metal-organic compounds
trans-Carbonylchloridobis[tris(4-methoxyphenyl)phosphane-κP]rhodium(I)
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: 2011009426@ufs4life.ac.za
The title complex, [RhCl(C21H21O3P)2(CO)], is a rhodium analogue to Vaska's complex with para-methoxy substituents on the six phosphanyl–aryl units. Two independent molecules are present in the with their metal atoms both located on an inversion centre. This causes the chloride and carbonyl ligands to exhibit a positional disorder in a 0.5:0.5 ratio. The two RhI atoms exhibit a distorted square-planar geometry. There are a few weak intramolecular C—H⋯X interactions (X = O, Cl). Interestingly, no significant intermolecular interactions are found between the two independent molecules.
Related literature
For background to Vaska's complex, see: Angoletta (1959); Vaska & Di Luzio (1961). For related literature on rhodium Vaska complexes, see: Basson et al. (1990); Clarke et al. (2002); Kemp et al. (1995); Rheingold & Geib (1987); Roodt et al. (2003); Wilson et al. (2002). For similar complexes, see: Burgoyne et al. (2010), Meijboom et al. (2006), Monge et al. (1983); Otto et al. (1999). Synthetic details are given in McCleverty & Wilkinson (1990).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811046150/wm2548sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811046150/wm2548Isup2.hkl
Compound (I) was synthesized by slowly adding 4 equivalents of tri(4-methoxyphenyl)phosphane to a dimethyl formamide solution of [RhCl(CO)2]2 (McCleverty & Wilkinson, 1990). The product was precipitated with ice water and isolated by filtration. Crystallization was performed by dissolving the complex in a small amount of dichloromethane which was then carefully layered with approximately 5 volumetric equivalents of hexane. The mixture was stored in a loosely closed vessel, from which yellow crystals precipitated.
The aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic protons and Uiso(H) = 1.5Ueq(C) for methyl protons. The disordered Cl and CO ligands were constrained to have occupancies of 0.5 at each of the two positions. The highest residual electron density was located 0.90 Å from Rh1 and was essentially meaningless. The deepest hole was located 1.00 Å from Rh1.
Vaska's complex was first synthesized by Angoletta (1959) and later correctly formulated as trans-[IrCl(CO)(PPh3)2] (Vaska & Di Luzio, 1961). This compound has been used in various catalytic processes and it or its analogues are often employed as model compounds (Rheingold & Geib, 1987; Basson et al., 1990; Kemp et al., 1995; Roodt et al., 2003).
Various 'Vaska complexes' have been synthesized, exploring different metals but especially introducing different substituents on the phosphane ligands. These modifications have an impact on the
around the metal (Clarke et al., 2002; Wilson et al., 2002), but in the case of para-substituted triaryl the effect is purely electronic (Monge et al., 1983; Otto et al., 1999; Meijboom et al., 2006; Burgoyne et al., 2010). Since only limited data are available on this kind of complexes, we have prepared the rhodium analogue (I), [RhCl(C21H21O3P)2(CO)], bearing relatively electron-rich tri(para-methoxyphenyl)-phosphane ligands.Two independent half-molecules are present in the
of compound (I), in each case with the RhI atoms located on inversion centres. The metal atoms display a distorted square planar geometry with the phosphane ligands located in mutual trans-positions (Fig. 1). Selected bond lenghts and angles are presented in Table 1.The carbonyl moiety has a slightly bent geometry, with Rh—C—O angles of 173.2 (14)° and 176.8 (16)° for the two molecules, respectively. In solution infrared spectroscopy only one signal was observed for the carbonyl ligand at 1974 cm-1. Also in solid state infrared spectroscopy of the amorphous material, only one signal was observed at 1964 cm-1. Only when a crystalline sample was analysed, two signals were observed at 1956 and 1973 cm-1, showing the stretching vibrations of both the independent carbonyl ligands. In 31P NMR the signal for the phospine ligands was observed at 24.95 ppm with a JRh—P of 124.5 Hz, which is in line with analogous complexes.
The Rh—P bond lengths fall in the range of other, analogous rhodium Vaska complexes. In contrast, the bonds of the metal to the carbonyl and chlorido ligands are significantly influenced by the electron-donating phosphane ligands. The bond to the chlorido ligand is the longest reported for this kind of complexes bearing triaryl
The same influence is also notably present in the bonding of the carbonyl ligand. Its bond to the rhodium atom is quite short, which indicates significant metal-to-ligand electron donation. As a consequence, the C—O bond is lengthened.There are a few weak intramolecular C—H···X interactions (X = O, Cl), which are listed in Table 2. Interestingly, no intermolecular interactions are found between the two independent molecules.
For background to Vaska's complex, see: Angoletta (1959); Vaska & Di Luzio (1961). For related literature on rhodium Vaska complexes, see: Basson et al. (1990); Clarke et al. (2002); Kemp et al. (1995); Rheingold & Geib (1987); Roodt et al. (2003); Wilson et al. (2002). For similar complexes, see: Burgoyne et al. (2010), Meijboom et al. (2006), Monge et al. (1983); Otto et al. (1999). Synthetic details were given in McCleverty & Wilkinson (1990).
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).[RhCl(C21H21O3P)2(CO)] | Z = 2 |
Mr = 871.07 | F(000) = 896 |
Triclinic, P1 | Dx = 1.474 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8350 (4) Å | Cell parameters from 6500 reflections |
b = 12.3151 (8) Å | θ = 2.9–28.1° |
c = 21.0591 (13) Å | µ = 0.64 mm−1 |
α = 90.995 (2)° | T = 100 K |
β = 99.591 (2)° | Cuboid, yellow |
γ = 101.220 (2)° | 0.24 × 0.16 × 0.10 mm |
V = 1962.7 (2) Å3 |
Bruker APEXII CCD diffractometer | 9327 independent reflections |
Radiation source: sealed tube | 6401 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.098 |
Detector resolution: 512 pixels mm-1 | θmax = 28°, θmin = 2.0° |
φ and ω scans | h = −10→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −15→16 |
Tmin = 0.887, Tmax = 0.937 | l = −27→27 |
26016 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0711P)2] where P = (Fo2 + 2Fc2)/3 |
9327 reflections | (Δ/σ)max = 0.003 |
517 parameters | Δρmax = 2.45 e Å−3 |
0 restraints | Δρmin = −1.17 e Å−3 |
[RhCl(C21H21O3P)2(CO)] | γ = 101.220 (2)° |
Mr = 871.07 | V = 1962.7 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.8350 (4) Å | Mo Kα radiation |
b = 12.3151 (8) Å | µ = 0.64 mm−1 |
c = 21.0591 (13) Å | T = 100 K |
α = 90.995 (2)° | 0.24 × 0.16 × 0.10 mm |
β = 99.591 (2)° |
Bruker APEXII CCD diffractometer | 9327 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 6401 reflections with I > 2σ(I) |
Tmin = 0.887, Tmax = 0.937 | Rint = 0.098 |
26016 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 1.04 | Δρmax = 2.45 e Å−3 |
9327 reflections | Δρmin = −1.17 e Å−3 |
517 parameters |
Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 30 s/frame. A total of 1318 frames was collected with a frame width of 0.5° covering up to θ=28.00° with 98.3% completeness accomplished. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Rh1 | 0 | 0.5 | 0.5 | 0.01620 (12) | |
Rh2 | 0 | 0 | 0 | 0.01681 (12) | |
P1 | 0.17881 (11) | 0.45129 (8) | 0.59018 (4) | 0.0169 (2) | |
P2 | 0.19028 (11) | 0.15093 (8) | −0.03218 (4) | 0.0169 (2) | |
C1 | −0.0559 (14) | 0.3657 (10) | 0.4714 (6) | 0.034 (3) | 0.5 |
C2 | 0.3688 (4) | 0.5602 (3) | 0.62055 (16) | 0.0169 (8) | |
C3 | 0.4759 (4) | 0.6069 (3) | 0.57726 (17) | 0.0196 (8) | |
H023 | 0.4495 | 0.579 | 0.5336 | 0.023* | |
C4 | 0.6194 (4) | 0.6927 (3) | 0.59619 (18) | 0.0210 (8) | |
H035 | 0.6927 | 0.7215 | 0.5663 | 0.025* | |
C5 | 0.6553 (5) | 0.7363 (3) | 0.65925 (19) | 0.0228 (8) | |
C6 | 0.5486 (5) | 0.6916 (3) | 0.70302 (18) | 0.0230 (8) | |
H030 | 0.5727 | 0.7214 | 0.7462 | 0.028* | |
C7 | 0.4080 (4) | 0.6042 (3) | 0.68391 (17) | 0.0198 (8) | |
H047 | 0.3372 | 0.5738 | 0.7143 | 0.024* | |
C8 | 0.8885 (6) | 0.8790 (4) | 0.6380 (2) | 0.0418 (12) | |
H04A | 0.9481 | 0.8272 | 0.6187 | 0.063* | |
H04B | 0.9769 | 0.9412 | 0.6604 | 0.063* | |
H04C | 0.8091 | 0.9069 | 0.604 | 0.063* | |
C9 | 0.2703 (4) | 0.3274 (3) | 0.58447 (16) | 0.0179 (8) | |
C10 | 0.4508 (4) | 0.3317 (3) | 0.58604 (16) | 0.0184 (8) | |
H048 | 0.5295 | 0.4016 | 0.5905 | 0.022* | |
C11 | 0.5171 (5) | 0.2356 (3) | 0.58120 (17) | 0.0221 (8) | |
H036 | 0.64 | 0.2404 | 0.5823 | 0.027* | |
C12 | 0.4043 (5) | 0.1327 (3) | 0.57470 (17) | 0.0220 (8) | |
C13 | 0.2238 (5) | 0.1265 (3) | 0.57155 (18) | 0.0233 (8) | |
H022 | 0.1452 | 0.0565 | 0.5662 | 0.028* | |
C14 | 0.1590 (4) | 0.2230 (3) | 0.57627 (17) | 0.0222 (8) | |
H046 | 0.0355 | 0.2178 | 0.5739 | 0.027* | |
C15 | 0.3688 (6) | −0.0645 (3) | 0.5660 (2) | 0.0342 (10) | |
H05J | 0.3069 | −0.0728 | 0.6029 | 0.051* | |
H05K | 0.44 | −0.1216 | 0.5657 | 0.051* | |
H05L | 0.2822 | −0.0724 | 0.5259 | 0.051* | |
C16 | 0.0517 (4) | 0.4249 (3) | 0.65485 (16) | 0.0174 (8) | |
C17 | 0.0822 (4) | 0.3493 (3) | 0.70175 (17) | 0.0212 (8) | |
H034 | 0.1791 | 0.3132 | 0.7026 | 0.025* | |
C18 | −0.0271 (4) | 0.3261 (3) | 0.74719 (17) | 0.0210 (8) | |
H033 | −0.0038 | 0.2751 | 0.7793 | 0.025* | |
C19 | −0.1717 (4) | 0.3776 (3) | 0.74576 (17) | 0.0192 (8) | |
C20 | −0.1985 (4) | 0.4567 (3) | 0.70120 (17) | 0.0190 (8) | |
H043 | −0.2924 | 0.4951 | 0.7016 | 0.023* | |
C21 | −0.0880 (4) | 0.4794 (3) | 0.65610 (17) | 0.0197 (8) | |
H014 | −0.1077 | 0.5333 | 0.6254 | 0.024* | |
C22 | −0.4399 (4) | 0.3816 (4) | 0.78430 (18) | 0.0257 (9) | |
H04D | −0.4143 | 0.4615 | 0.7948 | 0.039* | |
H04E | −0.5113 | 0.3433 | 0.8143 | 0.039* | |
H04F | −0.5052 | 0.3664 | 0.7401 | 0.039* | |
C23 | −0.0457 (15) | −0.0644 (11) | −0.0774 (5) | 0.020 (2) | 0.5 |
C24 | 0.0810 (4) | 0.2656 (3) | −0.05056 (17) | 0.0174 (8) | |
C25 | 0.1519 (4) | 0.3536 (3) | −0.08578 (17) | 0.0196 (8) | |
H037 | 0.2597 | 0.353 | −0.1006 | 0.024* | |
C26 | 0.0674 (4) | 0.4416 (3) | −0.09933 (17) | 0.0184 (8) | |
H019 | 0.1175 | 0.5006 | −0.1232 | 0.022* | |
C27 | −0.0899 (4) | 0.4437 (3) | −0.07806 (17) | 0.0170 (7) | |
C28 | −0.1621 (4) | 0.3576 (3) | −0.04193 (17) | 0.0195 (8) | |
H044 | −0.2683 | 0.3594 | −0.0262 | 0.023* | |
C29 | −0.0769 (4) | 0.2694 (3) | −0.02936 (17) | 0.0172 (8) | |
H017 | −0.1276 | 0.2102 | −0.0057 | 0.021* | |
C30 | −0.1136 (5) | 0.6129 (3) | −0.12824 (19) | 0.0253 (9) | |
H05D | 0.0028 | 0.6508 | −0.1055 | 0.038* | |
H05E | −0.1928 | 0.6659 | −0.1347 | 0.038* | |
H05F | −0.102 | 0.5823 | −0.1702 | 0.038* | |
C31 | 0.2855 (4) | 0.1317 (3) | −0.10391 (17) | 0.0172 (8) | |
C32 | 0.1737 (4) | 0.1092 (3) | −0.16402 (17) | 0.0196 (8) | |
H021 | 0.0512 | 0.1087 | −0.1671 | 0.023* | |
C33 | 0.2403 (5) | 0.0879 (3) | −0.21875 (18) | 0.0239 (9) | |
H026 | 0.1636 | 0.0744 | −0.2593 | 0.029* | |
C34 | 0.4202 (5) | 0.0860 (3) | −0.21482 (18) | 0.0225 (8) | |
C35 | 0.5329 (4) | 0.1102 (3) | −0.15605 (17) | 0.0207 (8) | |
H016 | 0.6556 | 0.1114 | −0.153 | 0.025* | |
C36 | 0.4641 (4) | 0.1327 (3) | −0.10139 (17) | 0.0182 (8) | |
H041 | 0.5418 | 0.1493 | −0.0612 | 0.022* | |
C37 | 0.6495 (6) | 0.0500 (4) | −0.2687 (2) | 0.0389 (11) | |
H05A | 0.727 | 0.1218 | −0.2545 | 0.058* | |
H05B | 0.6674 | 0.0277 | −0.3116 | 0.058* | |
H05C | 0.6775 | −0.0058 | −0.2382 | 0.058* | |
C38 | 0.3798 (4) | 0.2067 (3) | 0.03055 (17) | 0.0178 (8) | |
C39 | 0.4737 (5) | 0.1321 (3) | 0.06249 (17) | 0.0224 (8) | |
H031 | 0.4463 | 0.0563 | 0.0479 | 0.027* | |
C40 | 0.6072 (5) | 0.1675 (3) | 0.11553 (18) | 0.0222 (8) | |
H054 | 0.6728 | 0.1167 | 0.136 | 0.027* | |
C41 | 0.6431 (4) | 0.2766 (3) | 0.13794 (17) | 0.0187 (8) | |
C42 | 0.5510 (4) | 0.3518 (3) | 0.10570 (18) | 0.0194 (8) | |
H018 | 0.5768 | 0.4274 | 0.1207 | 0.023* | |
C43 | 0.4228 (4) | 0.3165 (3) | 0.05225 (18) | 0.0190 (8) | |
H032 | 0.3633 | 0.3686 | 0.03 | 0.023* | |
C44 | 0.8474 (5) | 0.2447 (4) | 0.22982 (19) | 0.0304 (10) | |
H05G | 0.7578 | 0.1861 | 0.2427 | 0.046* | |
H05H | 0.922 | 0.2847 | 0.2684 | 0.046* | |
H05I | 0.9207 | 0.2117 | 0.2047 | 0.046* | |
O1 | −0.1082 (16) | 0.2772 (11) | 0.4481 (7) | 0.034 (3) | 0.5 |
O2 | 0.7890 (3) | 0.8233 (2) | 0.68280 (13) | 0.0293 (7) | |
O3 | 0.4817 (3) | 0.0430 (2) | 0.57075 (13) | 0.0283 (6) | |
O4 | −0.2777 (3) | 0.3427 (2) | 0.78963 (12) | 0.0237 (6) | |
O5 | −0.085 (2) | −0.1068 (14) | −0.1294 (5) | 0.037 (3) | 0.5 |
O6 | −0.1854 (3) | 0.5247 (2) | −0.09059 (12) | 0.0209 (6) | |
O7 | 0.4683 (4) | 0.0594 (3) | −0.27137 (13) | 0.0319 (7) | |
O8 | 0.7629 (3) | 0.3197 (2) | 0.19171 (12) | 0.0231 (6) | |
Cl1 | −0.0738 (4) | 0.3106 (4) | 0.4565 (2) | 0.0283 (11) | 0.5 |
Cl2 | −0.0659 (5) | −0.0881 (4) | −0.10676 (18) | 0.0247 (9) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.01540 (18) | 0.0208 (2) | 0.0135 (2) | 0.00573 (15) | 0.00244 (14) | 0.00556 (17) |
Rh2 | 0.01738 (18) | 0.0173 (2) | 0.0175 (2) | 0.00511 (15) | 0.00556 (15) | 0.00546 (17) |
P1 | 0.0156 (4) | 0.0228 (6) | 0.0141 (4) | 0.0068 (4) | 0.0039 (3) | 0.0060 (4) |
P2 | 0.0165 (4) | 0.0174 (5) | 0.0181 (5) | 0.0053 (4) | 0.0043 (3) | 0.0059 (4) |
C1 | 0.025 (4) | 0.048 (8) | 0.023 (4) | 0.003 (4) | −0.010 (3) | 0.010 (5) |
C2 | 0.0161 (15) | 0.021 (2) | 0.0156 (17) | 0.0075 (14) | 0.0034 (13) | 0.0050 (15) |
C3 | 0.0186 (16) | 0.025 (2) | 0.0161 (17) | 0.0070 (15) | 0.0041 (13) | −0.0002 (16) |
C4 | 0.0189 (16) | 0.024 (2) | 0.0234 (19) | 0.0066 (15) | 0.0090 (14) | 0.0037 (17) |
C5 | 0.0221 (17) | 0.021 (2) | 0.027 (2) | 0.0076 (15) | 0.0029 (15) | 0.0021 (17) |
C6 | 0.0269 (18) | 0.028 (2) | 0.0158 (18) | 0.0110 (16) | 0.0020 (14) | 0.0017 (16) |
C7 | 0.0192 (16) | 0.026 (2) | 0.0171 (17) | 0.0106 (15) | 0.0051 (14) | 0.0042 (16) |
C8 | 0.034 (2) | 0.033 (3) | 0.055 (3) | −0.0122 (19) | 0.019 (2) | −0.010 (2) |
C9 | 0.0193 (16) | 0.023 (2) | 0.0124 (16) | 0.0049 (14) | 0.0043 (13) | 0.0066 (15) |
C10 | 0.0205 (16) | 0.022 (2) | 0.0131 (17) | 0.0053 (14) | 0.0023 (13) | 0.0002 (15) |
C11 | 0.0219 (17) | 0.026 (2) | 0.0200 (18) | 0.0074 (15) | 0.0047 (14) | 0.0005 (17) |
C12 | 0.0310 (19) | 0.023 (2) | 0.0154 (17) | 0.0126 (16) | 0.0066 (15) | 0.0015 (16) |
C13 | 0.0254 (17) | 0.021 (2) | 0.0231 (19) | 0.0025 (15) | 0.0059 (15) | 0.0028 (17) |
C14 | 0.0172 (16) | 0.028 (2) | 0.0224 (19) | 0.0049 (15) | 0.0058 (14) | 0.0052 (17) |
C15 | 0.044 (2) | 0.020 (2) | 0.043 (3) | 0.0120 (19) | 0.011 (2) | 0.005 (2) |
C16 | 0.0170 (15) | 0.022 (2) | 0.0160 (17) | 0.0080 (14) | 0.0059 (13) | 0.0054 (15) |
C17 | 0.0199 (16) | 0.027 (2) | 0.0188 (18) | 0.0092 (15) | 0.0023 (14) | 0.0082 (17) |
C18 | 0.0200 (16) | 0.028 (2) | 0.0177 (18) | 0.0097 (15) | 0.0030 (14) | 0.0107 (16) |
C19 | 0.0170 (15) | 0.027 (2) | 0.0153 (17) | 0.0050 (15) | 0.0060 (13) | 0.0036 (16) |
C20 | 0.0174 (15) | 0.025 (2) | 0.0181 (18) | 0.0102 (15) | 0.0060 (13) | 0.0041 (16) |
C21 | 0.0191 (16) | 0.024 (2) | 0.0175 (18) | 0.0065 (15) | 0.0034 (13) | 0.0071 (16) |
C22 | 0.0178 (16) | 0.038 (3) | 0.025 (2) | 0.0091 (16) | 0.0084 (15) | 0.0062 (19) |
C23 | 0.018 (4) | 0.021 (6) | 0.020 (6) | 0.002 (4) | 0.008 (5) | 0.005 (5) |
C24 | 0.0195 (16) | 0.016 (2) | 0.0179 (17) | 0.0078 (14) | 0.0021 (13) | 0.0012 (15) |
C25 | 0.0163 (15) | 0.023 (2) | 0.0228 (19) | 0.0068 (14) | 0.0086 (13) | 0.0047 (16) |
C26 | 0.0185 (15) | 0.018 (2) | 0.0209 (18) | 0.0051 (14) | 0.0075 (14) | 0.0059 (16) |
C27 | 0.0197 (16) | 0.014 (2) | 0.0195 (18) | 0.0072 (14) | 0.0046 (13) | 0.0001 (15) |
C28 | 0.0168 (15) | 0.024 (2) | 0.0215 (18) | 0.0076 (14) | 0.0088 (14) | 0.0045 (16) |
C29 | 0.0173 (15) | 0.016 (2) | 0.0200 (18) | 0.0047 (14) | 0.0055 (13) | 0.0062 (15) |
C30 | 0.0275 (18) | 0.025 (2) | 0.028 (2) | 0.0104 (16) | 0.0100 (16) | 0.0112 (18) |
C31 | 0.0203 (16) | 0.0129 (19) | 0.0197 (18) | 0.0057 (14) | 0.0037 (14) | 0.0060 (15) |
C32 | 0.0174 (15) | 0.020 (2) | 0.0217 (19) | 0.0059 (14) | 0.0023 (14) | 0.0052 (16) |
C33 | 0.0270 (18) | 0.029 (2) | 0.0160 (18) | 0.0091 (16) | −0.0015 (14) | 0.0035 (17) |
C34 | 0.0291 (18) | 0.022 (2) | 0.0185 (18) | 0.0061 (16) | 0.0088 (15) | 0.0024 (16) |
C35 | 0.0207 (16) | 0.023 (2) | 0.0202 (19) | 0.0075 (15) | 0.0062 (14) | 0.0030 (16) |
C36 | 0.0194 (15) | 0.018 (2) | 0.0187 (18) | 0.0058 (14) | 0.0042 (13) | 0.0060 (15) |
C37 | 0.037 (2) | 0.057 (3) | 0.030 (2) | 0.018 (2) | 0.0184 (19) | −0.001 (2) |
C38 | 0.0184 (15) | 0.019 (2) | 0.0161 (17) | 0.0047 (14) | 0.0032 (13) | 0.0053 (15) |
C39 | 0.0273 (18) | 0.022 (2) | 0.0194 (19) | 0.0087 (16) | 0.0037 (15) | 0.0006 (16) |
C40 | 0.0239 (17) | 0.025 (2) | 0.0198 (18) | 0.0098 (16) | 0.0029 (14) | 0.0068 (17) |
C41 | 0.0150 (15) | 0.027 (2) | 0.0165 (17) | 0.0059 (14) | 0.0070 (13) | 0.0026 (16) |
C42 | 0.0183 (15) | 0.017 (2) | 0.0246 (19) | 0.0038 (14) | 0.0081 (14) | 0.0014 (16) |
C43 | 0.0130 (14) | 0.021 (2) | 0.0252 (19) | 0.0060 (14) | 0.0070 (13) | 0.0058 (16) |
C44 | 0.031 (2) | 0.038 (3) | 0.022 (2) | 0.0116 (18) | −0.0023 (16) | 0.0038 (19) |
O1 | 0.025 (4) | 0.048 (8) | 0.023 (4) | 0.003 (4) | −0.010 (3) | 0.010 (5) |
O2 | 0.0238 (13) | 0.0297 (18) | 0.0314 (16) | 0.0005 (12) | 0.0029 (11) | −0.0069 (13) |
O3 | 0.0341 (14) | 0.0233 (17) | 0.0329 (16) | 0.0137 (12) | 0.0114 (12) | 0.0018 (13) |
O4 | 0.0215 (12) | 0.0350 (17) | 0.0199 (13) | 0.0121 (11) | 0.0102 (10) | 0.0124 (12) |
O5 | 0.050 (6) | 0.043 (7) | 0.019 (7) | −0.001 (4) | 0.012 (5) | 0.004 (6) |
O6 | 0.0208 (12) | 0.0209 (15) | 0.0264 (14) | 0.0120 (10) | 0.0095 (10) | 0.0099 (12) |
O7 | 0.0364 (15) | 0.045 (2) | 0.0190 (14) | 0.0174 (14) | 0.0089 (12) | 0.0006 (13) |
O8 | 0.0228 (12) | 0.0276 (17) | 0.0188 (13) | 0.0068 (11) | 0.0011 (10) | 0.0009 (12) |
Cl1 | 0.0235 (17) | 0.031 (3) | 0.026 (2) | 0.0019 (17) | −0.0072 (14) | 0.002 (2) |
Cl2 | 0.0301 (15) | 0.026 (2) | 0.017 (3) | 0.0001 (14) | 0.007 (2) | 0.004 (2) |
Rh1—C1 | 1.699 (12) | C19—C20 | 1.385 (5) |
Rh1—C1i | 1.699 (13) | C20—C21 | 1.385 (5) |
Rh1—P1i | 2.3257 (10) | C20—H043 | 0.95 |
Rh1—P1 | 2.3257 (10) | C21—H014 | 0.95 |
Rh1—Cl1 | 2.416 (5) | C22—O4 | 1.431 (4) |
Rh1—Cl1i | 2.416 (5) | C22—H04D | 0.98 |
Rh2—C23 | 1.751 (11) | C22—H04E | 0.98 |
Rh2—C23ii | 1.751 (11) | C22—H04F | 0.98 |
Rh2—P2ii | 2.3321 (11) | C23—Cl2 | 0.660 (9) |
Rh2—P2 | 2.3321 (11) | C23—O5 | 1.171 (13) |
Rh2—Cl2 | 2.410 (4) | C24—C29 | 1.392 (5) |
Rh2—Cl2ii | 2.410 (4) | C24—C25 | 1.402 (5) |
P1—C16 | 1.815 (3) | C25—C26 | 1.386 (5) |
P1—C2 | 1.817 (4) | C25—H037 | 0.95 |
P1—C9 | 1.817 (4) | C26—C27 | 1.384 (5) |
P2—C24 | 1.804 (4) | C26—H019 | 0.95 |
P2—C31 | 1.824 (4) | C27—O6 | 1.363 (4) |
P2—C38 | 1.827 (4) | C27—C28 | 1.401 (5) |
C1—Cl1 | 0.720 (12) | C28—C29 | 1.388 (5) |
C1—O1 | 1.157 (18) | C28—H044 | 0.95 |
C2—C7 | 1.393 (5) | C29—H017 | 0.95 |
C2—C3 | 1.397 (5) | C30—O6 | 1.438 (4) |
C3—C4 | 1.383 (5) | C30—H05D | 0.98 |
C3—H023 | 0.95 | C30—H05E | 0.98 |
C4—C5 | 1.387 (5) | C30—H05F | 0.98 |
C4—H035 | 0.95 | C31—C36 | 1.389 (5) |
C5—O2 | 1.365 (5) | C31—C32 | 1.404 (5) |
C5—C6 | 1.396 (5) | C32—C33 | 1.383 (5) |
C6—C7 | 1.382 (5) | C32—H021 | 0.95 |
C6—H030 | 0.95 | C33—C34 | 1.403 (5) |
C7—H047 | 0.95 | C33—H026 | 0.95 |
C8—O2 | 1.424 (5) | C34—O7 | 1.361 (5) |
C8—H04A | 0.98 | C34—C35 | 1.386 (5) |
C8—H04B | 0.98 | C35—C36 | 1.395 (5) |
C8—H04C | 0.98 | C35—H016 | 0.95 |
C9—C14 | 1.397 (5) | C36—H041 | 0.95 |
C9—C10 | 1.400 (5) | C37—O7 | 1.438 (5) |
C10—C11 | 1.391 (5) | C37—H05A | 0.98 |
C10—H048 | 0.95 | C37—H05B | 0.98 |
C11—C12 | 1.386 (5) | C37—H05C | 0.98 |
C11—H036 | 0.95 | C38—C43 | 1.379 (5) |
C12—O3 | 1.367 (5) | C38—C39 | 1.399 (5) |
C12—C13 | 1.392 (5) | C39—C40 | 1.396 (5) |
C13—C14 | 1.388 (6) | C39—H031 | 0.95 |
C13—H022 | 0.95 | C40—C41 | 1.376 (6) |
C14—H046 | 0.95 | C40—H054 | 0.95 |
C15—O3 | 1.433 (5) | C41—O8 | 1.370 (4) |
C15—H05J | 0.98 | C41—C42 | 1.399 (5) |
C15—H05K | 0.98 | C42—C43 | 1.378 (5) |
C15—H05L | 0.98 | C42—H018 | 0.95 |
C16—C17 | 1.393 (5) | C43—H032 | 0.95 |
C16—C21 | 1.394 (5) | C44—O8 | 1.422 (4) |
C17—C18 | 1.385 (5) | C44—H05G | 0.98 |
C17—H034 | 0.95 | C44—H05H | 0.98 |
C18—C19 | 1.399 (5) | C44—H05I | 0.98 |
C18—H033 | 0.95 | O5—Cl2 | 0.511 (10) |
C19—O4 | 1.363 (4) | ||
C1—Rh1—C1i | 180.000 (4) | C17—C18—H033 | 120 |
C1—Rh1—P1i | 89.5 (4) | C19—C18—H033 | 120 |
C1i—Rh1—P1i | 90.5 (4) | O4—C19—C20 | 125.3 (3) |
C1—Rh1—P1 | 90.5 (4) | O4—C19—C18 | 115.1 (3) |
C1i—Rh1—P1 | 89.5 (4) | C20—C19—C18 | 119.6 (3) |
P1i—Rh1—P1 | 180 | C19—C20—C21 | 119.7 (3) |
C1—Rh1—Cl1 | 1.9 (4) | C19—C20—H043 | 120.1 |
C1i—Rh1—Cl1 | 178.1 (4) | C21—C20—H043 | 120.1 |
P1i—Rh1—Cl1 | 88.80 (9) | C20—C21—C16 | 121.3 (3) |
P1—Rh1—Cl1 | 91.20 (9) | C20—C21—H014 | 119.3 |
C1—Rh1—Cl1i | 178.1 (4) | C16—C21—H014 | 119.3 |
C1i—Rh1—Cl1i | 1.9 (4) | O4—C22—H04D | 109.5 |
P1i—Rh1—Cl1i | 91.20 (9) | O4—C22—H04E | 109.5 |
P1—Rh1—Cl1i | 88.80 (9) | H04D—C22—H04E | 109.5 |
Cl1—Rh1—Cl1i | 180.0000 (10) | O4—C22—H04F | 109.5 |
C23—Rh2—C23ii | 180.0 (9) | H04D—C22—H04F | 109.5 |
C23—Rh2—P2ii | 88.1 (4) | H04E—C22—H04F | 109.5 |
C23ii—Rh2—P2ii | 91.9 (4) | Cl2—C23—Rh2 | 177.8 (15) |
C23—Rh2—P2 | 91.9 (4) | O5—C23—Rh2 | 176.8 (16) |
C23ii—Rh2—P2 | 88.1 (4) | C29—C24—C25 | 117.9 (3) |
P2ii—Rh2—P2 | 180.00 (5) | C29—C24—P2 | 120.5 (3) |
C23—Rh2—Cl2 | 0.6 (4) | C25—C24—P2 | 121.6 (3) |
C23ii—Rh2—Cl2 | 179.4 (4) | C26—C25—C24 | 121.2 (3) |
P2ii—Rh2—Cl2 | 87.94 (10) | C26—C25—H037 | 119.4 |
P2—Rh2—Cl2 | 92.06 (10) | C24—C25—H037 | 119.4 |
C23—Rh2—Cl2ii | 179.4 (4) | C27—C26—C25 | 120.1 (3) |
C23ii—Rh2—Cl2ii | 0.6 (4) | C27—C26—H019 | 120 |
P2ii—Rh2—Cl2ii | 92.06 (10) | C25—C26—H019 | 120 |
P2—Rh2—Cl2ii | 87.94 (10) | O6—C27—C26 | 124.4 (3) |
Cl2—Rh2—Cl2ii | 180.0 (2) | O6—C27—C28 | 115.7 (3) |
C16—P1—C2 | 106.79 (17) | C26—C27—C28 | 119.8 (3) |
C16—P1—C9 | 103.67 (16) | C29—C28—C27 | 119.4 (3) |
C2—P1—C9 | 104.54 (16) | C29—C28—H044 | 120.3 |
C16—P1—Rh1 | 109.09 (11) | C27—C28—H044 | 120.3 |
C2—P1—Rh1 | 112.92 (11) | C28—C29—C24 | 121.6 (3) |
C9—P1—Rh1 | 118.87 (12) | C28—C29—H017 | 119.2 |
C24—P2—C31 | 103.44 (16) | C24—C29—H017 | 119.2 |
C24—P2—C38 | 104.95 (17) | O6—C30—H05D | 109.5 |
C31—P2—C38 | 104.75 (16) | O6—C30—H05E | 109.5 |
C24—P2—Rh2 | 111.46 (12) | H05D—C30—H05E | 109.5 |
C31—P2—Rh2 | 118.04 (12) | O6—C30—H05F | 109.5 |
C38—P2—Rh2 | 112.97 (11) | H05D—C30—H05F | 109.5 |
Cl1—C1—Rh1 | 173.6 (14) | H05E—C30—H05F | 109.5 |
O1—C1—Rh1 | 173.2 (14) | C36—C31—C32 | 118.0 (3) |
C7—C2—C3 | 118.0 (3) | C36—C31—P2 | 122.7 (3) |
C7—C2—P1 | 123.5 (3) | C32—C31—P2 | 119.2 (3) |
C3—C2—P1 | 118.3 (3) | C33—C32—C31 | 120.6 (3) |
C4—C3—C2 | 121.8 (3) | C33—C32—H021 | 119.7 |
C4—C3—H023 | 119.1 | C31—C32—H021 | 119.7 |
C2—C3—H023 | 119.1 | C32—C33—C34 | 120.5 (3) |
C3—C4—C5 | 119.4 (3) | C32—C33—H026 | 119.8 |
C3—C4—H035 | 120.3 | C34—C33—H026 | 119.8 |
C5—C4—H035 | 120.3 | O7—C34—C35 | 125.4 (3) |
O2—C5—C4 | 124.7 (3) | O7—C34—C33 | 115.0 (3) |
O2—C5—C6 | 115.7 (4) | C35—C34—C33 | 119.6 (3) |
C4—C5—C6 | 119.6 (4) | C34—C35—C36 | 119.2 (3) |
C7—C6—C5 | 120.4 (4) | C34—C35—H016 | 120.4 |
C7—C6—H030 | 119.8 | C36—C35—H016 | 120.4 |
C5—C6—H030 | 119.8 | C31—C36—C35 | 122.0 (3) |
C6—C7—C2 | 120.7 (3) | C31—C36—H041 | 119 |
C6—C7—H047 | 119.6 | C35—C36—H041 | 119 |
C2—C7—H047 | 119.6 | O7—C37—H05A | 109.5 |
O2—C8—H04A | 109.5 | O7—C37—H05B | 109.5 |
O2—C8—H04B | 109.5 | H05A—C37—H05B | 109.5 |
H04A—C8—H04B | 109.5 | O7—C37—H05C | 109.5 |
O2—C8—H04C | 109.5 | H05A—C37—H05C | 109.5 |
H04A—C8—H04C | 109.5 | H05B—C37—H05C | 109.5 |
H04B—C8—H04C | 109.5 | C43—C38—C39 | 118.6 (3) |
C14—C9—C10 | 117.3 (3) | C43—C38—P2 | 123.0 (3) |
C14—C9—P1 | 120.2 (3) | C39—C38—P2 | 118.1 (3) |
C10—C9—P1 | 122.5 (3) | C40—C39—C38 | 120.9 (4) |
C11—C10—C9 | 121.3 (4) | C40—C39—H031 | 119.5 |
C11—C10—H048 | 119.4 | C38—C39—H031 | 119.5 |
C9—C10—H048 | 119.4 | C41—C40—C39 | 119.5 (3) |
C12—C11—C10 | 120.2 (3) | C41—C40—H054 | 120.2 |
C12—C11—H036 | 119.9 | C39—C40—H054 | 120.2 |
C10—C11—H036 | 119.9 | O8—C41—C40 | 124.9 (3) |
O3—C12—C11 | 116.0 (3) | O8—C41—C42 | 115.3 (4) |
O3—C12—C13 | 124.4 (4) | C40—C41—C42 | 119.7 (3) |
C11—C12—C13 | 119.5 (4) | C43—C42—C41 | 120.2 (4) |
C14—C13—C12 | 119.8 (4) | C43—C42—H018 | 119.9 |
C14—C13—H022 | 120.1 | C41—C42—H018 | 119.9 |
C12—C13—H022 | 120.1 | C42—C43—C38 | 121.0 (3) |
C13—C14—C9 | 121.9 (3) | C42—C43—H032 | 119.5 |
C13—C14—H046 | 119.1 | C38—C43—H032 | 119.5 |
C9—C14—H046 | 119.1 | O8—C44—H05G | 109.5 |
O3—C15—H05J | 109.5 | O8—C44—H05H | 109.5 |
O3—C15—H05K | 109.5 | H05G—C44—H05H | 109.5 |
H05J—C15—H05K | 109.5 | O8—C44—H05I | 109.5 |
O3—C15—H05L | 109.5 | H05G—C44—H05I | 109.5 |
H05J—C15—H05L | 109.5 | H05H—C44—H05I | 109.5 |
H05K—C15—H05L | 109.5 | C5—O2—C8 | 117.3 (3) |
C17—C16—C21 | 118.3 (3) | C12—O3—C15 | 117.2 (3) |
C17—C16—P1 | 123.1 (3) | C19—O4—C22 | 117.1 (3) |
C21—C16—P1 | 118.5 (2) | C27—O6—C30 | 116.2 (3) |
C18—C17—C16 | 120.8 (3) | C34—O7—C37 | 116.8 (3) |
C18—C17—H034 | 119.6 | C41—O8—C44 | 117.6 (3) |
C16—C17—H034 | 119.6 | O5—Cl2—C23 | 177 (2) |
C17—C18—C19 | 120.0 (3) | O5—Cl2—Rh2 | 176 (2) |
C1—Rh1—P1—C16 | −93.0 (4) | C18—C19—C20—C21 | 3.7 (6) |
C1i—Rh1—P1—C16 | 87.0 (4) | C19—C20—C21—C16 | −0.6 (6) |
Cl1—Rh1—P1—C16 | −94.75 (17) | C17—C16—C21—C20 | −2.3 (6) |
Cl1i—Rh1—P1—C16 | 85.25 (17) | P1—C16—C21—C20 | 175.0 (3) |
C1—Rh1—P1—C2 | 148.5 (4) | C31—P2—C24—C29 | 144.7 (3) |
C1i—Rh1—P1—C2 | −31.5 (4) | C38—P2—C24—C29 | −105.8 (3) |
Cl1—Rh1—P1—C2 | 146.68 (16) | Rh2—P2—C24—C29 | 16.9 (3) |
Cl1i—Rh1—P1—C2 | −33.32 (16) | C31—P2—C24—C25 | −35.9 (3) |
C1—Rh1—P1—C9 | 25.5 (4) | C38—P2—C24—C25 | 73.6 (3) |
C1i—Rh1—P1—C9 | −154.5 (4) | Rh2—P2—C24—C25 | −163.7 (3) |
Cl1—Rh1—P1—C9 | 23.70 (16) | C29—C24—C25—C26 | −0.2 (5) |
Cl1i—Rh1—P1—C9 | −156.30 (16) | P2—C24—C25—C26 | −179.6 (3) |
C23—Rh2—P2—C24 | 97.8 (4) | C24—C25—C26—C27 | −0.1 (6) |
C23ii—Rh2—P2—C24 | −82.2 (4) | C25—C26—C27—O6 | −177.9 (3) |
Cl2—Rh2—P2—C24 | 97.21 (17) | C25—C26—C27—C28 | 1.0 (6) |
Cl2ii—Rh2—P2—C24 | −82.79 (17) | O6—C27—C28—C29 | 177.3 (3) |
C23—Rh2—P2—C31 | −21.7 (4) | C26—C27—C28—C29 | −1.7 (6) |
C23ii—Rh2—P2—C31 | 158.3 (4) | C27—C28—C29—C24 | 1.5 (6) |
Cl2—Rh2—P2—C31 | −22.28 (16) | C25—C24—C29—C28 | −0.5 (5) |
Cl2ii—Rh2—P2—C31 | 157.72 (16) | P2—C24—C29—C28 | 178.9 (3) |
C23—Rh2—P2—C38 | −144.3 (4) | C24—P2—C31—C36 | 124.8 (3) |
C23ii—Rh2—P2—C38 | 35.7 (4) | C38—P2—C31—C36 | 15.1 (3) |
Cl2—Rh2—P2—C38 | −144.90 (17) | Rh2—P2—C31—C36 | −111.6 (3) |
Cl2ii—Rh2—P2—C38 | 35.10 (17) | C24—P2—C31—C32 | −58.5 (3) |
C16—P1—C2—C7 | 4.8 (3) | C38—P2—C31—C32 | −168.2 (3) |
C9—P1—C2—C7 | −104.6 (3) | Rh2—P2—C31—C32 | 65.1 (3) |
Rh1—P1—C2—C7 | 124.7 (3) | C36—C31—C32—C33 | 0.5 (5) |
C16—P1—C2—C3 | −171.4 (3) | P2—C31—C32—C33 | −176.2 (3) |
C9—P1—C2—C3 | 79.1 (3) | C31—C32—C33—C34 | 1.4 (6) |
Rh1—P1—C2—C3 | −51.5 (3) | C32—C33—C34—O7 | 177.3 (3) |
C7—C2—C3—C4 | 1.4 (5) | C32—C33—C34—C35 | −2.6 (6) |
P1—C2—C3—C4 | 177.8 (3) | O7—C34—C35—C36 | −178.0 (3) |
C2—C3—C4—C5 | −2.1 (6) | C33—C34—C35—C36 | 1.9 (6) |
C3—C4—C5—O2 | −177.6 (3) | C32—C31—C36—C35 | −1.2 (5) |
C3—C4—C5—C6 | 1.4 (6) | P2—C31—C36—C35 | 175.4 (3) |
O2—C5—C6—C7 | 179.2 (3) | C34—C35—C36—C31 | 0.0 (6) |
C4—C5—C6—C7 | 0.1 (6) | C24—P2—C38—C43 | −3.7 (3) |
C5—C6—C7—C2 | −0.9 (5) | C31—P2—C38—C43 | 104.9 (3) |
C3—C2—C7—C6 | 0.1 (5) | Rh2—P2—C38—C43 | −125.3 (3) |
P1—C2—C7—C6 | −176.1 (3) | C24—P2—C38—C39 | 169.4 (3) |
C16—P1—C9—C14 | 54.2 (3) | C31—P2—C38—C39 | −82.0 (3) |
C2—P1—C9—C14 | 165.9 (3) | Rh2—P2—C38—C39 | 47.8 (3) |
Rh1—P1—C9—C14 | −67.0 (3) | C43—C38—C39—C40 | 0.5 (5) |
C16—P1—C9—C10 | −127.8 (3) | P2—C38—C39—C40 | −172.9 (3) |
C2—P1—C9—C10 | −16.0 (3) | C38—C39—C40—C41 | 2.1 (5) |
Rh1—P1—C9—C10 | 111.0 (3) | C39—C40—C41—O8 | 175.8 (3) |
C14—C9—C10—C11 | −1.5 (5) | C39—C40—C41—C42 | −2.8 (5) |
P1—C9—C10—C11 | −179.6 (3) | O8—C41—C42—C43 | −177.8 (3) |
C9—C10—C11—C12 | 0.0 (5) | C40—C41—C42—C43 | 1.0 (5) |
C10—C11—C12—O3 | −179.6 (3) | C41—C42—C43—C38 | 1.7 (5) |
C10—C11—C12—C13 | 1.5 (5) | C39—C38—C43—C42 | −2.4 (5) |
O3—C12—C13—C14 | 179.8 (3) | P2—C38—C43—C42 | 170.6 (3) |
C11—C12—C13—C14 | −1.3 (5) | C4—C5—O2—C8 | 5.7 (6) |
C12—C13—C14—C9 | −0.3 (6) | C6—C5—O2—C8 | −173.3 (4) |
C10—C9—C14—C13 | 1.7 (5) | C11—C12—O3—C15 | 178.2 (3) |
P1—C9—C14—C13 | 179.8 (3) | C13—C12—O3—C15 | −2.9 (5) |
C2—P1—C16—C17 | −88.3 (4) | C20—C19—O4—C22 | 7.5 (6) |
C9—P1—C16—C17 | 21.8 (4) | C18—C19—O4—C22 | −171.7 (3) |
Rh1—P1—C16—C17 | 149.4 (3) | C26—C27—O6—C30 | −0.4 (5) |
C2—P1—C16—C21 | 94.6 (3) | C28—C27—O6—C30 | −179.3 (3) |
C9—P1—C16—C21 | −155.4 (3) | C35—C34—O7—C37 | 3.5 (6) |
Rh1—P1—C16—C21 | −27.8 (3) | C33—C34—O7—C37 | −176.4 (3) |
C21—C16—C17—C18 | 2.1 (6) | C40—C41—O8—C44 | −4.7 (5) |
P1—C16—C17—C18 | −175.1 (3) | C42—C41—O8—C44 | 173.9 (3) |
C16—C17—C18—C19 | 1.0 (6) | O1—C1—Cl1—Rh1 | 132 (13) |
C17—C18—C19—O4 | 175.4 (4) | P1i—Rh1—Cl1—C1 | −110 (11) |
C17—C18—C19—C20 | −3.9 (6) | P1—Rh1—Cl1—C1 | 70 (11) |
O4—C19—C20—C21 | −175.5 (4) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H046···Cl1 | 0.95 | 2.81 | 3.191 (5) | 105 |
C32—H021···Cl2 | 0.95 | 2.82 | 3.157 (5) | 102 |
C8—H04A···Cl1iii | 0.98 | 2.73 | 3.693 (7) | 169 |
C8—H04A···O1iii | 0.98 | 2.52 | 3.486 (18) | 168 |
Symmetry code: (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [RhCl(C21H21O3P)2(CO)] |
Mr | 871.07 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.8350 (4), 12.3151 (8), 21.0591 (13) |
α, β, γ (°) | 90.995 (2), 99.591 (2), 101.220 (2) |
V (Å3) | 1962.7 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.64 |
Crystal size (mm) | 0.24 × 0.16 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.887, 0.937 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26016, 9327, 6401 |
Rint | 0.098 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.144, 1.04 |
No. of reflections | 9327 |
No. of parameters | 517 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.45, −1.17 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).
Rh1—C1 | 1.699 (12) | Rh2—P2 | 2.3321 (11) |
Rh1—P1 | 2.3257 (10) | Rh2—Cl2 | 2.410 (4) |
Rh1—Cl1 | 2.416 (5) | C1—O1 | 1.157 (18) |
Rh2—C23 | 1.751 (11) | C23—O5 | 1.171 (13) |
C1—Rh1—P1 | 90.5 (4) | C23—Rh2—P2 | 91.9 (4) |
P1—Rh1—Cl1 | 91.20 (9) | P2—Rh2—Cl2 | 92.06 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H046···Cl1 | 0.95 | 2.81 | 3.191 (5) | 104.7 |
C32—H021···Cl2 | 0.95 | 2.82 | 3.157 (5) | 101.9 |
C8—H04A···Cl1i | 0.98 | 2.73 | 3.693 (7) | 169.0 |
C8—H04A···O1i | 0.98 | 2.52 | 3.486 (18) | 168.3 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank SASOL, the South African NRF and THRIP and the University of the Free State Research Fund for financial support. The views expressed do not necessarily represent that of the NRF.
References
Angoletta, M. (1959). Gazz. Chim. Ital. 89, 2359–2361. CAS Google Scholar
Basson, S. S., Leipoldt, J. G. & Roodt, A. (1990). Acta Cryst. C46, 142–144. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2004). SADABS and SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burgoyne, A. R., Meijboom, R., Muller, A. & Omondi, B. O. (2010). Acta Cryst. E66, m1380–m1381. Web of Science CSD CrossRef IUCr Journals Google Scholar
Clarke, M. L., Holliday, G. L., Slawin, A. M. Z. & Woollins, J. D. (2002). J. Chem. Soc. Dalton Trans. pp 1093–1103. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kemp, G., Roodt, A. & Purcell, W. (1995). Rhodium Express, 12, 21–26. CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McCleverty, J. A. & Wilkinson, G. (1990). Inorg. Synth. 28, 84–86. CrossRef CAS Web of Science Google Scholar
Meijboom, R., Muller, A. & Roodt, A. (2006). Acta Cryst. E62, m1309–m1311. Web of Science CSD CrossRef IUCr Journals Google Scholar
Monge, A., Gutiérrez-Puebla, E., Heras, J. V. & Pinilla, E. (1983). Acta Cryst. C39, 446–448. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Otto, S., Mzamane, S. N. & Roodt, A. (1999). Acta Cryst. C55, 67–69. CSD CrossRef CAS IUCr Journals Google Scholar
Rheingold, A. L. & Geib, S. J. (1987). Acta Cryst. C43, 784–786. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784–2785. CrossRef CAS Web of Science Google Scholar
Wilson, M. R., Prock, A., Giering, W. P., Fernandez, A. L., Haar, C. M., Nolan, S. P. & Foxman, B. M. (2002). Organometallics, 21, 2758–2763. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Vaska's complex was first synthesized by Angoletta (1959) and later correctly formulated as trans-[IrCl(CO)(PPh3)2] (Vaska & Di Luzio, 1961). This compound has been used in various catalytic processes and it or its analogues are often employed as model compounds (Rheingold & Geib, 1987; Basson et al., 1990; Kemp et al., 1995; Roodt et al., 2003).
Various 'Vaska complexes' have been synthesized, exploring different metals but especially introducing different substituents on the phosphane ligands. These modifications have an impact on the steric hindrance around the metal (Clarke et al., 2002; Wilson et al., 2002), but in the case of para-substituted triaryl phosphanes the effect is purely electronic (Monge et al., 1983; Otto et al., 1999; Meijboom et al., 2006; Burgoyne et al., 2010). Since only limited data are available on this kind of complexes, we have prepared the rhodium analogue (I), [RhCl(C21H21O3P)2(CO)], bearing relatively electron-rich tri(para-methoxyphenyl)-phosphane ligands.
Two independent half-molecules are present in the asymmetric unit of compound (I), in each case with the RhI atoms located on inversion centres. The metal atoms display a distorted square planar geometry with the phosphane ligands located in mutual trans-positions (Fig. 1). Selected bond lenghts and angles are presented in Table 1.
The carbonyl moiety has a slightly bent geometry, with Rh—C—O angles of 173.2 (14)° and 176.8 (16)° for the two molecules, respectively. In solution infrared spectroscopy only one signal was observed for the carbonyl ligand at 1974 cm-1. Also in solid state infrared spectroscopy of the amorphous material, only one signal was observed at 1964 cm-1. Only when a crystalline sample was analysed, two signals were observed at 1956 and 1973 cm-1, showing the stretching vibrations of both the independent carbonyl ligands. In 31P NMR the signal for the phospine ligands was observed at 24.95 ppm with a JRh—P of 124.5 Hz, which is in line with analogous complexes.
The Rh—P bond lengths fall in the range of other, analogous rhodium Vaska complexes. In contrast, the bonds of the metal to the carbonyl and chlorido ligands are significantly influenced by the electron-donating phosphane ligands. The bond to the chlorido ligand is the longest reported for this kind of complexes bearing triaryl phosphanes. The same influence is also notably present in the bonding of the carbonyl ligand. Its bond to the rhodium atom is quite short, which indicates significant metal-to-ligand electron donation. As a consequence, the C—O bond is lengthened.
There are a few weak intramolecular C—H···X interactions (X = O, Cl), which are listed in Table 2. Interestingly, no intermolecular interactions are found between the two independent molecules.