forming a three-dimensional network.
Related literature
For related organotin derivatives, see: Weakley (1976); Molloy et al. (1981); Evans & Karpel (1985); Gielen et al. (1995); Yin & Wang (2004); Kapoor et al. (2005); Zhang et al. (2006). For our recent work on the coordination ability of oxyanions, see: Diop et al. (2002, 2003); Diallo et al. (2009).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1998); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811049567/vn2021sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811049567/vn2021Isup2.hkl
Cy2NH2PhPO3H (L) is obtained on mixing dicyclohexylamine with PhPO3H2 in water in 1/1 ratio. The title compound has been obtained as white crystalline solid by reacting (L) with trimetyltinchloride in ethanol (2/1 ratio M. p:170°). Slow solvent evaporation of the solution afforded colorless crystals suitable for x-ray
All the chemicals (Aldrich) were used without any further purification.All C-bound H-atoms were positioned geometrically and were included in the
in the riding model approximation, with Uĩso~(H) set to 1.2 and 1.5 U~eq~(C). All N- and O-bound H-atoms have been located in the difference Fourier map and were refined freely. However, H(2) binding to O(2) and H(10A) binding to N had to be restrained with O—H = 0.82 (2) Å and N—H = 0.87 (2) Å.Research on organotin derivatives has been an attractive area because of their numerous applications and their versatile structure (Evans & Karpel, 1985; Kapoor et al., 2005; Zhang et al., 2006; Yin & Wang, 2004; Gielen et al., 1995). In the scope of our research work on the coordination ability of oxyanions (Diop et al., 2002, Diallo et al., 2009; Diop et al., 2003) and our interest to synthesize new organotin derivatives for biological tests, we elucidate here the structure of the title compound, [C15H21O6P2Sn,C12H24N] (Fig. 1).
The
of the molecule is shown in Fig 2: hydrogen bonds between pairs of [SnMe3(PhPO3H)2]- generate a six membered ring, comprise a honey comb network by virtue of the hydrogen bonds between the ligands as in catena-trimethyltin(IV)phenylarsenate, reported by Diop et al. (2002).Each SnMe3 unit is σ bonded to two [PhPO3H]- via one negatively charged oxygen atom, leading to a trans trigonal bipyramidal environment around the tin centre (Fig. 1). The resulting anions [SnMe3(PhPO3H)2]- are associated through hydrogen bonds OH···O, along the b axis into pairs and along the a axis to form infinite layers (Fig. 2). The different layers are connected by NH···O hydrogen bonds along the b axis. The hydrogen bonds render the P=O and P—O bond distances almost egal (P(1)—O(3)1.506 (3) Å, P(1)—O(1): 1.509 (2) Å, P(1)—O(2): 1.569 (3) Å) while different of those in the parent phenylphosphonic acid PhPO3H2 (Weakley, 1976) (1.496 Å for P=O and 1.545 Å for P—OH). The geometry around the phosphorous atom in the ligands is a distorted tetrahedron (O(3)—P(1)—O(1): 115.48°(15), O(1)—P(1)—C(4): 107.03°(15)) owing to The sum of the C—Sn—C angle is 59.99° and the O(1)—Sn—O(4) angle of 178.24°(9) indicate a nearly perfect trans trigonal bipyramidal arrangement with the carbon atoms of the methyl occupying the equatorial positions while the oxygen atoms are on the apical positions. The two Sn—O distances observed here - Sn—O(1) 2.227 (2) Å; Sn—O(4) 2.240 (3) Å - are shorter than the distances reported for(α-phenylphosphonato)trimethyltin(IV) by Molloy et al. (1981) (2.240 (6) Å and 2.319 (5) Å).
For related organotin derivatives, see: Weakley (1976); Molloy et al. (1981); Evans & Karpel (1985); Gielen et al. (1995); Yin & Wang (2004); Kapoor et al. (2005); Zhang et al. (2006). For our recent work on the coordination ability of oxyanions, see: Diop et al. (2002, 2003); Diallo et al. (2009).
Data collection: COLLECT (Nonius, 1998); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).(C12H24N)[Sn(CH3)3(C6H6O3P)2] | Z = 2 |
Mr = 660.27 | F(000) = 684 |
Triclinic, P1 | Dx = 1.387 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.8718 (5) Å | Cell parameters from 47204 reflections |
b = 12.7103 (7) Å | θ = 2.9–27.5° |
c = 13.3218 (7) Å | µ = 0.95 mm−1 |
α = 100.625 (3)° | T = 150 K |
β = 103.687 (3)° | Plate, colourless |
γ = 111.996 (3)° | 0.45 × 0.30 × 0.20 mm |
V = 1580.41 (14) Å3 |
Nonius KappaCCD diffractometer | 7212 independent reflections |
Radiation source: fine-focus sealed tube | 6014 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.068 |
166 2.0 degree images with ω scans | θmax = 27.5°, θmin = 3.8° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −14→14 |
Tmin = 0.675, Tmax = 0.833 | k = −16→16 |
21070 measured reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0655P)2 + 1.1841P] where P = (Fo2 + 2Fc2)/3 |
7212 reflections | (Δ/σ)max < 0.001 |
353 parameters | Δρmax = 1.86 e Å−3 |
2 restraints | Δρmin = −1.80 e Å−3 |
(C12H24N)[Sn(CH3)3(C6H6O3P)2] | γ = 111.996 (3)° |
Mr = 660.27 | V = 1580.41 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.8718 (5) Å | Mo Kα radiation |
b = 12.7103 (7) Å | µ = 0.95 mm−1 |
c = 13.3218 (7) Å | T = 150 K |
α = 100.625 (3)° | 0.45 × 0.30 × 0.20 mm |
β = 103.687 (3)° |
Nonius KappaCCD diffractometer | 7212 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 6014 reflections with I > 2σ(I) |
Tmin = 0.675, Tmax = 0.833 | Rint = 0.068 |
21070 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 2 restraints |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 1.86 e Å−3 |
7212 reflections | Δρmin = −1.80 e Å−3 |
353 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.39323 (2) | 0.58948 (2) | 0.341865 (19) | 0.02776 (9) | |
P1 | 0.74338 (9) | 0.72317 (8) | 0.37030 (7) | 0.02711 (19) | |
P2 | 0.06261 (9) | 0.44906 (8) | 0.36638 (8) | 0.02827 (19) | |
O1 | 0.6010 (2) | 0.7236 (2) | 0.3496 (2) | 0.0320 (5) | |
O2 | 0.7419 (3) | 0.6228 (2) | 0.4238 (2) | 0.0353 (6) | |
H2 | 0.807 (5) | 0.623 (5) | 0.462 (4) | 0.070 (18)* | |
O3 | 0.8675 (2) | 0.8403 (2) | 0.4370 (2) | 0.0310 (5) | |
O4 | 0.1834 (3) | 0.4514 (2) | 0.3290 (2) | 0.0360 (6) | |
O5 | 0.0892 (3) | 0.5817 (2) | 0.4150 (2) | 0.0338 (6) | |
H5A | 0.039 (7) | 0.585 (6) | 0.463 (5) | 0.08 (2)* | |
O6 | 0.0351 (2) | 0.3812 (2) | 0.4473 (2) | 0.0306 (5) | |
N | 0.9314 (3) | 1.0380 (3) | 0.3600 (2) | 0.0291 (6) | |
H10A | 0.906 (5) | 0.970 (3) | 0.376 (4) | 0.043 (12)* | |
H10B | 1.004 (4) | 1.092 (4) | 0.426 (3) | 0.029 (10)* | |
C1 | 0.4197 (4) | 0.4478 (4) | 0.2508 (3) | 0.0357 (8) | |
H1A | 0.3304 | 0.3754 | 0.2223 | 0.053* | |
H1B | 0.4921 | 0.4334 | 0.2977 | 0.053* | |
H1C | 0.4488 | 0.4694 | 0.1904 | 0.053* | |
C2 | 0.4641 (4) | 0.6421 (4) | 0.5132 (3) | 0.0373 (8) | |
H2A | 0.5502 | 0.6326 | 0.5399 | 0.056* | |
H2B | 0.3912 | 0.5924 | 0.5378 | 0.056* | |
H2C | 0.4837 | 0.7257 | 0.5412 | 0.056* | |
C3 | 0.2929 (4) | 0.6733 (4) | 0.2497 (3) | 0.0396 (9) | |
H3A | 0.2375 | 0.6994 | 0.2876 | 0.059* | |
H3B | 0.2307 | 0.6166 | 0.1782 | 0.059* | |
H3C | 0.3646 | 0.7424 | 0.2409 | 0.059* | |
C4 | 0.7614 (4) | 0.6798 (3) | 0.2399 (3) | 0.0297 (7) | |
C5 | 0.6643 (4) | 0.6721 (4) | 0.1461 (3) | 0.0433 (10) | |
H5 | 0.5856 | 0.6861 | 0.1506 | 0.052* | |
C6 | 0.6811 (6) | 0.6443 (6) | 0.0462 (4) | 0.0610 (14) | |
H6 | 0.6148 | 0.6405 | −0.0170 | 0.073* | |
C7 | 0.7947 (5) | 0.6219 (5) | 0.0383 (3) | 0.0516 (11) | |
H7 | 0.8058 | 0.6026 | −0.0304 | 0.062* | |
C8 | 0.8919 (5) | 0.6278 (4) | 0.1304 (4) | 0.0430 (9) | |
H8 | 0.9689 | 0.6115 | 0.1252 | 0.052* | |
C9 | 0.8754 (4) | 0.6579 (3) | 0.2309 (3) | 0.0355 (8) | |
H9 | 0.9430 | 0.6635 | 0.2942 | 0.043* | |
C10 | −0.0932 (4) | 0.3826 (3) | 0.2475 (3) | 0.0322 (7) | |
C11 | −0.0850 (5) | 0.3461 (4) | 0.1446 (3) | 0.0444 (10) | |
H11 | 0.0032 | 0.3562 | 0.1372 | 0.053* | |
C12 | −0.2058 (6) | 0.2946 (5) | 0.0527 (4) | 0.0562 (12) | |
H12 | −0.2001 | 0.2691 | −0.0170 | 0.067* | |
C13 | −0.3337 (6) | 0.2812 (5) | 0.0639 (4) | 0.0595 (13) | |
H13 | −0.4159 | 0.2462 | 0.0014 | 0.071* | |
C14 | −0.3430 (5) | 0.3180 (4) | 0.1645 (4) | 0.0512 (11) | |
H14 | −0.4314 | 0.3085 | 0.1711 | 0.061* | |
C15 | −0.2241 (4) | 0.3688 (4) | 0.2559 (3) | 0.0391 (9) | |
H15 | −0.2312 | 0.3946 | 0.3250 | 0.047* | |
C16 | 0.9824 (4) | 1.0236 (3) | 0.2651 (3) | 0.0314 (7) | |
H16 | 0.9017 | 0.9615 | 0.2010 | 0.038* | |
C17 | 1.0365 (5) | 1.1398 (4) | 0.2371 (3) | 0.0406 (9) | |
H17A | 1.1137 | 1.2033 | 0.3008 | 0.049* | |
H17B | 0.9597 | 1.1641 | 0.2179 | 0.049* | |
C18 | 1.0900 (5) | 1.1238 (4) | 0.1419 (4) | 0.0465 (10) | |
H18A | 1.1312 | 1.2012 | 0.1279 | 0.056* | |
H18B | 1.0099 | 1.0674 | 0.0761 | 0.056* | |
C19 | 1.2011 (5) | 1.0767 (4) | 0.1639 (4) | 0.0470 (10) | |
H19A | 1.2276 | 1.0617 | 0.0984 | 0.056* | |
H19B | 1.2864 | 1.1377 | 0.2237 | 0.056* | |
C20 | 1.1468 (4) | 0.9626 (4) | 0.1941 (4) | 0.0438 (9) | |
H20A | 1.2227 | 0.9371 | 0.2122 | 0.053* | |
H20B | 1.0678 | 0.8990 | 0.1315 | 0.053* | |
C21 | 1.0967 (4) | 0.9810 (4) | 0.2915 (3) | 0.0376 (8) | |
H21A | 1.0590 | 0.9053 | 0.3089 | 0.045* | |
H21B | 1.1770 | 1.0408 | 0.3557 | 0.045* | |
C22 | 0.8128 (4) | 1.0751 (3) | 0.3484 (3) | 0.0325 (8) | |
H22 | 0.8446 | 1.1542 | 0.3349 | 0.039* | |
C23 | 0.7833 (4) | 1.0885 (4) | 0.4551 (3) | 0.0395 (9) | |
H23A | 0.7567 | 1.0119 | 0.4717 | 0.047* | |
H23B | 0.8695 | 1.1491 | 0.5144 | 0.047* | |
C24 | 0.6648 (4) | 1.1259 (4) | 0.4481 (4) | 0.0472 (10) | |
H24A | 0.6941 | 1.2052 | 0.4367 | 0.057* | |
H24B | 0.6447 | 1.1319 | 0.5171 | 0.057* | |
C25 | 0.5317 (4) | 1.0355 (4) | 0.3547 (4) | 0.0499 (11) | |
H25A | 0.4982 | 0.9577 | 0.3690 | 0.060* | |
H25B | 0.4568 | 1.0626 | 0.3497 | 0.060* | |
C26 | 0.5605 (4) | 1.0211 (4) | 0.2482 (4) | 0.0493 (11) | |
H26A | 0.5843 | 1.0969 | 0.2302 | 0.059* | |
H26B | 0.4745 | 0.9591 | 0.1897 | 0.059* | |
C27 | 0.6824 (4) | 0.9860 (4) | 0.2541 (3) | 0.0377 (8) | |
H27A | 0.6544 | 0.9057 | 0.2632 | 0.045* | |
H27B | 0.7035 | 0.9833 | 0.1856 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.02108 (13) | 0.03255 (14) | 0.03159 (14) | 0.01278 (10) | 0.00933 (9) | 0.01115 (9) |
P1 | 0.0195 (4) | 0.0280 (4) | 0.0322 (4) | 0.0092 (4) | 0.0066 (3) | 0.0106 (3) |
P2 | 0.0206 (4) | 0.0297 (5) | 0.0366 (5) | 0.0116 (4) | 0.0107 (3) | 0.0121 (4) |
O1 | 0.0219 (12) | 0.0349 (13) | 0.0415 (14) | 0.0131 (11) | 0.0104 (10) | 0.0156 (11) |
O2 | 0.0234 (13) | 0.0372 (14) | 0.0439 (15) | 0.0105 (11) | 0.0067 (11) | 0.0213 (12) |
O3 | 0.0209 (11) | 0.0320 (13) | 0.0333 (13) | 0.0073 (10) | 0.0059 (9) | 0.0086 (10) |
O4 | 0.0254 (12) | 0.0364 (14) | 0.0504 (16) | 0.0141 (11) | 0.0181 (11) | 0.0146 (12) |
O5 | 0.0296 (13) | 0.0310 (13) | 0.0426 (14) | 0.0128 (11) | 0.0144 (11) | 0.0134 (11) |
O6 | 0.0243 (12) | 0.0317 (13) | 0.0379 (13) | 0.0132 (11) | 0.0100 (10) | 0.0138 (10) |
N | 0.0240 (14) | 0.0287 (16) | 0.0314 (15) | 0.0098 (13) | 0.0065 (12) | 0.0097 (12) |
C1 | 0.0299 (18) | 0.041 (2) | 0.039 (2) | 0.0182 (17) | 0.0129 (15) | 0.0108 (16) |
C2 | 0.038 (2) | 0.045 (2) | 0.038 (2) | 0.0237 (18) | 0.0148 (16) | 0.0166 (17) |
C3 | 0.0293 (18) | 0.045 (2) | 0.048 (2) | 0.0175 (17) | 0.0108 (16) | 0.0216 (18) |
C4 | 0.0246 (16) | 0.0316 (18) | 0.0337 (18) | 0.0129 (15) | 0.0089 (13) | 0.0116 (14) |
C5 | 0.034 (2) | 0.061 (3) | 0.037 (2) | 0.028 (2) | 0.0082 (16) | 0.0097 (18) |
C6 | 0.054 (3) | 0.100 (4) | 0.036 (2) | 0.048 (3) | 0.008 (2) | 0.013 (2) |
C7 | 0.057 (3) | 0.074 (3) | 0.034 (2) | 0.036 (3) | 0.0198 (19) | 0.014 (2) |
C8 | 0.042 (2) | 0.049 (2) | 0.049 (2) | 0.029 (2) | 0.0184 (18) | 0.0150 (19) |
C9 | 0.0273 (18) | 0.039 (2) | 0.041 (2) | 0.0154 (16) | 0.0094 (15) | 0.0140 (16) |
C10 | 0.0314 (18) | 0.0330 (19) | 0.0383 (19) | 0.0183 (16) | 0.0124 (15) | 0.0146 (15) |
C11 | 0.047 (2) | 0.054 (3) | 0.042 (2) | 0.029 (2) | 0.0163 (18) | 0.0181 (19) |
C12 | 0.064 (3) | 0.067 (3) | 0.039 (2) | 0.037 (3) | 0.009 (2) | 0.014 (2) |
C13 | 0.053 (3) | 0.059 (3) | 0.050 (3) | 0.030 (3) | −0.009 (2) | 0.005 (2) |
C14 | 0.031 (2) | 0.051 (3) | 0.063 (3) | 0.021 (2) | 0.0031 (19) | 0.009 (2) |
C15 | 0.0289 (18) | 0.042 (2) | 0.045 (2) | 0.0182 (17) | 0.0095 (16) | 0.0103 (17) |
C16 | 0.0270 (17) | 0.0316 (18) | 0.0313 (17) | 0.0097 (15) | 0.0087 (14) | 0.0080 (14) |
C17 | 0.047 (2) | 0.036 (2) | 0.044 (2) | 0.0195 (19) | 0.0187 (18) | 0.0167 (17) |
C18 | 0.055 (3) | 0.046 (2) | 0.044 (2) | 0.021 (2) | 0.025 (2) | 0.0191 (19) |
C19 | 0.039 (2) | 0.052 (3) | 0.049 (2) | 0.016 (2) | 0.0211 (19) | 0.015 (2) |
C20 | 0.035 (2) | 0.046 (2) | 0.050 (2) | 0.0188 (19) | 0.0157 (18) | 0.0097 (19) |
C21 | 0.0325 (19) | 0.038 (2) | 0.043 (2) | 0.0164 (17) | 0.0136 (16) | 0.0127 (16) |
C22 | 0.0248 (17) | 0.0293 (18) | 0.042 (2) | 0.0122 (15) | 0.0079 (14) | 0.0116 (15) |
C23 | 0.0301 (19) | 0.044 (2) | 0.042 (2) | 0.0158 (17) | 0.0132 (16) | 0.0075 (17) |
C24 | 0.033 (2) | 0.047 (2) | 0.058 (3) | 0.0178 (19) | 0.0167 (19) | 0.006 (2) |
C25 | 0.0269 (19) | 0.044 (2) | 0.071 (3) | 0.0136 (18) | 0.0155 (19) | 0.005 (2) |
C26 | 0.029 (2) | 0.049 (3) | 0.058 (3) | 0.0165 (19) | 0.0013 (18) | 0.008 (2) |
C27 | 0.0280 (18) | 0.041 (2) | 0.040 (2) | 0.0156 (17) | 0.0054 (15) | 0.0096 (16) |
Sn—C1 | 2.132 (4) | C11—H11 | 0.9500 |
Sn—C2 | 2.114 (4) | C12—C13 | 1.383 (8) |
Sn—C3 | 2.134 (4) | C12—H12 | 0.9500 |
Sn—O1 | 2.227 (2) | C13—C14 | 1.376 (7) |
Sn—O4 | 2.241 (3) | C13—H13 | 0.9500 |
P1—O3 | 1.506 (3) | C14—C15 | 1.383 (6) |
P1—O1 | 1.509 (2) | C14—H14 | 0.9500 |
P1—O2 | 1.569 (3) | C15—H15 | 0.9500 |
P1—C4 | 1.803 (4) | C16—C17 | 1.524 (5) |
P2—O4 | 1.503 (3) | C16—C21 | 1.525 (5) |
P2—O6 | 1.516 (3) | C16—H16 | 1.0000 |
P2—O5 | 1.578 (3) | C17—C18 | 1.527 (6) |
P2—C10 | 1.805 (4) | C17—H17A | 0.9900 |
O2—H2 | 0.76 (4) | C17—H17B | 0.9900 |
O5—H5A | 0.94 (7) | C18—C19 | 1.529 (6) |
N—C16 | 1.503 (5) | C18—H18A | 0.9900 |
N—C22 | 1.515 (5) | C18—H18B | 0.9900 |
N—H10A | 0.887 (19) | C19—C20 | 1.517 (6) |
N—H10B | 0.95 (4) | C19—H19A | 0.9900 |
C1—H1A | 0.9800 | C19—H19B | 0.9900 |
C1—H1B | 0.9800 | C20—C21 | 1.534 (6) |
C1—H1C | 0.9800 | C20—H20A | 0.9900 |
C2—H2A | 0.9800 | C20—H20B | 0.9900 |
C2—H2B | 0.9800 | C21—H21A | 0.9900 |
C2—H2C | 0.9800 | C21—H21B | 0.9900 |
C3—H3A | 0.9800 | C22—C27 | 1.517 (5) |
C3—H3B | 0.9800 | C22—C23 | 1.522 (5) |
C3—H3C | 0.9800 | C22—H22 | 1.0000 |
C4—C5 | 1.393 (5) | C23—C24 | 1.521 (5) |
C4—C9 | 1.395 (5) | C23—H23A | 0.9900 |
C5—C6 | 1.385 (6) | C23—H23B | 0.9900 |
C5—H5 | 0.9500 | C24—C25 | 1.528 (6) |
C6—C7 | 1.390 (7) | C24—H24A | 0.9900 |
C6—H6 | 0.9500 | C24—H24B | 0.9900 |
C7—C8 | 1.386 (6) | C25—C26 | 1.517 (7) |
C7—H7 | 0.9500 | C25—H25A | 0.9900 |
C8—C9 | 1.395 (6) | C25—H25B | 0.9900 |
C8—H8 | 0.9500 | C26—C27 | 1.539 (6) |
C9—H9 | 0.9500 | C26—H26A | 0.9900 |
C10—C11 | 1.399 (5) | C26—H26B | 0.9900 |
C10—C15 | 1.401 (5) | C27—H27A | 0.9900 |
C11—C12 | 1.398 (6) | C27—H27B | 0.9900 |
C2—Sn—C1 | 121.15 (15) | C12—C13—H13 | 119.7 |
C2—Sn—C3 | 122.89 (16) | C13—C14—C15 | 120.1 (4) |
C1—Sn—C3 | 115.97 (16) | C13—C14—H14 | 119.9 |
C2—Sn—O1 | 88.92 (13) | C15—C14—H14 | 119.9 |
C1—Sn—O1 | 91.77 (12) | C14—C15—C10 | 120.6 (4) |
C3—Sn—O1 | 89.14 (13) | C14—C15—H15 | 119.7 |
C2—Sn—O4 | 92.68 (13) | C10—C15—H15 | 119.7 |
C1—Sn—O4 | 86.78 (13) | N—C16—C17 | 110.9 (3) |
C3—Sn—O4 | 90.59 (13) | N—C16—C21 | 109.1 (3) |
O1—Sn—O4 | 178.24 (9) | C17—C16—C21 | 111.2 (3) |
O3—P1—O1 | 115.48 (15) | N—C16—H16 | 108.5 |
O3—P1—O2 | 110.97 (15) | C17—C16—H16 | 108.5 |
O1—P1—O2 | 107.81 (15) | C21—C16—H16 | 108.5 |
O3—P1—C4 | 108.23 (15) | C16—C17—C18 | 110.1 (3) |
O1—P1—C4 | 107.03 (15) | C16—C17—H17A | 109.6 |
O2—P1—C4 | 106.94 (16) | C18—C17—H17A | 109.6 |
O4—P2—O6 | 115.57 (15) | C16—C17—H17B | 109.6 |
O4—P2—O5 | 108.23 (15) | C18—C17—H17B | 109.6 |
O6—P2—O5 | 110.03 (15) | H17A—C17—H17B | 108.2 |
O4—P2—C10 | 107.22 (17) | C17—C18—C19 | 111.8 (4) |
O6—P2—C10 | 108.73 (16) | C17—C18—H18A | 109.3 |
O5—P2—C10 | 106.67 (16) | C19—C18—H18A | 109.3 |
P1—O1—Sn | 132.28 (15) | C17—C18—H18B | 109.3 |
P1—O2—H2 | 125 (5) | C19—C18—H18B | 109.3 |
P2—O4—Sn | 136.69 (16) | H18A—C18—H18B | 107.9 |
P2—O5—H5A | 110 (4) | C20—C19—C18 | 111.4 (4) |
C16—N—C22 | 117.5 (3) | C20—C19—H19A | 109.3 |
C16—N—H10A | 107 (3) | C18—C19—H19A | 109.3 |
C22—N—H10A | 109 (3) | C20—C19—H19B | 109.3 |
C16—N—H10B | 114 (2) | C18—C19—H19B | 109.3 |
C22—N—H10B | 106 (2) | H19A—C19—H19B | 108.0 |
H10A—N—H10B | 102 (4) | C19—C20—C21 | 110.7 (3) |
Sn—C1—H1A | 109.5 | C19—C20—H20A | 109.5 |
Sn—C1—H1B | 109.5 | C21—C20—H20A | 109.5 |
H1A—C1—H1B | 109.5 | C19—C20—H20B | 109.5 |
Sn—C1—H1C | 109.5 | C21—C20—H20B | 109.5 |
H1A—C1—H1C | 109.5 | H20A—C20—H20B | 108.1 |
H1B—C1—H1C | 109.5 | C16—C21—C20 | 109.7 (3) |
Sn—C2—H2A | 109.5 | C16—C21—H21A | 109.7 |
Sn—C2—H2B | 109.5 | C20—C21—H21A | 109.7 |
H2A—C2—H2B | 109.5 | C16—C21—H21B | 109.7 |
Sn—C2—H2C | 109.5 | C20—C21—H21B | 109.7 |
H2A—C2—H2C | 109.5 | H21A—C21—H21B | 108.2 |
H2B—C2—H2C | 109.5 | N—C22—C27 | 111.3 (3) |
Sn—C3—H3A | 109.5 | N—C22—C23 | 108.1 (3) |
Sn—C3—H3B | 109.5 | C27—C22—C23 | 111.6 (3) |
H3A—C3—H3B | 109.5 | N—C22—H22 | 108.6 |
Sn—C3—H3C | 109.5 | C27—C22—H22 | 108.6 |
H3A—C3—H3C | 109.5 | C23—C22—H22 | 108.6 |
H3B—C3—H3C | 109.5 | C24—C23—C22 | 110.4 (3) |
C5—C4—C9 | 118.5 (3) | C24—C23—H23A | 109.6 |
C5—C4—P1 | 120.5 (3) | C22—C23—H23A | 109.6 |
C9—C4—P1 | 121.0 (3) | C24—C23—H23B | 109.6 |
C6—C5—C4 | 120.8 (4) | C22—C23—H23B | 109.6 |
C6—C5—H5 | 119.6 | H23A—C23—H23B | 108.1 |
C4—C5—H5 | 119.6 | C23—C24—C25 | 110.5 (4) |
C5—C6—C7 | 120.1 (4) | C23—C24—H24A | 109.5 |
C5—C6—H6 | 119.9 | C25—C24—H24A | 109.5 |
C7—C6—H6 | 119.9 | C23—C24—H24B | 109.5 |
C8—C7—C6 | 120.1 (4) | C25—C24—H24B | 109.5 |
C8—C7—H7 | 120.0 | H24A—C24—H24B | 108.1 |
C6—C7—H7 | 120.0 | C26—C25—C24 | 110.8 (4) |
C7—C8—C9 | 119.4 (4) | C26—C25—H25A | 109.5 |
C7—C8—H8 | 120.3 | C24—C25—H25A | 109.5 |
C9—C8—H8 | 120.3 | C26—C25—H25B | 109.5 |
C8—C9—C4 | 121.1 (4) | C24—C25—H25B | 109.5 |
C8—C9—H9 | 119.4 | H25A—C25—H25B | 108.1 |
C4—C9—H9 | 119.4 | C25—C26—C27 | 111.4 (4) |
C11—C10—C15 | 118.6 (4) | C25—C26—H26A | 109.3 |
C11—C10—P2 | 120.5 (3) | C27—C26—H26A | 109.3 |
C15—C10—P2 | 120.9 (3) | C25—C26—H26B | 109.3 |
C12—C11—C10 | 120.3 (4) | C27—C26—H26B | 109.3 |
C12—C11—H11 | 119.8 | H26A—C26—H26B | 108.0 |
C10—C11—H11 | 119.8 | C22—C27—C26 | 110.4 (3) |
C13—C12—C11 | 119.6 (5) | C22—C27—H27A | 109.6 |
C13—C12—H12 | 120.2 | C26—C27—H27A | 109.6 |
C11—C12—H12 | 120.2 | C22—C27—H27B | 109.6 |
C14—C13—C12 | 120.7 (4) | C26—C27—H27B | 109.6 |
C14—C13—H13 | 119.7 | H27A—C27—H27B | 108.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O6i | 0.76 (4) | 1.88 (4) | 2.642 (4) | 178 (7) |
O5—H5A···O6ii | 0.94 (7) | 1.67 (7) | 2.596 (4) | 169 (6) |
N—H10A···O3 | 0.89 (2) | 1.92 (2) | 2.798 (4) | 169 (4) |
N—H10B···O3iii | 0.95 (4) | 1.83 (4) | 2.759 (4) | 165 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+2, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (C12H24N)[Sn(CH3)3(C6H6O3P)2] |
Mr | 660.27 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 10.8718 (5), 12.7103 (7), 13.3218 (7) |
α, β, γ (°) | 100.625 (3), 103.687 (3), 111.996 (3) |
V (Å3) | 1580.41 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.95 |
Crystal size (mm) | 0.45 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.675, 0.833 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21070, 7212, 6014 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.124, 1.09 |
No. of reflections | 7212 |
No. of parameters | 353 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.86, −1.80 |
Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O6i | 0.76 (4) | 1.88 (4) | 2.642 (4) | 178 (7) |
O5—H5A···O6ii | 0.94 (7) | 1.67 (7) | 2.596 (4) | 169 (6) |
N—H10A···O3 | 0.887 (19) | 1.92 (2) | 2.798 (4) | 169 (4) |
N—H10B···O3iii | 0.95 (4) | 1.83 (4) | 2.759 (4) | 165 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+2, −y+2, −z+1. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Diallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Köhn, G. K. & Molloy, K. C. (2009). Sci. Study Res. 3, 207–212. Google Scholar
Diop, C. A. K., Bassene, S., Sidibe, M., Sarr, A. D., Diop, L., Molloy, K. C., Mahon, M. F. & Toscano, R. A. (2002). Main Group Met. Chem. 25, 683–689. CAS Google Scholar
Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881–882. Web of Science CSD CrossRef CAS Google Scholar
Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gielen, M., Bouhdid, A., Kayser, F., Biesemans, M., De Vos, D., Mahieu, B. & Willem, R. (1995). Appl. Organomet. Chem. 9, 251–257. CrossRef CAS Web of Science Google Scholar
Kapoor, R. N., Guillory, P., Schulte, L., Cervantes-Lee, F., Haiduc, I., Parkanyi, L. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510–517. Web of Science CSD CrossRef CAS Google Scholar
Molloy, K. C., Hossain, M. B., Helm, D. V. D., Cunningham, D. & Zukerman, J. J. (1981). Inorg. Chem., 20, 2402–2406. CSD CrossRef CAS Web of Science Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weakley, T. J. R. (1976). Acta Cryst. B32, 2889–2890. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Yin, H.-D. & Wang, C.-H. (2004). Appl. Organomet. Chem. 18, 411–412. Web of Science CSD CrossRef CAS Google Scholar
Zhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460–m461. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Research on organotin derivatives has been an attractive area because of their numerous applications and their versatile structure (Evans & Karpel, 1985; Kapoor et al., 2005; Zhang et al., 2006; Yin & Wang, 2004; Gielen et al., 1995). In the scope of our research work on the coordination ability of oxyanions (Diop et al., 2002, Diallo et al., 2009; Diop et al., 2003) and our interest to synthesize new organotin derivatives for biological tests, we elucidate here the structure of the title compound, [C15H21O6P2Sn,C12H24N] (Fig. 1).
The crystal structure of the molecule is shown in Fig 2: hydrogen bonds between pairs of [SnMe3(PhPO3H)2]- generate a six membered ring, comprise a honey comb network by virtue of the hydrogen bonds between the ligands as in catena-trimethyltin(IV)phenylarsenate, reported by Diop et al. (2002).
Each SnMe3 unit is σ bonded to two [PhPO3H]- via one negatively charged oxygen atom, leading to a trans trigonal bipyramidal environment around the tin centre (Fig. 1). The resulting anions [SnMe3(PhPO3H)2]- are associated through hydrogen bonds OH···O, along the b axis into pairs and along the a axis to form infinite layers (Fig. 2). The different layers are connected by NH···O hydrogen bonds along the b axis. The hydrogen bonds render the P=O and P—O bond distances almost egal (P(1)—O(3)1.506 (3) Å, P(1)—O(1): 1.509 (2) Å, P(1)—O(2): 1.569 (3) Å) while different of those in the parent phenylphosphonic acid PhPO3H2 (Weakley, 1976) (1.496 Å for P=O and 1.545 Å for P—OH). The geometry around the phosphorous atom in the ligands is a distorted tetrahedron (O(3)—P(1)—O(1): 115.48°(15), O(1)—P(1)—C(4): 107.03°(15)) owing to steric hindrance. The sum of the C—Sn—C angle is 59.99° and the O(1)—Sn—O(4) angle of 178.24°(9) indicate a nearly perfect trans trigonal bipyramidal arrangement with the carbon atoms of the methyl occupying the equatorial positions while the oxygen atoms are on the apical positions. The two Sn—O distances observed here - Sn—O(1) 2.227 (2) Å; Sn—O(4) 2.240 (3) Å - are shorter than the distances reported for(α-phenylphosphonato)trimethyltin(IV) by Molloy et al. (1981) (2.240 (6) Å and 2.319 (5) Å).