metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­cyclo­hexyl­ammonium tri­methyl­bis­­(hydrogen phenyl­phospho­nato)stannate(IV)

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
*Correspondence e-mail: dlibasse@gmail.com

(Received 28 October 2011; accepted 20 November 2011; online 30 November 2011)

In the title compound, (C12H24N)[Sn(CH3)3(C6H6O3P)2], the SnMe3 residues are axially coordinated by two monodentate [PhPO3H] anions, leading to a trigonal–bipyramidal geometry for the SnIV atom. The two [SnMe3(PhPO3H)2] anions in the unit cell are associated into infinite chains along the a axis by O—H⋯O hydrogen bonds involving the hy­droxy group of the hydrogen phenyl­phospho­nate ion. The chains inter­act with one another via O—H⋯O hydrogen bonds along the c axis. These networks of anions assemble with the dicyclo­hexyl­ammonium ion through N—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For related organotin derivatives, see: Weakley (1976[Weakley, T. J. R. (1976). Acta Cryst. B32, 2889-2890.]); Molloy et al. (1981[Molloy, K. C., Hossain, M. B., Helm, D. V. D., Cunningham, D. & Zukerman, J. J. (1981). Inorg. Chem., 20, 2402-2406.]); Evans & Karpel (1985[Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.]); Gielen et al. (1995[Gielen, M., Bouhdid, A., Kayser, F., Biesemans, M., De Vos, D., Mahieu, B. & Willem, R. (1995). Appl. Organomet. Chem. 9, 251-257.]); Yin & Wang (2004[Yin, H.-D. & Wang, C.-H. (2004). Appl. Organomet. Chem. 18, 411-412.]); Kapoor et al. (2005[Kapoor, R. N., Guillory, P., Schulte, L., Cervantes-Lee, F., Haiduc, I., Parkanyi, L. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510-517.]); Zhang et al. (2006[Zhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460-m461.]). For our recent work on the coordination ability of oxyanions, see: Diop et al. (2002[Diop, C. A. K., Bassene, S., Sidibe, M., Sarr, A. D., Diop, L., Molloy, K. C., Mahon, M. F. & Toscano, R. A. (2002). Main Group Met. Chem. 25, 683-689.], 2003[Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881-882.]); Diallo et al. (2009[Diallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Köhn, G. K. & Molloy, K. C. (2009). Sci. Study Res. 3, 207-212.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H24N)[Sn(CH3)3(C6H6O3P)2]

  • Mr = 660.27

  • Triclinic, [P \overline 1]

  • a = 10.8718 (5) Å

  • b = 12.7103 (7) Å

  • c = 13.3218 (7) Å

  • α = 100.625 (3)°

  • β = 103.687 (3)°

  • γ = 111.996 (3)°

  • V = 1580.41 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 150 K

  • 0.45 × 0.30 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.675, Tmax = 0.833

  • 21070 measured reflections

  • 7212 independent reflections

  • 6014 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.09

  • 7212 reflections

  • 353 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.86 e Å−3

  • Δρmin = −1.80 e Å−3

Table 1
Selected bond lengths (Å)

Sn—C1 2.132 (4)
Sn—C2 2.114 (4)
Sn—C3 2.134 (4)
Sn—O1 2.227 (2)
Sn—O4 2.241 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O6i 0.76 (4) 1.88 (4) 2.642 (4) 178 (7)
O5—H5A⋯O6ii 0.94 (7) 1.67 (7) 2.596 (4) 169 (6)
N—H10A⋯O3 0.89 (2) 1.92 (2) 2.798 (4) 169 (4)
N—H10B⋯O3iii 0.95 (4) 1.83 (4) 2.759 (4) 165 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+2, -y+2, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Research on organotin derivatives has been an attractive area because of their numerous applications and their versatile structure (Evans & Karpel, 1985; Kapoor et al., 2005; Zhang et al., 2006; Yin & Wang, 2004; Gielen et al., 1995). In the scope of our research work on the coordination ability of oxyanions (Diop et al., 2002, Diallo et al., 2009; Diop et al., 2003) and our interest to synthesize new organotin derivatives for biological tests, we elucidate here the structure of the title compound, [C15H21O6P2Sn,C12H24N] (Fig. 1).

The crystal structure of the molecule is shown in Fig 2: hydrogen bonds between pairs of [SnMe3(PhPO3H)2]- generate a six membered ring, comprise a honey comb network by virtue of the hydrogen bonds between the ligands as in catena-trimethyltin(IV)phenylarsenate, reported by Diop et al. (2002).

Each SnMe3 unit is σ bonded to two [PhPO3H]- via one negatively charged oxygen atom, leading to a trans trigonal bipyramidal environment around the tin centre (Fig. 1). The resulting anions [SnMe3(PhPO3H)2]- are associated through hydrogen bonds OH···O, along the b axis into pairs and along the a axis to form infinite layers (Fig. 2). The different layers are connected by NH···O hydrogen bonds along the b axis. The hydrogen bonds render the P=O and P—O bond distances almost egal (P(1)—O(3)1.506 (3) Å, P(1)—O(1): 1.509 (2) Å, P(1)—O(2): 1.569 (3) Å) while different of those in the parent phenylphosphonic acid PhPO3H2 (Weakley, 1976) (1.496 Å for P=O and 1.545 Å for P—OH). The geometry around the phosphorous atom in the ligands is a distorted tetrahedron (O(3)—P(1)—O(1): 115.48°(15), O(1)—P(1)—C(4): 107.03°(15)) owing to steric hindrance. The sum of the C—Sn—C angle is 59.99° and the O(1)—Sn—O(4) angle of 178.24°(9) indicate a nearly perfect trans trigonal bipyramidal arrangement with the carbon atoms of the methyl occupying the equatorial positions while the oxygen atoms are on the apical positions. The two Sn—O distances observed here - Sn—O(1) 2.227 (2) Å; Sn—O(4) 2.240 (3) Å - are shorter than the distances reported for(α-phenylphosphonato)trimethyltin(IV) by Molloy et al. (1981) (2.240 (6) Å and 2.319 (5) Å).

Related literature top

For related organotin derivatives, see: Weakley (1976); Molloy et al. (1981); Evans & Karpel (1985); Gielen et al. (1995); Yin & Wang (2004); Kapoor et al. (2005); Zhang et al. (2006). For our recent work on the coordination ability of oxyanions, see: Diop et al. (2002, 2003); Diallo et al. (2009).

Experimental top

Cy2NH2PhPO3H (L) is obtained on mixing dicyclohexylamine with PhPO3H2 in water in 1/1 ratio. The title compound has been obtained as white crystalline solid by reacting (L) with trimetyltinchloride in ethanol (2/1 ratio M. p:170°). Slow solvent evaporation of the solution afforded colorless crystals suitable for x-ray structure determination. All the chemicals (Aldrich) were used without any further purification.

Refinement top

All C-bound H-atoms were positioned geometrically and were included in the refinement in the riding model approximation, with Uĩso~(H) set to 1.2 and 1.5 U~eq~(C). All N- and O-bound H-atoms have been located in the difference Fourier map and were refined freely. However, H(2) binding to O(2) and H(10A) binding to N had to be restrained with O—H = 0.82 (2) Å and N—H = 0.87 (2) Å.

Structure description top

Research on organotin derivatives has been an attractive area because of their numerous applications and their versatile structure (Evans & Karpel, 1985; Kapoor et al., 2005; Zhang et al., 2006; Yin & Wang, 2004; Gielen et al., 1995). In the scope of our research work on the coordination ability of oxyanions (Diop et al., 2002, Diallo et al., 2009; Diop et al., 2003) and our interest to synthesize new organotin derivatives for biological tests, we elucidate here the structure of the title compound, [C15H21O6P2Sn,C12H24N] (Fig. 1).

The crystal structure of the molecule is shown in Fig 2: hydrogen bonds between pairs of [SnMe3(PhPO3H)2]- generate a six membered ring, comprise a honey comb network by virtue of the hydrogen bonds between the ligands as in catena-trimethyltin(IV)phenylarsenate, reported by Diop et al. (2002).

Each SnMe3 unit is σ bonded to two [PhPO3H]- via one negatively charged oxygen atom, leading to a trans trigonal bipyramidal environment around the tin centre (Fig. 1). The resulting anions [SnMe3(PhPO3H)2]- are associated through hydrogen bonds OH···O, along the b axis into pairs and along the a axis to form infinite layers (Fig. 2). The different layers are connected by NH···O hydrogen bonds along the b axis. The hydrogen bonds render the P=O and P—O bond distances almost egal (P(1)—O(3)1.506 (3) Å, P(1)—O(1): 1.509 (2) Å, P(1)—O(2): 1.569 (3) Å) while different of those in the parent phenylphosphonic acid PhPO3H2 (Weakley, 1976) (1.496 Å for P=O and 1.545 Å for P—OH). The geometry around the phosphorous atom in the ligands is a distorted tetrahedron (O(3)—P(1)—O(1): 115.48°(15), O(1)—P(1)—C(4): 107.03°(15)) owing to steric hindrance. The sum of the C—Sn—C angle is 59.99° and the O(1)—Sn—O(4) angle of 178.24°(9) indicate a nearly perfect trans trigonal bipyramidal arrangement with the carbon atoms of the methyl occupying the equatorial positions while the oxygen atoms are on the apical positions. The two Sn—O distances observed here - Sn—O(1) 2.227 (2) Å; Sn—O(4) 2.240 (3) Å - are shorter than the distances reported for(α-phenylphosphonato)trimethyltin(IV) by Molloy et al. (1981) (2.240 (6) Å and 2.319 (5) Å).

For related organotin derivatives, see: Weakley (1976); Molloy et al. (1981); Evans & Karpel (1985); Gielen et al. (1995); Yin & Wang (2004); Kapoor et al. (2005); Zhang et al. (2006). For our recent work on the coordination ability of oxyanions, see: Diop et al. (2002, 2003); Diallo et al. (2009).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. : Three dimensional structure showing the hydrogen bonds as dotted lines.
Dicyclohexylammonium bis(hydrogen phenylphosphonato)trimethylstannate(IV) top
Crystal data top
(C12H24N)[Sn(CH3)3(C6H6O3P)2]Z = 2
Mr = 660.27F(000) = 684
Triclinic, P1Dx = 1.387 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8718 (5) ÅCell parameters from 47204 reflections
b = 12.7103 (7) Åθ = 2.9–27.5°
c = 13.3218 (7) ŵ = 0.95 mm1
α = 100.625 (3)°T = 150 K
β = 103.687 (3)°Plate, colourless
γ = 111.996 (3)°0.45 × 0.30 × 0.20 mm
V = 1580.41 (14) Å3
Data collection top
Nonius KappaCCD
diffractometer
7212 independent reflections
Radiation source: fine-focus sealed tube6014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
166 2.0 degree images with ω scansθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1414
Tmin = 0.675, Tmax = 0.833k = 1616
21070 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0655P)2 + 1.1841P]
where P = (Fo2 + 2Fc2)/3
7212 reflections(Δ/σ)max < 0.001
353 parametersΔρmax = 1.86 e Å3
2 restraintsΔρmin = 1.80 e Å3
Crystal data top
(C12H24N)[Sn(CH3)3(C6H6O3P)2]γ = 111.996 (3)°
Mr = 660.27V = 1580.41 (14) Å3
Triclinic, P1Z = 2
a = 10.8718 (5) ÅMo Kα radiation
b = 12.7103 (7) ŵ = 0.95 mm1
c = 13.3218 (7) ÅT = 150 K
α = 100.625 (3)°0.45 × 0.30 × 0.20 mm
β = 103.687 (3)°
Data collection top
Nonius KappaCCD
diffractometer
7212 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
6014 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.833Rint = 0.068
21070 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.86 e Å3
7212 reflectionsΔρmin = 1.80 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.39323 (2)0.58948 (2)0.341865 (19)0.02776 (9)
P10.74338 (9)0.72317 (8)0.37030 (7)0.02711 (19)
P20.06261 (9)0.44906 (8)0.36638 (8)0.02827 (19)
O10.6010 (2)0.7236 (2)0.3496 (2)0.0320 (5)
O20.7419 (3)0.6228 (2)0.4238 (2)0.0353 (6)
H20.807 (5)0.623 (5)0.462 (4)0.070 (18)*
O30.8675 (2)0.8403 (2)0.4370 (2)0.0310 (5)
O40.1834 (3)0.4514 (2)0.3290 (2)0.0360 (6)
O50.0892 (3)0.5817 (2)0.4150 (2)0.0338 (6)
H5A0.039 (7)0.585 (6)0.463 (5)0.08 (2)*
O60.0351 (2)0.3812 (2)0.4473 (2)0.0306 (5)
N0.9314 (3)1.0380 (3)0.3600 (2)0.0291 (6)
H10A0.906 (5)0.970 (3)0.376 (4)0.043 (12)*
H10B1.004 (4)1.092 (4)0.426 (3)0.029 (10)*
C10.4197 (4)0.4478 (4)0.2508 (3)0.0357 (8)
H1A0.33040.37540.22230.053*
H1B0.49210.43340.29770.053*
H1C0.44880.46940.19040.053*
C20.4641 (4)0.6421 (4)0.5132 (3)0.0373 (8)
H2A0.55020.63260.53990.056*
H2B0.39120.59240.53780.056*
H2C0.48370.72570.54120.056*
C30.2929 (4)0.6733 (4)0.2497 (3)0.0396 (9)
H3A0.23750.69940.28760.059*
H3B0.23070.61660.17820.059*
H3C0.36460.74240.24090.059*
C40.7614 (4)0.6798 (3)0.2399 (3)0.0297 (7)
C50.6643 (4)0.6721 (4)0.1461 (3)0.0433 (10)
H50.58560.68610.15060.052*
C60.6811 (6)0.6443 (6)0.0462 (4)0.0610 (14)
H60.61480.64050.01700.073*
C70.7947 (5)0.6219 (5)0.0383 (3)0.0516 (11)
H70.80580.60260.03040.062*
C80.8919 (5)0.6278 (4)0.1304 (4)0.0430 (9)
H80.96890.61150.12520.052*
C90.8754 (4)0.6579 (3)0.2309 (3)0.0355 (8)
H90.94300.66350.29420.043*
C100.0932 (4)0.3826 (3)0.2475 (3)0.0322 (7)
C110.0850 (5)0.3461 (4)0.1446 (3)0.0444 (10)
H110.00320.35620.13720.053*
C120.2058 (6)0.2946 (5)0.0527 (4)0.0562 (12)
H120.20010.26910.01700.067*
C130.3337 (6)0.2812 (5)0.0639 (4)0.0595 (13)
H130.41590.24620.00140.071*
C140.3430 (5)0.3180 (4)0.1645 (4)0.0512 (11)
H140.43140.30850.17110.061*
C150.2241 (4)0.3688 (4)0.2559 (3)0.0391 (9)
H150.23120.39460.32500.047*
C160.9824 (4)1.0236 (3)0.2651 (3)0.0314 (7)
H160.90170.96150.20100.038*
C171.0365 (5)1.1398 (4)0.2371 (3)0.0406 (9)
H17A1.11371.20330.30080.049*
H17B0.95971.16410.21790.049*
C181.0900 (5)1.1238 (4)0.1419 (4)0.0465 (10)
H18A1.13121.20120.12790.056*
H18B1.00991.06740.07610.056*
C191.2011 (5)1.0767 (4)0.1639 (4)0.0470 (10)
H19A1.22761.06170.09840.056*
H19B1.28641.13770.22370.056*
C201.1468 (4)0.9626 (4)0.1941 (4)0.0438 (9)
H20A1.22270.93710.21220.053*
H20B1.06780.89900.13150.053*
C211.0967 (4)0.9810 (4)0.2915 (3)0.0376 (8)
H21A1.05900.90530.30890.045*
H21B1.17701.04080.35570.045*
C220.8128 (4)1.0751 (3)0.3484 (3)0.0325 (8)
H220.84461.15420.33490.039*
C230.7833 (4)1.0885 (4)0.4551 (3)0.0395 (9)
H23A0.75671.01190.47170.047*
H23B0.86951.14910.51440.047*
C240.6648 (4)1.1259 (4)0.4481 (4)0.0472 (10)
H24A0.69411.20520.43670.057*
H24B0.64471.13190.51710.057*
C250.5317 (4)1.0355 (4)0.3547 (4)0.0499 (11)
H25A0.49820.95770.36900.060*
H25B0.45681.06260.34970.060*
C260.5605 (4)1.0211 (4)0.2482 (4)0.0493 (11)
H26A0.58431.09690.23020.059*
H26B0.47450.95910.18970.059*
C270.6824 (4)0.9860 (4)0.2541 (3)0.0377 (8)
H27A0.65440.90570.26320.045*
H27B0.70350.98330.18560.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02108 (13)0.03255 (14)0.03159 (14)0.01278 (10)0.00933 (9)0.01115 (9)
P10.0195 (4)0.0280 (4)0.0322 (4)0.0092 (4)0.0066 (3)0.0106 (3)
P20.0206 (4)0.0297 (5)0.0366 (5)0.0116 (4)0.0107 (3)0.0121 (4)
O10.0219 (12)0.0349 (13)0.0415 (14)0.0131 (11)0.0104 (10)0.0156 (11)
O20.0234 (13)0.0372 (14)0.0439 (15)0.0105 (11)0.0067 (11)0.0213 (12)
O30.0209 (11)0.0320 (13)0.0333 (13)0.0073 (10)0.0059 (9)0.0086 (10)
O40.0254 (12)0.0364 (14)0.0504 (16)0.0141 (11)0.0181 (11)0.0146 (12)
O50.0296 (13)0.0310 (13)0.0426 (14)0.0128 (11)0.0144 (11)0.0134 (11)
O60.0243 (12)0.0317 (13)0.0379 (13)0.0132 (11)0.0100 (10)0.0138 (10)
N0.0240 (14)0.0287 (16)0.0314 (15)0.0098 (13)0.0065 (12)0.0097 (12)
C10.0299 (18)0.041 (2)0.039 (2)0.0182 (17)0.0129 (15)0.0108 (16)
C20.038 (2)0.045 (2)0.038 (2)0.0237 (18)0.0148 (16)0.0166 (17)
C30.0293 (18)0.045 (2)0.048 (2)0.0175 (17)0.0108 (16)0.0216 (18)
C40.0246 (16)0.0316 (18)0.0337 (18)0.0129 (15)0.0089 (13)0.0116 (14)
C50.034 (2)0.061 (3)0.037 (2)0.028 (2)0.0082 (16)0.0097 (18)
C60.054 (3)0.100 (4)0.036 (2)0.048 (3)0.008 (2)0.013 (2)
C70.057 (3)0.074 (3)0.034 (2)0.036 (3)0.0198 (19)0.014 (2)
C80.042 (2)0.049 (2)0.049 (2)0.029 (2)0.0184 (18)0.0150 (19)
C90.0273 (18)0.039 (2)0.041 (2)0.0154 (16)0.0094 (15)0.0140 (16)
C100.0314 (18)0.0330 (19)0.0383 (19)0.0183 (16)0.0124 (15)0.0146 (15)
C110.047 (2)0.054 (3)0.042 (2)0.029 (2)0.0163 (18)0.0181 (19)
C120.064 (3)0.067 (3)0.039 (2)0.037 (3)0.009 (2)0.014 (2)
C130.053 (3)0.059 (3)0.050 (3)0.030 (3)0.009 (2)0.005 (2)
C140.031 (2)0.051 (3)0.063 (3)0.021 (2)0.0031 (19)0.009 (2)
C150.0289 (18)0.042 (2)0.045 (2)0.0182 (17)0.0095 (16)0.0103 (17)
C160.0270 (17)0.0316 (18)0.0313 (17)0.0097 (15)0.0087 (14)0.0080 (14)
C170.047 (2)0.036 (2)0.044 (2)0.0195 (19)0.0187 (18)0.0167 (17)
C180.055 (3)0.046 (2)0.044 (2)0.021 (2)0.025 (2)0.0191 (19)
C190.039 (2)0.052 (3)0.049 (2)0.016 (2)0.0211 (19)0.015 (2)
C200.035 (2)0.046 (2)0.050 (2)0.0188 (19)0.0157 (18)0.0097 (19)
C210.0325 (19)0.038 (2)0.043 (2)0.0164 (17)0.0136 (16)0.0127 (16)
C220.0248 (17)0.0293 (18)0.042 (2)0.0122 (15)0.0079 (14)0.0116 (15)
C230.0301 (19)0.044 (2)0.042 (2)0.0158 (17)0.0132 (16)0.0075 (17)
C240.033 (2)0.047 (2)0.058 (3)0.0178 (19)0.0167 (19)0.006 (2)
C250.0269 (19)0.044 (2)0.071 (3)0.0136 (18)0.0155 (19)0.005 (2)
C260.029 (2)0.049 (3)0.058 (3)0.0165 (19)0.0013 (18)0.008 (2)
C270.0280 (18)0.041 (2)0.040 (2)0.0156 (17)0.0054 (15)0.0096 (16)
Geometric parameters (Å, º) top
Sn—C12.132 (4)C11—H110.9500
Sn—C22.114 (4)C12—C131.383 (8)
Sn—C32.134 (4)C12—H120.9500
Sn—O12.227 (2)C13—C141.376 (7)
Sn—O42.241 (3)C13—H130.9500
P1—O31.506 (3)C14—C151.383 (6)
P1—O11.509 (2)C14—H140.9500
P1—O21.569 (3)C15—H150.9500
P1—C41.803 (4)C16—C171.524 (5)
P2—O41.503 (3)C16—C211.525 (5)
P2—O61.516 (3)C16—H161.0000
P2—O51.578 (3)C17—C181.527 (6)
P2—C101.805 (4)C17—H17A0.9900
O2—H20.76 (4)C17—H17B0.9900
O5—H5A0.94 (7)C18—C191.529 (6)
N—C161.503 (5)C18—H18A0.9900
N—C221.515 (5)C18—H18B0.9900
N—H10A0.887 (19)C19—C201.517 (6)
N—H10B0.95 (4)C19—H19A0.9900
C1—H1A0.9800C19—H19B0.9900
C1—H1B0.9800C20—C211.534 (6)
C1—H1C0.9800C20—H20A0.9900
C2—H2A0.9800C20—H20B0.9900
C2—H2B0.9800C21—H21A0.9900
C2—H2C0.9800C21—H21B0.9900
C3—H3A0.9800C22—C271.517 (5)
C3—H3B0.9800C22—C231.522 (5)
C3—H3C0.9800C22—H221.0000
C4—C51.393 (5)C23—C241.521 (5)
C4—C91.395 (5)C23—H23A0.9900
C5—C61.385 (6)C23—H23B0.9900
C5—H50.9500C24—C251.528 (6)
C6—C71.390 (7)C24—H24A0.9900
C6—H60.9500C24—H24B0.9900
C7—C81.386 (6)C25—C261.517 (7)
C7—H70.9500C25—H25A0.9900
C8—C91.395 (6)C25—H25B0.9900
C8—H80.9500C26—C271.539 (6)
C9—H90.9500C26—H26A0.9900
C10—C111.399 (5)C26—H26B0.9900
C10—C151.401 (5)C27—H27A0.9900
C11—C121.398 (6)C27—H27B0.9900
C2—Sn—C1121.15 (15)C12—C13—H13119.7
C2—Sn—C3122.89 (16)C13—C14—C15120.1 (4)
C1—Sn—C3115.97 (16)C13—C14—H14119.9
C2—Sn—O188.92 (13)C15—C14—H14119.9
C1—Sn—O191.77 (12)C14—C15—C10120.6 (4)
C3—Sn—O189.14 (13)C14—C15—H15119.7
C2—Sn—O492.68 (13)C10—C15—H15119.7
C1—Sn—O486.78 (13)N—C16—C17110.9 (3)
C3—Sn—O490.59 (13)N—C16—C21109.1 (3)
O1—Sn—O4178.24 (9)C17—C16—C21111.2 (3)
O3—P1—O1115.48 (15)N—C16—H16108.5
O3—P1—O2110.97 (15)C17—C16—H16108.5
O1—P1—O2107.81 (15)C21—C16—H16108.5
O3—P1—C4108.23 (15)C16—C17—C18110.1 (3)
O1—P1—C4107.03 (15)C16—C17—H17A109.6
O2—P1—C4106.94 (16)C18—C17—H17A109.6
O4—P2—O6115.57 (15)C16—C17—H17B109.6
O4—P2—O5108.23 (15)C18—C17—H17B109.6
O6—P2—O5110.03 (15)H17A—C17—H17B108.2
O4—P2—C10107.22 (17)C17—C18—C19111.8 (4)
O6—P2—C10108.73 (16)C17—C18—H18A109.3
O5—P2—C10106.67 (16)C19—C18—H18A109.3
P1—O1—Sn132.28 (15)C17—C18—H18B109.3
P1—O2—H2125 (5)C19—C18—H18B109.3
P2—O4—Sn136.69 (16)H18A—C18—H18B107.9
P2—O5—H5A110 (4)C20—C19—C18111.4 (4)
C16—N—C22117.5 (3)C20—C19—H19A109.3
C16—N—H10A107 (3)C18—C19—H19A109.3
C22—N—H10A109 (3)C20—C19—H19B109.3
C16—N—H10B114 (2)C18—C19—H19B109.3
C22—N—H10B106 (2)H19A—C19—H19B108.0
H10A—N—H10B102 (4)C19—C20—C21110.7 (3)
Sn—C1—H1A109.5C19—C20—H20A109.5
Sn—C1—H1B109.5C21—C20—H20A109.5
H1A—C1—H1B109.5C19—C20—H20B109.5
Sn—C1—H1C109.5C21—C20—H20B109.5
H1A—C1—H1C109.5H20A—C20—H20B108.1
H1B—C1—H1C109.5C16—C21—C20109.7 (3)
Sn—C2—H2A109.5C16—C21—H21A109.7
Sn—C2—H2B109.5C20—C21—H21A109.7
H2A—C2—H2B109.5C16—C21—H21B109.7
Sn—C2—H2C109.5C20—C21—H21B109.7
H2A—C2—H2C109.5H21A—C21—H21B108.2
H2B—C2—H2C109.5N—C22—C27111.3 (3)
Sn—C3—H3A109.5N—C22—C23108.1 (3)
Sn—C3—H3B109.5C27—C22—C23111.6 (3)
H3A—C3—H3B109.5N—C22—H22108.6
Sn—C3—H3C109.5C27—C22—H22108.6
H3A—C3—H3C109.5C23—C22—H22108.6
H3B—C3—H3C109.5C24—C23—C22110.4 (3)
C5—C4—C9118.5 (3)C24—C23—H23A109.6
C5—C4—P1120.5 (3)C22—C23—H23A109.6
C9—C4—P1121.0 (3)C24—C23—H23B109.6
C6—C5—C4120.8 (4)C22—C23—H23B109.6
C6—C5—H5119.6H23A—C23—H23B108.1
C4—C5—H5119.6C23—C24—C25110.5 (4)
C5—C6—C7120.1 (4)C23—C24—H24A109.5
C5—C6—H6119.9C25—C24—H24A109.5
C7—C6—H6119.9C23—C24—H24B109.5
C8—C7—C6120.1 (4)C25—C24—H24B109.5
C8—C7—H7120.0H24A—C24—H24B108.1
C6—C7—H7120.0C26—C25—C24110.8 (4)
C7—C8—C9119.4 (4)C26—C25—H25A109.5
C7—C8—H8120.3C24—C25—H25A109.5
C9—C8—H8120.3C26—C25—H25B109.5
C8—C9—C4121.1 (4)C24—C25—H25B109.5
C8—C9—H9119.4H25A—C25—H25B108.1
C4—C9—H9119.4C25—C26—C27111.4 (4)
C11—C10—C15118.6 (4)C25—C26—H26A109.3
C11—C10—P2120.5 (3)C27—C26—H26A109.3
C15—C10—P2120.9 (3)C25—C26—H26B109.3
C12—C11—C10120.3 (4)C27—C26—H26B109.3
C12—C11—H11119.8H26A—C26—H26B108.0
C10—C11—H11119.8C22—C27—C26110.4 (3)
C13—C12—C11119.6 (5)C22—C27—H27A109.6
C13—C12—H12120.2C26—C27—H27A109.6
C11—C12—H12120.2C22—C27—H27B109.6
C14—C13—C12120.7 (4)C26—C27—H27B109.6
C14—C13—H13119.7H27A—C27—H27B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.76 (4)1.88 (4)2.642 (4)178 (7)
O5—H5A···O6ii0.94 (7)1.67 (7)2.596 (4)169 (6)
N—H10A···O30.89 (2)1.92 (2)2.798 (4)169 (4)
N—H10B···O3iii0.95 (4)1.83 (4)2.759 (4)165 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula(C12H24N)[Sn(CH3)3(C6H6O3P)2]
Mr660.27
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)10.8718 (5), 12.7103 (7), 13.3218 (7)
α, β, γ (°)100.625 (3), 103.687 (3), 111.996 (3)
V3)1580.41 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.45 × 0.30 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.675, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
21070, 7212, 6014
Rint0.068
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.09
No. of reflections7212
No. of parameters353
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.86, 1.80

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Sn—C12.132 (4)Sn—O12.227 (2)
Sn—C22.114 (4)Sn—O42.241 (3)
Sn—C32.134 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.76 (4)1.88 (4)2.642 (4)178 (7)
O5—H5A···O6ii0.94 (7)1.67 (7)2.596 (4)169 (6)
N—H10A···O30.887 (19)1.92 (2)2.798 (4)169 (4)
N—H10B···O3iii0.95 (4)1.83 (4)2.759 (4)165 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+2, y+2, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDiallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Köhn, G. K. & Molloy, K. C. (2009). Sci. Study Res. 3, 207–212.  Google Scholar
First citationDiop, C. A. K., Bassene, S., Sidibe, M., Sarr, A. D., Diop, L., Molloy, K. C., Mahon, M. F. & Toscano, R. A. (2002). Main Group Met. Chem. 25, 683–689.  CAS Google Scholar
First citationDiop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881–882.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGielen, M., Bouhdid, A., Kayser, F., Biesemans, M., De Vos, D., Mahieu, B. & Willem, R. (1995). Appl. Organomet. Chem. 9, 251–257.  CrossRef CAS Web of Science Google Scholar
First citationKapoor, R. N., Guillory, P., Schulte, L., Cervantes-Lee, F., Haiduc, I., Parkanyi, L. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510–517.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolloy, K. C., Hossain, M. B., Helm, D. V. D., Cunningham, D. & Zukerman, J. J. (1981). Inorg. Chem., 20, 2402–2406.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeakley, T. J. R. (1976). Acta Cryst. B32, 2889–2890.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationYin, H.-D. & Wang, C.-H. (2004). Appl. Organomet. Chem. 18, 411–412.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460–m461.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds