metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Carbonyl­chloridobis[tris­­(4-meth­­oxy­phen­yl)phosphane-κP]rhodium(I)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: 2011009426@ufs4life.ac.za

(Received 19 October 2011; accepted 2 November 2011; online 5 November 2011)

The title complex, [RhCl(C21H21O3P)2(CO)], is a rhodium analogue to Vaska's complex with para-meth­oxy substituents on the six phosphan­yl–aryl units. Two independent mol­ecules are present in the unit cell, with their metal atoms both located on an inversion centre. This causes the chloride and carbonyl ligands to exhibit a positional disorder in a 0.5:0.5 ratio. The two RhI atoms exhibit a distorted square-planar geometry. There are a few weak intra­molecular C—H⋯X inter­actions (X = O, Cl). Inter­estingly, no significant inter­molecular inter­actions are found between the two independent mol­ecules.

Related literature

For background to Vaska's complex, see: Angoletta (1959[Angoletta, M. (1959). Gazz. Chim. Ital. 89, 2359-2361.]); Vaska & Di Luzio (1961[Vaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784-2785.]). For related literature on rhodium Vaska complexes, see: Basson et al. (1990[Basson, S. S., Leipoldt, J. G. & Roodt, A. (1990). Acta Cryst. C46, 142-144.]); Clarke et al. (2002[Clarke, M. L., Holliday, G. L., Slawin, A. M. Z. & Woollins, J. D. (2002). J. Chem. Soc. Dalton Trans. pp 1093-1103.]); Kemp et al. (1995[Kemp, G., Roodt, A. & Purcell, W. (1995). Rhodium Express, 12, 21-26.]); Rheingold & Geib (1987[Rheingold, A. L. & Geib, S. J. (1987). Acta Cryst. C43, 784-786.]); Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]); Wilson et al. (2002[Wilson, M. R., Prock, A., Giering, W. P., Fernandez, A. L., Haar, C. M., Nolan, S. P. & Foxman, B. M. (2002). Organometallics, 21, 2758-2763.]). For similar complexes, see: Burgoyne et al. (2010[Burgoyne, A. R., Meijboom, R., Muller, A. & Omondi, B. O. (2010). Acta Cryst. E66, m1380-m1381.]), Meijboom et al. (2006[Meijboom, R., Muller, A. & Roodt, A. (2006). Acta Cryst. E62, m1309-m1311.]), Monge et al. (1983[Monge, A., Gutiérrez-Puebla, E., Heras, J. V. & Pinilla, E. (1983). Acta Cryst. C39, 446-448.]); Otto et al. (1999[Otto, S., Mzamane, S. N. & Roodt, A. (1999). Acta Cryst. C55, 67-69.]). Synthetic details are given in McCleverty & Wilkinson (1990[McCleverty, J. A. & Wilkinson, G. (1990). Inorg. Synth. 28, 84-86.]).

[Scheme 1]

Experimental

Crystal data
  • [RhCl(C21H21O3P)2(CO)]

  • Mr = 871.07

  • Triclinic, [P \overline 1]

  • a = 7.8350 (4) Å

  • b = 12.3151 (8) Å

  • c = 21.0591 (13) Å

  • α = 90.995 (2)°

  • β = 99.591 (2)°

  • γ = 101.220 (2)°

  • V = 1962.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 100 K

  • 0.24 × 0.16 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS and SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.887, Tmax = 0.937

  • 26016 measured reflections

  • 9327 independent reflections

  • 6401 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.144

  • S = 1.04

  • 9327 reflections

  • 517 parameters

  • H-atom parameters constrained

  • Δρmax = 2.45 e Å−3

  • Δρmin = −1.17 e Å−3

Table 1
Selected geometric parameters (Å, °)

Rh1—C1 1.699 (12)
Rh1—P1 2.3257 (10)
Rh1—Cl1 2.416 (5)
Rh2—C23 1.751 (11)
Rh2—P2 2.3321 (11)
Rh2—Cl2 2.410 (4)
C1—O1 1.157 (18)
C23—O5 1.171 (13)
C1—Rh1—P1 90.5 (4)
P1—Rh1—Cl1 91.20 (9)
C23—Rh2—P2 91.9 (4)
P2—Rh2—Cl2 92.06 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H046⋯Cl1 0.95 2.81 3.191 (5) 105
C32—H021⋯Cl2 0.95 2.82 3.157 (5) 102
C8—H04A⋯Cl1i 0.98 2.73 3.693 (7) 169
C8—H04A⋯O1i 0.98 2.52 3.486 (18) 168
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SADABS and SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SADABS and SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Vaska's complex was first synthesized by Angoletta (1959) and later correctly formulated as trans-[IrCl(CO)(PPh3)2] (Vaska & Di Luzio, 1961). This compound has been used in various catalytic processes and it or its analogues are often employed as model compounds (Rheingold & Geib, 1987; Basson et al., 1990; Kemp et al., 1995; Roodt et al., 2003).

Various 'Vaska complexes' have been synthesized, exploring different metals but especially introducing different substituents on the phosphane ligands. These modifications have an impact on the steric hindrance around the metal (Clarke et al., 2002; Wilson et al., 2002), but in the case of para-substituted triaryl phosphanes the effect is purely electronic (Monge et al., 1983; Otto et al., 1999; Meijboom et al., 2006; Burgoyne et al., 2010). Since only limited data are available on this kind of complexes, we have prepared the rhodium analogue (I), [RhCl(C21H21O3P)2(CO)], bearing relatively electron-rich tri(para-methoxyphenyl)-phosphane ligands.

Two independent half-molecules are present in the asymmetric unit of compound (I), in each case with the RhI atoms located on inversion centres. The metal atoms display a distorted square planar geometry with the phosphane ligands located in mutual trans-positions (Fig. 1). Selected bond lenghts and angles are presented in Table 1.

The carbonyl moiety has a slightly bent geometry, with Rh—C—O angles of 173.2 (14)° and 176.8 (16)° for the two molecules, respectively. In solution infrared spectroscopy only one signal was observed for the carbonyl ligand at 1974 cm-1. Also in solid state infrared spectroscopy of the amorphous material, only one signal was observed at 1964 cm-1. Only when a crystalline sample was analysed, two signals were observed at 1956 and 1973 cm-1, showing the stretching vibrations of both the independent carbonyl ligands. In 31P NMR the signal for the phospine ligands was observed at 24.95 ppm with a JRh—P of 124.5 Hz, which is in line with analogous complexes.

The Rh—P bond lengths fall in the range of other, analogous rhodium Vaska complexes. In contrast, the bonds of the metal to the carbonyl and chlorido ligands are significantly influenced by the electron-donating phosphane ligands. The bond to the chlorido ligand is the longest reported for this kind of complexes bearing triaryl phosphanes. The same influence is also notably present in the bonding of the carbonyl ligand. Its bond to the rhodium atom is quite short, which indicates significant metal-to-ligand electron donation. As a consequence, the C—O bond is lengthened.

There are a few weak intramolecular C—H···X interactions (X = O, Cl), which are listed in Table 2. Interestingly, no intermolecular interactions are found between the two independent molecules.

Related literature top

For background to Vaska's complex, see: Angoletta (1959); Vaska & Di Luzio (1961). For related literature on rhodium Vaska complexes, see: Basson et al. (1990); Clarke et al. (2002); Kemp et al. (1995); Rheingold & Geib (1987); Roodt et al. (2003); Wilson et al. (2002). For similar complexes, see: Burgoyne et al. (2010), Meijboom et al. (2006), Monge et al. (1983); Otto et al. (1999). Synthetic details were given in McCleverty & Wilkinson (1990).

Experimental top

Compound (I) was synthesized by slowly adding 4 equivalents of tri(4-methoxyphenyl)phosphane to a dimethyl formamide solution of [RhCl(CO)2]2 (McCleverty & Wilkinson, 1990). The product was precipitated with ice water and isolated by filtration. Crystallization was performed by dissolving the complex in a small amount of dichloromethane which was then carefully layered with approximately 5 volumetric equivalents of hexane. The mixture was stored in a loosely closed vessel, from which yellow crystals precipitated.

Refinement top

The aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic protons and Uiso(H) = 1.5Ueq(C) for methyl protons. The disordered Cl and CO ligands were constrained to have occupancies of 0.5 at each of the two positions. The highest residual electron density was located 0.90 Å from Rh1 and was essentially meaningless. The deepest hole was located 1.00 Å from Rh1.

Structure description top

Vaska's complex was first synthesized by Angoletta (1959) and later correctly formulated as trans-[IrCl(CO)(PPh3)2] (Vaska & Di Luzio, 1961). This compound has been used in various catalytic processes and it or its analogues are often employed as model compounds (Rheingold & Geib, 1987; Basson et al., 1990; Kemp et al., 1995; Roodt et al., 2003).

Various 'Vaska complexes' have been synthesized, exploring different metals but especially introducing different substituents on the phosphane ligands. These modifications have an impact on the steric hindrance around the metal (Clarke et al., 2002; Wilson et al., 2002), but in the case of para-substituted triaryl phosphanes the effect is purely electronic (Monge et al., 1983; Otto et al., 1999; Meijboom et al., 2006; Burgoyne et al., 2010). Since only limited data are available on this kind of complexes, we have prepared the rhodium analogue (I), [RhCl(C21H21O3P)2(CO)], bearing relatively electron-rich tri(para-methoxyphenyl)-phosphane ligands.

Two independent half-molecules are present in the asymmetric unit of compound (I), in each case with the RhI atoms located on inversion centres. The metal atoms display a distorted square planar geometry with the phosphane ligands located in mutual trans-positions (Fig. 1). Selected bond lenghts and angles are presented in Table 1.

The carbonyl moiety has a slightly bent geometry, with Rh—C—O angles of 173.2 (14)° and 176.8 (16)° for the two molecules, respectively. In solution infrared spectroscopy only one signal was observed for the carbonyl ligand at 1974 cm-1. Also in solid state infrared spectroscopy of the amorphous material, only one signal was observed at 1964 cm-1. Only when a crystalline sample was analysed, two signals were observed at 1956 and 1973 cm-1, showing the stretching vibrations of both the independent carbonyl ligands. In 31P NMR the signal for the phospine ligands was observed at 24.95 ppm with a JRh—P of 124.5 Hz, which is in line with analogous complexes.

The Rh—P bond lengths fall in the range of other, analogous rhodium Vaska complexes. In contrast, the bonds of the metal to the carbonyl and chlorido ligands are significantly influenced by the electron-donating phosphane ligands. The bond to the chlorido ligand is the longest reported for this kind of complexes bearing triaryl phosphanes. The same influence is also notably present in the bonding of the carbonyl ligand. Its bond to the rhodium atom is quite short, which indicates significant metal-to-ligand electron donation. As a consequence, the C—O bond is lengthened.

There are a few weak intramolecular C—H···X interactions (X = O, Cl), which are listed in Table 2. Interestingly, no intermolecular interactions are found between the two independent molecules.

For background to Vaska's complex, see: Angoletta (1959); Vaska & Di Luzio (1961). For related literature on rhodium Vaska complexes, see: Basson et al. (1990); Clarke et al. (2002); Kemp et al. (1995); Rheingold & Geib (1987); Roodt et al. (2003); Wilson et al. (2002). For similar complexes, see: Burgoyne et al. (2010), Meijboom et al. (2006), Monge et al. (1983); Otto et al. (1999). Synthetic details were given in McCleverty & Wilkinson (1990).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the unit cell to clarify the special positions of the two rhodium atoms. Displacement ellipsoids are drawn at the 50% probability level. H-atoms have been omitted for clarity [Symmetry code: (i) -x, 1 - y, 1 - z; (ii) -x, -y, -z].
trans-Carbonylchloridobis[tris(4-methoxyphenyl)phosphane-κP] rhodium(I) top
Crystal data top
[RhCl(C21H21O3P)2(CO)]Z = 2
Mr = 871.07F(000) = 896
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8350 (4) ÅCell parameters from 6500 reflections
b = 12.3151 (8) Åθ = 2.9–28.1°
c = 21.0591 (13) ŵ = 0.64 mm1
α = 90.995 (2)°T = 100 K
β = 99.591 (2)°Cuboid, yellow
γ = 101.220 (2)°0.24 × 0.16 × 0.10 mm
V = 1962.7 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
9327 independent reflections
Radiation source: sealed tube6401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
Detector resolution: 512 pixels mm-1θmax = 28°, θmin = 2.0°
φ and ω scansh = 106
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1516
Tmin = 0.887, Tmax = 0.937l = 2727
26016 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0711P)2]
where P = (Fo2 + 2Fc2)/3
9327 reflections(Δ/σ)max = 0.003
517 parametersΔρmax = 2.45 e Å3
0 restraintsΔρmin = 1.17 e Å3
Crystal data top
[RhCl(C21H21O3P)2(CO)]γ = 101.220 (2)°
Mr = 871.07V = 1962.7 (2) Å3
Triclinic, P1Z = 2
a = 7.8350 (4) ÅMo Kα radiation
b = 12.3151 (8) ŵ = 0.64 mm1
c = 21.0591 (13) ÅT = 100 K
α = 90.995 (2)°0.24 × 0.16 × 0.10 mm
β = 99.591 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
9327 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
6401 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.937Rint = 0.098
26016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.04Δρmax = 2.45 e Å3
9327 reflectionsΔρmin = 1.17 e Å3
517 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 30 s/frame. A total of 1318 frames was collected with a frame width of 0.5° covering up to θ=28.00° with 98.3% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh100.50.50.01620 (12)
Rh20000.01681 (12)
P10.17881 (11)0.45129 (8)0.59018 (4)0.0169 (2)
P20.19028 (11)0.15093 (8)0.03218 (4)0.0169 (2)
C10.0559 (14)0.3657 (10)0.4714 (6)0.034 (3)0.5
C20.3688 (4)0.5602 (3)0.62055 (16)0.0169 (8)
C30.4759 (4)0.6069 (3)0.57726 (17)0.0196 (8)
H0230.44950.5790.53360.023*
C40.6194 (4)0.6927 (3)0.59619 (18)0.0210 (8)
H0350.69270.72150.56630.025*
C50.6553 (5)0.7363 (3)0.65925 (19)0.0228 (8)
C60.5486 (5)0.6916 (3)0.70302 (18)0.0230 (8)
H0300.57270.72140.74620.028*
C70.4080 (4)0.6042 (3)0.68391 (17)0.0198 (8)
H0470.33720.57380.71430.024*
C80.8885 (6)0.8790 (4)0.6380 (2)0.0418 (12)
H04A0.94810.82720.61870.063*
H04B0.97690.94120.66040.063*
H04C0.80910.90690.6040.063*
C90.2703 (4)0.3274 (3)0.58447 (16)0.0179 (8)
C100.4508 (4)0.3317 (3)0.58604 (16)0.0184 (8)
H0480.52950.40160.59050.022*
C110.5171 (5)0.2356 (3)0.58120 (17)0.0221 (8)
H0360.640.24040.58230.027*
C120.4043 (5)0.1327 (3)0.57470 (17)0.0220 (8)
C130.2238 (5)0.1265 (3)0.57155 (18)0.0233 (8)
H0220.14520.05650.56620.028*
C140.1590 (4)0.2230 (3)0.57627 (17)0.0222 (8)
H0460.03550.21780.57390.027*
C150.3688 (6)0.0645 (3)0.5660 (2)0.0342 (10)
H05J0.30690.07280.60290.051*
H05K0.440.12160.56570.051*
H05L0.28220.07240.52590.051*
C160.0517 (4)0.4249 (3)0.65485 (16)0.0174 (8)
C170.0822 (4)0.3493 (3)0.70175 (17)0.0212 (8)
H0340.17910.31320.70260.025*
C180.0271 (4)0.3261 (3)0.74719 (17)0.0210 (8)
H0330.00380.27510.77930.025*
C190.1717 (4)0.3776 (3)0.74576 (17)0.0192 (8)
C200.1985 (4)0.4567 (3)0.70120 (17)0.0190 (8)
H0430.29240.49510.70160.023*
C210.0880 (4)0.4794 (3)0.65610 (17)0.0197 (8)
H0140.10770.53330.62540.024*
C220.4399 (4)0.3816 (4)0.78430 (18)0.0257 (9)
H04D0.41430.46150.79480.039*
H04E0.51130.34330.81430.039*
H04F0.50520.36640.74010.039*
C230.0457 (15)0.0644 (11)0.0774 (5)0.020 (2)0.5
C240.0810 (4)0.2656 (3)0.05056 (17)0.0174 (8)
C250.1519 (4)0.3536 (3)0.08578 (17)0.0196 (8)
H0370.25970.3530.10060.024*
C260.0674 (4)0.4416 (3)0.09933 (17)0.0184 (8)
H0190.11750.50060.12320.022*
C270.0899 (4)0.4437 (3)0.07806 (17)0.0170 (7)
C280.1621 (4)0.3576 (3)0.04193 (17)0.0195 (8)
H0440.26830.35940.02620.023*
C290.0769 (4)0.2694 (3)0.02936 (17)0.0172 (8)
H0170.12760.21020.00570.021*
C300.1136 (5)0.6129 (3)0.12824 (19)0.0253 (9)
H05D0.00280.65080.10550.038*
H05E0.19280.66590.13470.038*
H05F0.1020.58230.17020.038*
C310.2855 (4)0.1317 (3)0.10391 (17)0.0172 (8)
C320.1737 (4)0.1092 (3)0.16402 (17)0.0196 (8)
H0210.05120.10870.16710.023*
C330.2403 (5)0.0879 (3)0.21875 (18)0.0239 (9)
H0260.16360.07440.25930.029*
C340.4202 (5)0.0860 (3)0.21482 (18)0.0225 (8)
C350.5329 (4)0.1102 (3)0.15605 (17)0.0207 (8)
H0160.65560.11140.1530.025*
C360.4641 (4)0.1327 (3)0.10139 (17)0.0182 (8)
H0410.54180.14930.06120.022*
C370.6495 (6)0.0500 (4)0.2687 (2)0.0389 (11)
H05A0.7270.12180.25450.058*
H05B0.66740.02770.31160.058*
H05C0.67750.00580.23820.058*
C380.3798 (4)0.2067 (3)0.03055 (17)0.0178 (8)
C390.4737 (5)0.1321 (3)0.06249 (17)0.0224 (8)
H0310.44630.05630.04790.027*
C400.6072 (5)0.1675 (3)0.11553 (18)0.0222 (8)
H0540.67280.11670.1360.027*
C410.6431 (4)0.2766 (3)0.13794 (17)0.0187 (8)
C420.5510 (4)0.3518 (3)0.10570 (18)0.0194 (8)
H0180.57680.42740.12070.023*
C430.4228 (4)0.3165 (3)0.05225 (18)0.0190 (8)
H0320.36330.36860.030.023*
C440.8474 (5)0.2447 (4)0.22982 (19)0.0304 (10)
H05G0.75780.18610.24270.046*
H05H0.9220.28470.26840.046*
H05I0.92070.21170.20470.046*
O10.1082 (16)0.2772 (11)0.4481 (7)0.034 (3)0.5
O20.7890 (3)0.8233 (2)0.68280 (13)0.0293 (7)
O30.4817 (3)0.0430 (2)0.57075 (13)0.0283 (6)
O40.2777 (3)0.3427 (2)0.78963 (12)0.0237 (6)
O50.085 (2)0.1068 (14)0.1294 (5)0.037 (3)0.5
O60.1854 (3)0.5247 (2)0.09059 (12)0.0209 (6)
O70.4683 (4)0.0594 (3)0.27137 (13)0.0319 (7)
O80.7629 (3)0.3197 (2)0.19171 (12)0.0231 (6)
Cl10.0738 (4)0.3106 (4)0.4565 (2)0.0283 (11)0.5
Cl20.0659 (5)0.0881 (4)0.10676 (18)0.0247 (9)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01540 (18)0.0208 (2)0.0135 (2)0.00573 (15)0.00244 (14)0.00556 (17)
Rh20.01738 (18)0.0173 (2)0.0175 (2)0.00511 (15)0.00556 (15)0.00546 (17)
P10.0156 (4)0.0228 (6)0.0141 (4)0.0068 (4)0.0039 (3)0.0060 (4)
P20.0165 (4)0.0174 (5)0.0181 (5)0.0053 (4)0.0043 (3)0.0059 (4)
C10.025 (4)0.048 (8)0.023 (4)0.003 (4)0.010 (3)0.010 (5)
C20.0161 (15)0.021 (2)0.0156 (17)0.0075 (14)0.0034 (13)0.0050 (15)
C30.0186 (16)0.025 (2)0.0161 (17)0.0070 (15)0.0041 (13)0.0002 (16)
C40.0189 (16)0.024 (2)0.0234 (19)0.0066 (15)0.0090 (14)0.0037 (17)
C50.0221 (17)0.021 (2)0.027 (2)0.0076 (15)0.0029 (15)0.0021 (17)
C60.0269 (18)0.028 (2)0.0158 (18)0.0110 (16)0.0020 (14)0.0017 (16)
C70.0192 (16)0.026 (2)0.0171 (17)0.0106 (15)0.0051 (14)0.0042 (16)
C80.034 (2)0.033 (3)0.055 (3)0.0122 (19)0.019 (2)0.010 (2)
C90.0193 (16)0.023 (2)0.0124 (16)0.0049 (14)0.0043 (13)0.0066 (15)
C100.0205 (16)0.022 (2)0.0131 (17)0.0053 (14)0.0023 (13)0.0002 (15)
C110.0219 (17)0.026 (2)0.0200 (18)0.0074 (15)0.0047 (14)0.0005 (17)
C120.0310 (19)0.023 (2)0.0154 (17)0.0126 (16)0.0066 (15)0.0015 (16)
C130.0254 (17)0.021 (2)0.0231 (19)0.0025 (15)0.0059 (15)0.0028 (17)
C140.0172 (16)0.028 (2)0.0224 (19)0.0049 (15)0.0058 (14)0.0052 (17)
C150.044 (2)0.020 (2)0.043 (3)0.0120 (19)0.011 (2)0.005 (2)
C160.0170 (15)0.022 (2)0.0160 (17)0.0080 (14)0.0059 (13)0.0054 (15)
C170.0199 (16)0.027 (2)0.0188 (18)0.0092 (15)0.0023 (14)0.0082 (17)
C180.0200 (16)0.028 (2)0.0177 (18)0.0097 (15)0.0030 (14)0.0107 (16)
C190.0170 (15)0.027 (2)0.0153 (17)0.0050 (15)0.0060 (13)0.0036 (16)
C200.0174 (15)0.025 (2)0.0181 (18)0.0102 (15)0.0060 (13)0.0041 (16)
C210.0191 (16)0.024 (2)0.0175 (18)0.0065 (15)0.0034 (13)0.0071 (16)
C220.0178 (16)0.038 (3)0.025 (2)0.0091 (16)0.0084 (15)0.0062 (19)
C230.018 (4)0.021 (6)0.020 (6)0.002 (4)0.008 (5)0.005 (5)
C240.0195 (16)0.016 (2)0.0179 (17)0.0078 (14)0.0021 (13)0.0012 (15)
C250.0163 (15)0.023 (2)0.0228 (19)0.0068 (14)0.0086 (13)0.0047 (16)
C260.0185 (15)0.018 (2)0.0209 (18)0.0051 (14)0.0075 (14)0.0059 (16)
C270.0197 (16)0.014 (2)0.0195 (18)0.0072 (14)0.0046 (13)0.0001 (15)
C280.0168 (15)0.024 (2)0.0215 (18)0.0076 (14)0.0088 (14)0.0045 (16)
C290.0173 (15)0.016 (2)0.0200 (18)0.0047 (14)0.0055 (13)0.0062 (15)
C300.0275 (18)0.025 (2)0.028 (2)0.0104 (16)0.0100 (16)0.0112 (18)
C310.0203 (16)0.0129 (19)0.0197 (18)0.0057 (14)0.0037 (14)0.0060 (15)
C320.0174 (15)0.020 (2)0.0217 (19)0.0059 (14)0.0023 (14)0.0052 (16)
C330.0270 (18)0.029 (2)0.0160 (18)0.0091 (16)0.0015 (14)0.0035 (17)
C340.0291 (18)0.022 (2)0.0185 (18)0.0061 (16)0.0088 (15)0.0024 (16)
C350.0207 (16)0.023 (2)0.0202 (19)0.0075 (15)0.0062 (14)0.0030 (16)
C360.0194 (15)0.018 (2)0.0187 (18)0.0058 (14)0.0042 (13)0.0060 (15)
C370.037 (2)0.057 (3)0.030 (2)0.018 (2)0.0184 (19)0.001 (2)
C380.0184 (15)0.019 (2)0.0161 (17)0.0047 (14)0.0032 (13)0.0053 (15)
C390.0273 (18)0.022 (2)0.0194 (19)0.0087 (16)0.0037 (15)0.0006 (16)
C400.0239 (17)0.025 (2)0.0198 (18)0.0098 (16)0.0029 (14)0.0068 (17)
C410.0150 (15)0.027 (2)0.0165 (17)0.0059 (14)0.0070 (13)0.0026 (16)
C420.0183 (15)0.017 (2)0.0246 (19)0.0038 (14)0.0081 (14)0.0014 (16)
C430.0130 (14)0.021 (2)0.0252 (19)0.0060 (14)0.0070 (13)0.0058 (16)
C440.031 (2)0.038 (3)0.022 (2)0.0116 (18)0.0023 (16)0.0038 (19)
O10.025 (4)0.048 (8)0.023 (4)0.003 (4)0.010 (3)0.010 (5)
O20.0238 (13)0.0297 (18)0.0314 (16)0.0005 (12)0.0029 (11)0.0069 (13)
O30.0341 (14)0.0233 (17)0.0329 (16)0.0137 (12)0.0114 (12)0.0018 (13)
O40.0215 (12)0.0350 (17)0.0199 (13)0.0121 (11)0.0102 (10)0.0124 (12)
O50.050 (6)0.043 (7)0.019 (7)0.001 (4)0.012 (5)0.004 (6)
O60.0208 (12)0.0209 (15)0.0264 (14)0.0120 (10)0.0095 (10)0.0099 (12)
O70.0364 (15)0.045 (2)0.0190 (14)0.0174 (14)0.0089 (12)0.0006 (13)
O80.0228 (12)0.0276 (17)0.0188 (13)0.0068 (11)0.0011 (10)0.0009 (12)
Cl10.0235 (17)0.031 (3)0.026 (2)0.0019 (17)0.0072 (14)0.002 (2)
Cl20.0301 (15)0.026 (2)0.017 (3)0.0001 (14)0.007 (2)0.004 (2)
Geometric parameters (Å, º) top
Rh1—C11.699 (12)C19—C201.385 (5)
Rh1—C1i1.699 (13)C20—C211.385 (5)
Rh1—P1i2.3257 (10)C20—H0430.95
Rh1—P12.3257 (10)C21—H0140.95
Rh1—Cl12.416 (5)C22—O41.431 (4)
Rh1—Cl1i2.416 (5)C22—H04D0.98
Rh2—C231.751 (11)C22—H04E0.98
Rh2—C23ii1.751 (11)C22—H04F0.98
Rh2—P2ii2.3321 (11)C23—Cl20.660 (9)
Rh2—P22.3321 (11)C23—O51.171 (13)
Rh2—Cl22.410 (4)C24—C291.392 (5)
Rh2—Cl2ii2.410 (4)C24—C251.402 (5)
P1—C161.815 (3)C25—C261.386 (5)
P1—C21.817 (4)C25—H0370.95
P1—C91.817 (4)C26—C271.384 (5)
P2—C241.804 (4)C26—H0190.95
P2—C311.824 (4)C27—O61.363 (4)
P2—C381.827 (4)C27—C281.401 (5)
C1—Cl10.720 (12)C28—C291.388 (5)
C1—O11.157 (18)C28—H0440.95
C2—C71.393 (5)C29—H0170.95
C2—C31.397 (5)C30—O61.438 (4)
C3—C41.383 (5)C30—H05D0.98
C3—H0230.95C30—H05E0.98
C4—C51.387 (5)C30—H05F0.98
C4—H0350.95C31—C361.389 (5)
C5—O21.365 (5)C31—C321.404 (5)
C5—C61.396 (5)C32—C331.383 (5)
C6—C71.382 (5)C32—H0210.95
C6—H0300.95C33—C341.403 (5)
C7—H0470.95C33—H0260.95
C8—O21.424 (5)C34—O71.361 (5)
C8—H04A0.98C34—C351.386 (5)
C8—H04B0.98C35—C361.395 (5)
C8—H04C0.98C35—H0160.95
C9—C141.397 (5)C36—H0410.95
C9—C101.400 (5)C37—O71.438 (5)
C10—C111.391 (5)C37—H05A0.98
C10—H0480.95C37—H05B0.98
C11—C121.386 (5)C37—H05C0.98
C11—H0360.95C38—C431.379 (5)
C12—O31.367 (5)C38—C391.399 (5)
C12—C131.392 (5)C39—C401.396 (5)
C13—C141.388 (6)C39—H0310.95
C13—H0220.95C40—C411.376 (6)
C14—H0460.95C40—H0540.95
C15—O31.433 (5)C41—O81.370 (4)
C15—H05J0.98C41—C421.399 (5)
C15—H05K0.98C42—C431.378 (5)
C15—H05L0.98C42—H0180.95
C16—C171.393 (5)C43—H0320.95
C16—C211.394 (5)C44—O81.422 (4)
C17—C181.385 (5)C44—H05G0.98
C17—H0340.95C44—H05H0.98
C18—C191.399 (5)C44—H05I0.98
C18—H0330.95O5—Cl20.511 (10)
C19—O41.363 (4)
C1—Rh1—C1i180.000 (4)C17—C18—H033120
C1—Rh1—P1i89.5 (4)C19—C18—H033120
C1i—Rh1—P1i90.5 (4)O4—C19—C20125.3 (3)
C1—Rh1—P190.5 (4)O4—C19—C18115.1 (3)
C1i—Rh1—P189.5 (4)C20—C19—C18119.6 (3)
P1i—Rh1—P1180C19—C20—C21119.7 (3)
C1—Rh1—Cl11.9 (4)C19—C20—H043120.1
C1i—Rh1—Cl1178.1 (4)C21—C20—H043120.1
P1i—Rh1—Cl188.80 (9)C20—C21—C16121.3 (3)
P1—Rh1—Cl191.20 (9)C20—C21—H014119.3
C1—Rh1—Cl1i178.1 (4)C16—C21—H014119.3
C1i—Rh1—Cl1i1.9 (4)O4—C22—H04D109.5
P1i—Rh1—Cl1i91.20 (9)O4—C22—H04E109.5
P1—Rh1—Cl1i88.80 (9)H04D—C22—H04E109.5
Cl1—Rh1—Cl1i180.0000 (10)O4—C22—H04F109.5
C23—Rh2—C23ii180.0 (9)H04D—C22—H04F109.5
C23—Rh2—P2ii88.1 (4)H04E—C22—H04F109.5
C23ii—Rh2—P2ii91.9 (4)Cl2—C23—Rh2177.8 (15)
C23—Rh2—P291.9 (4)O5—C23—Rh2176.8 (16)
C23ii—Rh2—P288.1 (4)C29—C24—C25117.9 (3)
P2ii—Rh2—P2180.00 (5)C29—C24—P2120.5 (3)
C23—Rh2—Cl20.6 (4)C25—C24—P2121.6 (3)
C23ii—Rh2—Cl2179.4 (4)C26—C25—C24121.2 (3)
P2ii—Rh2—Cl287.94 (10)C26—C25—H037119.4
P2—Rh2—Cl292.06 (10)C24—C25—H037119.4
C23—Rh2—Cl2ii179.4 (4)C27—C26—C25120.1 (3)
C23ii—Rh2—Cl2ii0.6 (4)C27—C26—H019120
P2ii—Rh2—Cl2ii92.06 (10)C25—C26—H019120
P2—Rh2—Cl2ii87.94 (10)O6—C27—C26124.4 (3)
Cl2—Rh2—Cl2ii180.0 (2)O6—C27—C28115.7 (3)
C16—P1—C2106.79 (17)C26—C27—C28119.8 (3)
C16—P1—C9103.67 (16)C29—C28—C27119.4 (3)
C2—P1—C9104.54 (16)C29—C28—H044120.3
C16—P1—Rh1109.09 (11)C27—C28—H044120.3
C2—P1—Rh1112.92 (11)C28—C29—C24121.6 (3)
C9—P1—Rh1118.87 (12)C28—C29—H017119.2
C24—P2—C31103.44 (16)C24—C29—H017119.2
C24—P2—C38104.95 (17)O6—C30—H05D109.5
C31—P2—C38104.75 (16)O6—C30—H05E109.5
C24—P2—Rh2111.46 (12)H05D—C30—H05E109.5
C31—P2—Rh2118.04 (12)O6—C30—H05F109.5
C38—P2—Rh2112.97 (11)H05D—C30—H05F109.5
Cl1—C1—Rh1173.6 (14)H05E—C30—H05F109.5
O1—C1—Rh1173.2 (14)C36—C31—C32118.0 (3)
C7—C2—C3118.0 (3)C36—C31—P2122.7 (3)
C7—C2—P1123.5 (3)C32—C31—P2119.2 (3)
C3—C2—P1118.3 (3)C33—C32—C31120.6 (3)
C4—C3—C2121.8 (3)C33—C32—H021119.7
C4—C3—H023119.1C31—C32—H021119.7
C2—C3—H023119.1C32—C33—C34120.5 (3)
C3—C4—C5119.4 (3)C32—C33—H026119.8
C3—C4—H035120.3C34—C33—H026119.8
C5—C4—H035120.3O7—C34—C35125.4 (3)
O2—C5—C4124.7 (3)O7—C34—C33115.0 (3)
O2—C5—C6115.7 (4)C35—C34—C33119.6 (3)
C4—C5—C6119.6 (4)C34—C35—C36119.2 (3)
C7—C6—C5120.4 (4)C34—C35—H016120.4
C7—C6—H030119.8C36—C35—H016120.4
C5—C6—H030119.8C31—C36—C35122.0 (3)
C6—C7—C2120.7 (3)C31—C36—H041119
C6—C7—H047119.6C35—C36—H041119
C2—C7—H047119.6O7—C37—H05A109.5
O2—C8—H04A109.5O7—C37—H05B109.5
O2—C8—H04B109.5H05A—C37—H05B109.5
H04A—C8—H04B109.5O7—C37—H05C109.5
O2—C8—H04C109.5H05A—C37—H05C109.5
H04A—C8—H04C109.5H05B—C37—H05C109.5
H04B—C8—H04C109.5C43—C38—C39118.6 (3)
C14—C9—C10117.3 (3)C43—C38—P2123.0 (3)
C14—C9—P1120.2 (3)C39—C38—P2118.1 (3)
C10—C9—P1122.5 (3)C40—C39—C38120.9 (4)
C11—C10—C9121.3 (4)C40—C39—H031119.5
C11—C10—H048119.4C38—C39—H031119.5
C9—C10—H048119.4C41—C40—C39119.5 (3)
C12—C11—C10120.2 (3)C41—C40—H054120.2
C12—C11—H036119.9C39—C40—H054120.2
C10—C11—H036119.9O8—C41—C40124.9 (3)
O3—C12—C11116.0 (3)O8—C41—C42115.3 (4)
O3—C12—C13124.4 (4)C40—C41—C42119.7 (3)
C11—C12—C13119.5 (4)C43—C42—C41120.2 (4)
C14—C13—C12119.8 (4)C43—C42—H018119.9
C14—C13—H022120.1C41—C42—H018119.9
C12—C13—H022120.1C42—C43—C38121.0 (3)
C13—C14—C9121.9 (3)C42—C43—H032119.5
C13—C14—H046119.1C38—C43—H032119.5
C9—C14—H046119.1O8—C44—H05G109.5
O3—C15—H05J109.5O8—C44—H05H109.5
O3—C15—H05K109.5H05G—C44—H05H109.5
H05J—C15—H05K109.5O8—C44—H05I109.5
O3—C15—H05L109.5H05G—C44—H05I109.5
H05J—C15—H05L109.5H05H—C44—H05I109.5
H05K—C15—H05L109.5C5—O2—C8117.3 (3)
C17—C16—C21118.3 (3)C12—O3—C15117.2 (3)
C17—C16—P1123.1 (3)C19—O4—C22117.1 (3)
C21—C16—P1118.5 (2)C27—O6—C30116.2 (3)
C18—C17—C16120.8 (3)C34—O7—C37116.8 (3)
C18—C17—H034119.6C41—O8—C44117.6 (3)
C16—C17—H034119.6O5—Cl2—C23177 (2)
C17—C18—C19120.0 (3)O5—Cl2—Rh2176 (2)
C1—Rh1—P1—C1693.0 (4)C18—C19—C20—C213.7 (6)
C1i—Rh1—P1—C1687.0 (4)C19—C20—C21—C160.6 (6)
Cl1—Rh1—P1—C1694.75 (17)C17—C16—C21—C202.3 (6)
Cl1i—Rh1—P1—C1685.25 (17)P1—C16—C21—C20175.0 (3)
C1—Rh1—P1—C2148.5 (4)C31—P2—C24—C29144.7 (3)
C1i—Rh1—P1—C231.5 (4)C38—P2—C24—C29105.8 (3)
Cl1—Rh1—P1—C2146.68 (16)Rh2—P2—C24—C2916.9 (3)
Cl1i—Rh1—P1—C233.32 (16)C31—P2—C24—C2535.9 (3)
C1—Rh1—P1—C925.5 (4)C38—P2—C24—C2573.6 (3)
C1i—Rh1—P1—C9154.5 (4)Rh2—P2—C24—C25163.7 (3)
Cl1—Rh1—P1—C923.70 (16)C29—C24—C25—C260.2 (5)
Cl1i—Rh1—P1—C9156.30 (16)P2—C24—C25—C26179.6 (3)
C23—Rh2—P2—C2497.8 (4)C24—C25—C26—C270.1 (6)
C23ii—Rh2—P2—C2482.2 (4)C25—C26—C27—O6177.9 (3)
Cl2—Rh2—P2—C2497.21 (17)C25—C26—C27—C281.0 (6)
Cl2ii—Rh2—P2—C2482.79 (17)O6—C27—C28—C29177.3 (3)
C23—Rh2—P2—C3121.7 (4)C26—C27—C28—C291.7 (6)
C23ii—Rh2—P2—C31158.3 (4)C27—C28—C29—C241.5 (6)
Cl2—Rh2—P2—C3122.28 (16)C25—C24—C29—C280.5 (5)
Cl2ii—Rh2—P2—C31157.72 (16)P2—C24—C29—C28178.9 (3)
C23—Rh2—P2—C38144.3 (4)C24—P2—C31—C36124.8 (3)
C23ii—Rh2—P2—C3835.7 (4)C38—P2—C31—C3615.1 (3)
Cl2—Rh2—P2—C38144.90 (17)Rh2—P2—C31—C36111.6 (3)
Cl2ii—Rh2—P2—C3835.10 (17)C24—P2—C31—C3258.5 (3)
C16—P1—C2—C74.8 (3)C38—P2—C31—C32168.2 (3)
C9—P1—C2—C7104.6 (3)Rh2—P2—C31—C3265.1 (3)
Rh1—P1—C2—C7124.7 (3)C36—C31—C32—C330.5 (5)
C16—P1—C2—C3171.4 (3)P2—C31—C32—C33176.2 (3)
C9—P1—C2—C379.1 (3)C31—C32—C33—C341.4 (6)
Rh1—P1—C2—C351.5 (3)C32—C33—C34—O7177.3 (3)
C7—C2—C3—C41.4 (5)C32—C33—C34—C352.6 (6)
P1—C2—C3—C4177.8 (3)O7—C34—C35—C36178.0 (3)
C2—C3—C4—C52.1 (6)C33—C34—C35—C361.9 (6)
C3—C4—C5—O2177.6 (3)C32—C31—C36—C351.2 (5)
C3—C4—C5—C61.4 (6)P2—C31—C36—C35175.4 (3)
O2—C5—C6—C7179.2 (3)C34—C35—C36—C310.0 (6)
C4—C5—C6—C70.1 (6)C24—P2—C38—C433.7 (3)
C5—C6—C7—C20.9 (5)C31—P2—C38—C43104.9 (3)
C3—C2—C7—C60.1 (5)Rh2—P2—C38—C43125.3 (3)
P1—C2—C7—C6176.1 (3)C24—P2—C38—C39169.4 (3)
C16—P1—C9—C1454.2 (3)C31—P2—C38—C3982.0 (3)
C2—P1—C9—C14165.9 (3)Rh2—P2—C38—C3947.8 (3)
Rh1—P1—C9—C1467.0 (3)C43—C38—C39—C400.5 (5)
C16—P1—C9—C10127.8 (3)P2—C38—C39—C40172.9 (3)
C2—P1—C9—C1016.0 (3)C38—C39—C40—C412.1 (5)
Rh1—P1—C9—C10111.0 (3)C39—C40—C41—O8175.8 (3)
C14—C9—C10—C111.5 (5)C39—C40—C41—C422.8 (5)
P1—C9—C10—C11179.6 (3)O8—C41—C42—C43177.8 (3)
C9—C10—C11—C120.0 (5)C40—C41—C42—C431.0 (5)
C10—C11—C12—O3179.6 (3)C41—C42—C43—C381.7 (5)
C10—C11—C12—C131.5 (5)C39—C38—C43—C422.4 (5)
O3—C12—C13—C14179.8 (3)P2—C38—C43—C42170.6 (3)
C11—C12—C13—C141.3 (5)C4—C5—O2—C85.7 (6)
C12—C13—C14—C90.3 (6)C6—C5—O2—C8173.3 (4)
C10—C9—C14—C131.7 (5)C11—C12—O3—C15178.2 (3)
P1—C9—C14—C13179.8 (3)C13—C12—O3—C152.9 (5)
C2—P1—C16—C1788.3 (4)C20—C19—O4—C227.5 (6)
C9—P1—C16—C1721.8 (4)C18—C19—O4—C22171.7 (3)
Rh1—P1—C16—C17149.4 (3)C26—C27—O6—C300.4 (5)
C2—P1—C16—C2194.6 (3)C28—C27—O6—C30179.3 (3)
C9—P1—C16—C21155.4 (3)C35—C34—O7—C373.5 (6)
Rh1—P1—C16—C2127.8 (3)C33—C34—O7—C37176.4 (3)
C21—C16—C17—C182.1 (6)C40—C41—O8—C444.7 (5)
P1—C16—C17—C18175.1 (3)C42—C41—O8—C44173.9 (3)
C16—C17—C18—C191.0 (6)O1—C1—Cl1—Rh1132 (13)
C17—C18—C19—O4175.4 (4)P1i—Rh1—Cl1—C1110 (11)
C17—C18—C19—C203.9 (6)P1—Rh1—Cl1—C170 (11)
O4—C19—C20—C21175.5 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H046···Cl10.952.813.191 (5)105
C32—H021···Cl20.952.823.157 (5)102
C8—H04A···Cl1iii0.982.733.693 (7)169
C8—H04A···O1iii0.982.523.486 (18)168
Symmetry code: (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[RhCl(C21H21O3P)2(CO)]
Mr871.07
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8350 (4), 12.3151 (8), 21.0591 (13)
α, β, γ (°)90.995 (2), 99.591 (2), 101.220 (2)
V3)1962.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.24 × 0.16 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.887, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
26016, 9327, 6401
Rint0.098
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.144, 1.04
No. of reflections9327
No. of parameters517
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.45, 1.17

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Rh1—C11.699 (12)Rh2—P22.3321 (11)
Rh1—P12.3257 (10)Rh2—Cl22.410 (4)
Rh1—Cl12.416 (5)C1—O11.157 (18)
Rh2—C231.751 (11)C23—O51.171 (13)
C1—Rh1—P190.5 (4)C23—Rh2—P291.9 (4)
P1—Rh1—Cl191.20 (9)P2—Rh2—Cl292.06 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H046···Cl10.952.813.191 (5)104.7
C32—H021···Cl20.952.823.157 (5)101.9
C8—H04A···Cl1i0.982.733.693 (7)169.0
C8—H04A···O1i0.982.523.486 (18)168.3
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank SASOL, the South African NRF and THRIP and the University of the Free State Research Fund for financial support. The views expressed do not necessarily represent that of the NRF.

References

First citationAngoletta, M. (1959). Gazz. Chim. Ital. 89, 2359–2361.  CAS Google Scholar
First citationBasson, S. S., Leipoldt, J. G. & Roodt, A. (1990). Acta Cryst. C46, 142–144.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SADABS and SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurgoyne, A. R., Meijboom, R., Muller, A. & Omondi, B. O. (2010). Acta Cryst. E66, m1380–m1381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationClarke, M. L., Holliday, G. L., Slawin, A. M. Z. & Woollins, J. D. (2002). J. Chem. Soc. Dalton Trans. pp 1093–1103.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKemp, G., Roodt, A. & Purcell, W. (1995). Rhodium Express, 12, 21–26.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcCleverty, J. A. & Wilkinson, G. (1990). Inorg. Synth. 28, 84–86.  CrossRef CAS Web of Science Google Scholar
First citationMeijboom, R., Muller, A. & Roodt, A. (2006). Acta Cryst. E62, m1309–m1311.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMonge, A., Gutiérrez-Puebla, E., Heras, J. V. & Pinilla, E. (1983). Acta Cryst. C39, 446–448.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtto, S., Mzamane, S. N. & Roodt, A. (1999). Acta Cryst. C55, 67–69.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRheingold, A. L. & Geib, S. J. (1987). Acta Cryst. C43, 784–786.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784–2785.  CrossRef CAS Web of Science Google Scholar
First citationWilson, M. R., Prock, A., Giering, W. P., Fernandez, A. L., Haar, C. M., Nolan, S. P. & Foxman, B. M. (2002). Organometallics, 21, 2758–2763.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds