metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino­pyridinium trans-di­aqua­dioxalatochromate(III) monohydrate

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: faouzi.zid@fst.rnu.tn

(Received 15 October 2011; accepted 26 October 2011; online 2 November 2011)

In the non-centrosymmetric structure of the title compound, (C5H7N2)[Cr(C2O4)2(H2O)2]·H2O, the CrIII ion has a slightly distorted octa­hedral coordination environment defined by two chelating oxalato ligands in equatorial positions and two water mol­ecules in axial positions. An extensive three-dimensional network of hydrogen bonds involving all the water mol­ecules, the 4-amino­pyridinium cation and some of the oxalate O atoms contributes to the stabilization of the structure. ππ inter­actions between adjacent pyridine rings provide additional stability of the crystal packing, with a closest distance between pyridine mean planes of 3.613 (1) Å.

Related literature

For the structural characterization of salts containing the [Cr(C2O4)2(H2O)2] anion with various counter-cations, see: Bélombé et al. (2009[Bélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. 224, 239-240.]); Nenwa et al. (2010[Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.]). For oxalate coord­ination modes, see: Tang et al. (2002[Tang, L. F., Wang, Z. H., Chai, J. F. & Wang, J. T. (2002). J. Chem. Crystallogr. 32, 261-265.]); Martak et al. (2009[Martak, F., Onggo, D., Ismunandar, Nugroho, A. A., Mufti, N. & Yamin, B. M. (2009). Curr. Res. Chem. 1, 1-7.]); Hernández-Molina et al. (2001[Hernández-Molina, M., Lorenzo-Luis, P. A. & Ruiz-Pénez, C. (2001). CrystEngComm, 16, 1-4.]); Zhao et al. (2004[Zhao, W., Fan, J., Okamura, T. A., Sun, W. Y. & Veyama, N. (2004). J. Solid State Chem. 177, 2358-2365.]). For C—O distances in oxalate anions, see: Marinescu et al. (2000[Marinescu, G., Andruh, M., Lescouëzec, R., Muňoz, M. C., Cano, J., Lloret, F. & Julve, M. (2000). New J. Chem. 24, 527-536.]). For geometric parameters of the 4-amino­pyridinium cation, see: Fun et al. (2008[Fun, H.-K., Jebas, S. R. & Sinthiya, A. (2008). Acta Cryst. E64, o697-o698.], 2009[Fun, H.-K., John, J., Jebas, S. R. & Balasubramanian, T. (2009). Acta Cryst. E65, o748-o749.], 2010[Fun, H.-K., Hemamalini, M. & Rajakannan, V. (2010). Acta Cryst. E66, o2108.]); Jebas et al. (2009[Jebas, S. R., Sinthiya, A., Ravindran Durai Nayagam, B., Schollmeyer, D. & Raj, S. A. C. (2009). Acta Cryst. E65, m521.]); Quah et al. (2008[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878-o1879.]); Ramesh et al. (2010[Ramesh, P., Akalya, R., Chandramohan, A. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1000.]); Rotondo et al. (2009[Rotondo, A., Bruno, G., Messina, F. & Nicoló, F. (2009). Acta Cryst. E65, m1203-m1204.]); Pan et al. (2008[Pan, Z.-C., Zhang, K.-L. & Ng, S. W. (2008). Acta Cryst. E64, m221.]). For discussion of hydrogen bonding, see: Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]); Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H7N2)[Cr(C2O4)2(H2O)2]·H2O

  • Mr = 377.21

  • Orthorhombic, P n a 21

  • a = 21.102 (4) Å

  • b = 9.487 (3) Å

  • c = 7.226 (2) Å

  • V = 1446.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 298 K

  • 0.54 × 0.18 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.832, Tmax = 0.903

  • 3729 measured reflections

  • 3150 independent reflections

  • 2857 reflections with I > 2σ(I)

  • Rint = 0.017

  • 2 standard reflections every 120 min intensity decay: 2.9%

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.04

  • 3150 reflections

  • 261 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1447 Friedel pairs

  • Flack parameter: 0.000 (16)

Table 1
Selected bond lengths (Å)

Cr1—O1 1.9636 (15)
Cr1—O4 1.9658 (15)
Cr1—O2 1.9715 (16)
Cr1—O3 1.9810 (16)
Cr1—OW1 1.9847 (17)
Cr1—OW2 2.0079 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW3—HW31⋯O8i 0.78 (4) 2.06 (4) 2.823 (3) 167 (4)
OW3—HW32⋯O8ii 0.93 (4) 1.93 (4) 2.843 (3) 169 (4)
OW2—HW21⋯O7iii 0.89 (4) 1.78 (4) 2.640 (3) 161 (3)
OW2—HW22⋯O9iv 0.74 (4) 2.07 (4) 2.784 (3) 162 (4)
OW1—HW11⋯OW3v 0.90 (4) 1.67 (4) 2.572 (3) 172 (4)
OW1—HW12⋯O10vi 0.76 (5) 2.01 (5) 2.745 (3) 162 (5)
N2—H2⋯O10vii 0.93 (4) 2.01 (4) 2.940 (4) 179 (4)
N1—H1⋯O3 1.00 (4) 2.27 (4) 3.061 (3) 135 (4)
N1—H1⋯O9vi 1.00 (4) 2.22 (4) 2.974 (3) 131 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) [-x, -y+1, z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y, z-1; (v) x, y-1, z; (vi) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [-x-1, -y, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

It is well established that the strategy of utilizing transition metals with versatile multidentate ligands like oxalate anions affords various structural topologies (Tang et al., 2002; Martak et al., 2009; Hernández-Molina et al., 2001; Zhao et al., 2004). In this article, we describe the crystal structure of a new chromium(III) salt, (C5H7N2)[Cr(C2O4)2(H2O)2].H2O, containing oxalate (ox) anions which act as chelating ligands.

The structure of the title compound consists of discrete [Cr(C2O4)2(H2O)2]- mononuclear anions, 4-aminopyridinium cations and uncoordinated water molecules (Fig. 1). In the [Cr(C2O4)2(H2O)2]- anion, the CrIII atom is six-coordinated in a slightly distorted octahedral coordination environment defined by two chelating bidentate oxalate anions and two water molecules in trans position. The expected 90° bond angles vary from 82.13 (6)° to 101.02 (6)°, and the ideal 180° bond angles vary from 175.74 (7)° to 178.68 (8)°. The four Cr—O(ox) bond lengths are different and slightly shorter than the Cr—O(water) bond lengths. This situation was previously observed in homologous salts involving quinolinium (C9H8N)+ and 4-dimethylaminopyridinium (C7H11N2)+ counter cations (Bélombé et al., 2009; Nenwa et al., 2010). The C—C bond lengths in the oxalate ligand are as expected for single C—C bonds [1.553 (3) and 1.558 (3) Å for C1—C2 and C3—C4, respectively]. The bond length values of the peripheral and inner C—O bonds compare well with those reported for other oxalate complexes (Marinescu et al., 2000), the shorter values being due to the greater double bond character of the free C—O bonds. The uncoordinated 4-aminopyridinium cations are located between the anions (Fig. 2), their geometric parameters do not show unusual features, they are in accordance with those previously reported (Fun et al., 2008, 2009, 2010; Jebas et al., 2009; Quah et al., 2008; Ramesh et al., 2010; Rotondo et al., 2009; Pan et al., 2008).

The crystal structure is stabilized by strong intermolecular hydrogen bonds (Blessing, 1986; Brown, 1976). (C5H7N2)+ and [Cr(C2O4)2(H2O)2]- are connected via N—H···O hydrogen bonds that link the amino N2—H2 group to the free O10 oxalato O atoms. The uncoordinated water molecule functions as both acceptor and donor while the coordinated water molecules function only as donors. Thus, all the constituents of (C5H7N2)[Cr(C2O4)2(H2O)2].H2O are connected to form a three-dimensional structure. Furthermore, ππ interactions between adjacent pyridine rings help to stabilize the crystal packing, the closest distance between two pyridine mean planes being 3.613 (1) Å (Fig. 3).

Related literature top

For the structural characterization of salts containing the [Cr(C2O4)2(H2O)2]- anion with various counter-cations, see: Bélombé et al. (2009); Nenwa et al. (2010). For oxalate coordination modes, see: Tang et al. (2002); Martak et al. (2009); Hernández-Molina et al. (2001); Zhao et al. (2004). For C—O distances in oxalate anions, see: Marinescu et al. (2000). For geometric parameters of the 4-aminopyridinium cation, see: Fun et al. (2008, 2009, 2010); Jebas et al. (2009); Quah et al. (2008); Ramesh et al. (2010); Rotondo et al. (2009); Pan et al. (2008). For discussion of hydrogen bonding, see: Blessing (1986); Brown (1976).

Experimental top

Aqueous solutions of oxalic acid dihydrate, H2C2O4.2H2O (2 mmol), and 4-aminopyridine (1 mmol) were added to Cr(NO3)3.9H2O (1 mmol) dissolved in 10 mL of water under continuous stirring at 323K. Slow evaporation of the resultant solution led to violet single crystals suitable for X-ray diffraction.

Refinement top

The hydrogen atoms were located in difference Fourier maps. Their displacement parameters were refined isotropically.

Structure description top

It is well established that the strategy of utilizing transition metals with versatile multidentate ligands like oxalate anions affords various structural topologies (Tang et al., 2002; Martak et al., 2009; Hernández-Molina et al., 2001; Zhao et al., 2004). In this article, we describe the crystal structure of a new chromium(III) salt, (C5H7N2)[Cr(C2O4)2(H2O)2].H2O, containing oxalate (ox) anions which act as chelating ligands.

The structure of the title compound consists of discrete [Cr(C2O4)2(H2O)2]- mononuclear anions, 4-aminopyridinium cations and uncoordinated water molecules (Fig. 1). In the [Cr(C2O4)2(H2O)2]- anion, the CrIII atom is six-coordinated in a slightly distorted octahedral coordination environment defined by two chelating bidentate oxalate anions and two water molecules in trans position. The expected 90° bond angles vary from 82.13 (6)° to 101.02 (6)°, and the ideal 180° bond angles vary from 175.74 (7)° to 178.68 (8)°. The four Cr—O(ox) bond lengths are different and slightly shorter than the Cr—O(water) bond lengths. This situation was previously observed in homologous salts involving quinolinium (C9H8N)+ and 4-dimethylaminopyridinium (C7H11N2)+ counter cations (Bélombé et al., 2009; Nenwa et al., 2010). The C—C bond lengths in the oxalate ligand are as expected for single C—C bonds [1.553 (3) and 1.558 (3) Å for C1—C2 and C3—C4, respectively]. The bond length values of the peripheral and inner C—O bonds compare well with those reported for other oxalate complexes (Marinescu et al., 2000), the shorter values being due to the greater double bond character of the free C—O bonds. The uncoordinated 4-aminopyridinium cations are located between the anions (Fig. 2), their geometric parameters do not show unusual features, they are in accordance with those previously reported (Fun et al., 2008, 2009, 2010; Jebas et al., 2009; Quah et al., 2008; Ramesh et al., 2010; Rotondo et al., 2009; Pan et al., 2008).

The crystal structure is stabilized by strong intermolecular hydrogen bonds (Blessing, 1986; Brown, 1976). (C5H7N2)+ and [Cr(C2O4)2(H2O)2]- are connected via N—H···O hydrogen bonds that link the amino N2—H2 group to the free O10 oxalato O atoms. The uncoordinated water molecule functions as both acceptor and donor while the coordinated water molecules function only as donors. Thus, all the constituents of (C5H7N2)[Cr(C2O4)2(H2O)2].H2O are connected to form a three-dimensional structure. Furthermore, ππ interactions between adjacent pyridine rings help to stabilize the crystal packing, the closest distance between two pyridine mean planes being 3.613 (1) Å (Fig. 3).

For the structural characterization of salts containing the [Cr(C2O4)2(H2O)2]- anion with various counter-cations, see: Bélombé et al. (2009); Nenwa et al. (2010). For oxalate coordination modes, see: Tang et al. (2002); Martak et al. (2009); Hernández-Molina et al. (2001); Zhao et al. (2004). For C—O distances in oxalate anions, see: Marinescu et al. (2000). For geometric parameters of the 4-aminopyridinium cation, see: Fun et al. (2008, 2009, 2010); Jebas et al. (2009); Quah et al. (2008); Ramesh et al. (2010); Rotondo et al. (2009); Pan et al. (2008). For discussion of hydrogen bonding, see: Blessing (1986); Brown (1976).

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : The asymmetric unit of (C5H7N2)[Cr(C2O4)2(H2O)2].H2O. Thermal displacement parameters are drawn at the 50% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. : Projection of the (C5H7N2)[Cr(C2O4)2(H2O)2].H2O structure along the c axis.
[Figure 3] Fig. 3. : Perspective view showing the ππ interactions between adjacent 4-aminopyridinium groups. [Cr(C2O4)2(H2O)2]- anions and uncoordinated water molecules have been omitted for clarity.
4-Aminopyridinium trans-diaquadioxalatochromate(III) monohydrate top
Crystal data top
(C5H7N2)[Cr(C2O4)2(H2O)2]·H2OF(000) = 772
Mr = 377.21Dx = 1.732 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 21.102 (4) Åθ = 10–15°
b = 9.487 (3) ŵ = 0.85 mm1
c = 7.226 (2) ÅT = 298 K
V = 1446.7 (7) Å3Prism, violet
Z = 40.54 × 0.18 × 0.12 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2857 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.0°, θmin = 2.4°
ω/2θ scansh = 261
Absorption correction: ψ scan
(North et al., 1968)
k = 112
Tmin = 0.832, Tmax = 0.903l = 99
3729 measured reflections2 standard reflections every 120 min
3150 independent reflections intensity decay: 2.9%
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.1566P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.30 e Å3
3150 reflectionsΔρmin = 0.31 e Å3
261 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0022 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1447 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.000 (16)
Crystal data top
(C5H7N2)[Cr(C2O4)2(H2O)2]·H2OV = 1446.7 (7) Å3
Mr = 377.21Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 21.102 (4) ŵ = 0.85 mm1
b = 9.487 (3) ÅT = 298 K
c = 7.226 (2) Å0.54 × 0.18 × 0.12 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2857 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.832, Tmax = 0.9032 standard reflections every 120 min
3729 measured reflections intensity decay: 2.9%
3150 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.066Δρmax = 0.30 e Å3
S = 1.04Δρmin = 0.31 e Å3
3150 reflectionsAbsolute structure: Flack (1983), 1447 Friedel pairs
261 parametersAbsolute structure parameter: 0.000 (16)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.196274 (13)0.09444 (3)0.00116 (5)0.01985 (9)
O90.19814 (7)0.26620 (15)0.5002 (3)0.0295 (3)
O30.27673 (7)0.09078 (16)0.1400 (2)0.0262 (3)
O10.11408 (7)0.10787 (17)0.1273 (2)0.0264 (3)
OW10.17053 (9)0.08746 (18)0.1118 (2)0.0283 (3)
O40.16685 (7)0.19731 (16)0.2188 (2)0.0248 (3)
OW20.22205 (8)0.27650 (18)0.1212 (2)0.0295 (3)
O70.17687 (8)0.09782 (17)0.4830 (3)0.0340 (4)
O20.22078 (7)0.00965 (16)0.2262 (2)0.0243 (3)
O100.31987 (7)0.17303 (18)0.4006 (2)0.0337 (4)
O80.06261 (8)0.0179 (2)0.3698 (3)0.0430 (5)
C30.27494 (10)0.1550 (2)0.2972 (3)0.0228 (4)
C10.17435 (10)0.0316 (2)0.3382 (3)0.0222 (4)
C40.20797 (10)0.2123 (2)0.3479 (3)0.0218 (4)
C20.11043 (10)0.0354 (2)0.2779 (3)0.0252 (4)
C60.42595 (16)0.1102 (4)0.0242 (6)0.0625 (10)
C80.51027 (14)0.1061 (3)0.0042 (7)0.0524 (7)
N10.40576 (12)0.0224 (3)0.0161 (6)0.0657 (8)
N20.59497 (12)0.0580 (3)0.0089 (8)0.0750 (10)
C90.53327 (11)0.0317 (3)0.0117 (5)0.0413 (5)
C70.44661 (16)0.1296 (4)0.0020 (8)0.0726 (10)
OW30.06036 (9)0.9143 (3)0.2640 (3)0.0449 (5)
C50.48794 (15)0.1402 (3)0.0211 (7)0.0597 (8)
H80.5357 (18)0.181 (4)0.003 (6)0.079 (11)*
H20.6222 (18)0.014 (4)0.026 (6)0.076 (12)*
H10.359 (2)0.038 (5)0.028 (7)0.098 (14)*
HW310.0613 (16)0.955 (4)0.358 (6)0.047 (10)*
HW210.2581 (18)0.323 (4)0.100 (5)0.068 (11)*
HW110.1303 (19)0.085 (4)0.155 (5)0.058 (10)*
H60.3942 (19)0.183 (4)0.031 (6)0.079 (12)*
HW320.022 (2)0.948 (4)0.220 (6)0.077 (12)*
H50.5032 (19)0.233 (4)0.043 (5)0.077 (12)*
H30.606 (2)0.147 (5)0.010 (7)0.094 (13)*
H70.428 (2)0.226 (5)0.001 (8)0.110 (15)*
HW120.180 (2)0.146 (5)0.045 (7)0.094 (16)*
HW220.2234 (18)0.269 (4)0.223 (6)0.070 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.01992 (14)0.02436 (15)0.01528 (14)0.00098 (11)0.00098 (14)0.00316 (16)
O90.0352 (7)0.0347 (7)0.0187 (6)0.0031 (6)0.0000 (7)0.0086 (10)
O30.0232 (7)0.0314 (8)0.0241 (8)0.0029 (6)0.0011 (6)0.0063 (7)
O10.0233 (7)0.0359 (9)0.0200 (7)0.0051 (6)0.0011 (6)0.0079 (6)
OW10.0317 (9)0.0281 (8)0.0253 (8)0.0011 (7)0.0057 (7)0.0039 (6)
O40.0227 (7)0.0314 (7)0.0203 (7)0.0045 (6)0.0026 (5)0.0064 (6)
OW20.0336 (8)0.0330 (9)0.0218 (8)0.0075 (7)0.0028 (7)0.0014 (7)
O70.0371 (8)0.0425 (8)0.0225 (9)0.0094 (7)0.0013 (9)0.0108 (8)
O20.0229 (7)0.0299 (8)0.0202 (6)0.0049 (6)0.0002 (6)0.0026 (6)
O100.0303 (8)0.0364 (9)0.0344 (9)0.0051 (7)0.0134 (7)0.0095 (7)
O80.0265 (9)0.0681 (13)0.0345 (9)0.0075 (9)0.0089 (7)0.0186 (9)
C30.0259 (10)0.0191 (10)0.0234 (10)0.0012 (8)0.0037 (8)0.0008 (8)
C10.0266 (10)0.0228 (9)0.0172 (9)0.0029 (8)0.0010 (8)0.0013 (8)
C40.0267 (10)0.0201 (9)0.0184 (9)0.0004 (8)0.0002 (8)0.0006 (8)
C20.0250 (10)0.0308 (11)0.0198 (10)0.0021 (9)0.0015 (8)0.0043 (8)
C60.0454 (16)0.075 (2)0.067 (3)0.0191 (16)0.0159 (18)0.013 (2)
C80.0456 (14)0.0354 (13)0.0761 (19)0.0017 (11)0.001 (2)0.0092 (18)
N10.0334 (12)0.086 (2)0.077 (2)0.0050 (13)0.0007 (15)0.025 (2)
N20.0337 (11)0.0442 (14)0.147 (3)0.0059 (11)0.019 (2)0.022 (2)
C90.0334 (11)0.0362 (12)0.0542 (15)0.0001 (9)0.0069 (14)0.0041 (15)
C70.0562 (18)0.0569 (18)0.105 (3)0.0222 (15)0.009 (3)0.018 (3)
OW30.0304 (10)0.0753 (15)0.0290 (9)0.0014 (10)0.0009 (8)0.0084 (10)
C50.0484 (15)0.0403 (14)0.090 (3)0.0076 (12)0.0156 (19)0.002 (2)
Geometric parameters (Å, º) top
Cr1—O11.9636 (15)C3—C41.558 (3)
Cr1—O41.9658 (15)C1—C21.553 (3)
Cr1—O21.9715 (16)C6—N11.330 (5)
Cr1—O31.9810 (16)C6—C51.339 (5)
Cr1—OW11.9847 (17)C6—H60.96 (4)
Cr1—OW22.0079 (18)C8—C71.362 (4)
O9—C41.231 (3)C8—C91.396 (4)
O3—C31.289 (3)C8—H80.89 (4)
O1—C21.290 (3)N1—C71.337 (5)
OW1—HW110.91 (4)N1—H11.00 (5)
OW1—HW120.77 (5)N2—C91.326 (3)
O4—C41.282 (2)N2—H20.92 (4)
OW2—HW210.89 (4)N2—H30.88 (4)
OW2—HW220.74 (4)C9—C51.407 (4)
O7—C11.222 (3)C7—H71.00 (5)
O2—C11.287 (3)OW3—HW310.78 (4)
O10—C31.219 (3)OW3—HW320.93 (4)
O8—C21.219 (3)C5—H50.95 (4)
O1—Cr1—O493.67 (6)O2—C1—C2114.75 (17)
O1—Cr1—O283.18 (6)O9—C4—O4125.64 (19)
O4—Cr1—O2176.78 (6)O9—C4—C3120.54 (18)
O1—Cr1—O3175.74 (7)O4—C4—C3113.82 (16)
O4—Cr1—O382.13 (6)O8—C2—O1125.6 (2)
O2—Cr1—O3101.02 (6)O8—C2—C1120.68 (19)
O1—Cr1—OW190.32 (7)O1—C2—C1113.75 (18)
O4—Cr1—OW190.73 (7)N1—C6—C5120.9 (3)
O2—Cr1—OW188.59 (7)N1—C6—H6117 (2)
O3—Cr1—OW190.43 (7)C5—C6—H6122 (2)
O1—Cr1—OW289.02 (7)C7—C8—C9119.8 (3)
O4—Cr1—OW290.45 (7)C7—C8—H8118 (2)
O2—Cr1—OW290.20 (8)C9—C8—H8123 (2)
O3—Cr1—OW290.31 (7)C6—N1—C7121.1 (3)
OW1—Cr1—OW2178.68 (8)C6—N1—H1117 (3)
C3—O3—Cr1114.84 (14)C7—N1—H1122 (3)
C2—O1—Cr1114.20 (13)C9—N2—H2118 (2)
Cr1—OW1—HW11112 (2)C9—N2—H3117 (3)
Cr1—OW1—HW12107 (4)H2—N2—H3123 (4)
HW11—OW1—HW12119 (4)N2—C9—C8121.2 (2)
C4—O4—Cr1115.46 (13)N2—C9—C5122.0 (3)
Cr1—OW2—HW21126 (2)C8—C9—C5116.8 (3)
Cr1—OW2—HW22111 (3)N1—C7—C8120.7 (3)
HW21—OW2—HW22100 (4)N1—C7—H7116 (3)
C1—O2—Cr1113.56 (13)C8—C7—H7123 (3)
O10—C3—O3125.7 (2)HW31—OW3—HW3298 (4)
O10—C3—C4120.81 (18)C6—C5—C9120.6 (3)
O3—C3—C4113.51 (17)C6—C5—H5122 (2)
O7—C1—O2126.0 (2)C9—C5—H5117 (2)
O7—C1—C2119.22 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW3—HW31···O8i0.78 (4)2.06 (4)2.823 (3)167 (4)
OW3—HW32···O8ii0.93 (4)1.93 (4)2.843 (3)169 (4)
OW2—HW21···O7iii0.89 (4)1.78 (4)2.640 (3)161 (3)
OW2—HW22···O9iv0.74 (4)2.07 (4)2.784 (3)162 (4)
OW1—HW11···OW3v0.90 (4)1.67 (4)2.572 (3)172 (4)
OW1—HW12···O10vi0.76 (5)2.01 (5)2.745 (3)162 (5)
N2—H2···O10vii0.93 (4)2.01 (4)2.940 (4)179 (4)
N1—H1···O31.00 (4)2.27 (4)3.061 (3)135 (4)
N1—H1···O9vi1.00 (4)2.22 (4)2.974 (3)131 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x, y, z1; (v) x, y1, z; (vi) x1/2, y1/2, z1/2; (vii) x1, y, z1/2.

Experimental details

Crystal data
Chemical formula(C5H7N2)[Cr(C2O4)2(H2O)2]·H2O
Mr377.21
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)21.102 (4), 9.487 (3), 7.226 (2)
V3)1446.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.54 × 0.18 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.832, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
3729, 3150, 2857
Rint0.017
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.04
No. of reflections3150
No. of parameters261
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.30, 0.31
Absolute structureFlack (1983), 1447 Friedel pairs
Absolute structure parameter0.000 (16)

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cr1—O11.9636 (15)Cr1—O31.9810 (16)
Cr1—O41.9658 (15)Cr1—OW11.9847 (17)
Cr1—O21.9715 (16)Cr1—OW22.0079 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW3—HW31···O8i0.78 (4)2.06 (4)2.823 (3)167 (4)
OW3—HW32···O8ii0.93 (4)1.93 (4)2.843 (3)169 (4)
OW2—HW21···O7iii0.89 (4)1.78 (4)2.640 (3)161 (3)
OW2—HW22···O9iv0.74 (4)2.07 (4)2.784 (3)162 (4)
OW1—HW11···OW3v0.90 (4)1.67 (4)2.572 (3)172 (4)
OW1—HW12···O10vi0.76 (5)2.01 (5)2.745 (3)162 (5)
N2—H2···O10vii0.93 (4)2.01 (4)2.940 (4)179 (4)
N1—H1···O31.00 (4)2.27 (4)3.061 (3)135 (4)
N1—H1···O9vi1.00 (4)2.22 (4)2.974 (3)131 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x, y, z1; (v) x, y1, z; (vi) x1/2, y1/2, z1/2; (vii) x1, y, z1/2.
 

References

First citationBélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. 224, 239–240.  Google Scholar
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M. & Rajakannan, V. (2010). Acta Cryst. E66, o2108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R. & Sinthiya, A. (2008). Acta Cryst. E64, o697–o698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., John, J., Jebas, S. R. & Balasubramanian, T. (2009). Acta Cryst. E65, o748–o749.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHernández-Molina, M., Lorenzo-Luis, P. A. & Ruiz-Pénez, C. (2001). CrystEngComm, 16, 1–4.  Google Scholar
First citationJebas, S. R., Sinthiya, A., Ravindran Durai Nayagam, B., Schollmeyer, D. & Raj, S. A. C. (2009). Acta Cryst. E65, m521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMarinescu, G., Andruh, M., Lescouëzec, R., Muňoz, M. C., Cano, J., Lloret, F. & Julve, M. (2000). New J. Chem. 24, 527–536.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartak, F., Onggo, D., Ismunandar, Nugroho, A. A., Mufti, N. & Yamin, B. M. (2009). Curr. Res. Chem. 1, 1–7.  CrossRef CAS Google Scholar
First citationNenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPan, Z.-C., Zhang, K.-L. & Ng, S. W. (2008). Acta Cryst. E64, m221.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878–o1879.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamesh, P., Akalya, R., Chandramohan, A. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1000.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRotondo, A., Bruno, G., Messina, F. & Nicoló, F. (2009). Acta Cryst. E65, m1203–m1204.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, L. F., Wang, Z. H., Chai, J. F. & Wang, J. T. (2002). J. Chem. Crystallogr. 32, 261–265.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, W., Fan, J., Okamura, T. A., Sun, W. Y. & Veyama, N. (2004). J. Solid State Chem. 177, 2358–2365.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds