inorganic compounds
Zirconium(IV) dilanthanum(III) pentasulfide
aDepartment of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208-3113, USA
*Correspondence e-mail: ibers@chem.northwestern.edu
Zirconium(IV) dilanthanum(III) pentasulfide, ZrLa2S5, crystallizes with four formula units in the Pnma in the U3S5 structure type. The comprises one Zr, one La and four S atoms. The Zr and three S atoms are situated on mirror planes. The structure consists of LaS8 face-sharing bicapped distorted trigonal prisms and ZrS7 edge-sharing monocapped octahedra.
Related literature
The cell parameters of ZrLa2S5 were previously reported from X-ray powder diffraction measurements (Kokhno & Serebrennikov, 1977). In a separate study, single-crystal X-ray diffraction measurements were used to determine the lattice parameters but not the structural parameters (Donohue & Jeitschko, 1974). Given that these lattice parameters, the and the stoichiometry are similar to those of U3S5, it was assumed that ZrLa2S5 and U3S5 are isotypic (Donohue & Jeitschko, 1974). For analogous structures, see: Du Pont de Nemours (1976) and Potel et al. (1972). Physical property measurements of this and related compounds have been reported. For optical properties, see: Alekseeva et al. (1980); for electrical properties, see: Senova et al. (1984). For synthetic details, see: Jin et al. (2009). For ionic radii, see: Shannon (1976). For standardization of structural data, see: Gelato & Parthé (1987).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536811045193/wm2549sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811045193/wm2549Isup2.hkl
ZrO2 (99.99%, Aldrich) and La2S3 (99.9%, Strem) were used as received. Sb2S3 was synthesized from the elements. ZrLa2S5 was crystallized in a two step reaction in carbon-coated fused-silica tubes that had been evacuated to 10 -4 Torr. In the first step, 0.02 g (0.16 mmol) ZrO2 and 0.3 g (0.08 mmol) La2S3 were heated at 1273 K for 99 h and cooled to 298 K in 14 h. The resulting powder was combined with 0.02 g (0.06 mmol) Sb2S3 and heated at 1273 K for 99 h then cooled to 873 K at a rate of 2 K/h before cooling to 298 K over 10 h. The resulting ZrLa2S5 formed black prismatic crystals in low yield (<5 wt%). These were mechanically separated from the remaining powder.
The atomic positions were standardized with use of the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak of 2.2 (2) e/Å3 is 0.50 Å and the deepest hole of -0.5 (2) e/Å3 is 0.99 Å from the Zr position.
Single crystals of ZrLa2S5 resulted from attempts to synthesize zirconium analogues of the uranium lanthanide oxysulfide compound UYb2O2S3 (Jin et al., 2009).
ZrLa2S5 adopts the U3S5 structure type (Potel et al., 1972). The unit-cell dimensions have been previously reported from single-crystal X-ray diffraction data (Donohue & Jeitschko, 1974) and from powder X-ray diffraction data (Kokhno & Serebrennikov, 1977). Unit-cell dimensions for ZrLa2S5 from the two single-crystal determinations compare favorably: a = 11.4864 (5), b = 8.2167 (5), c = 7.3894 (3) Å at room temperature (Donohue & Jeitschko, 1974) versus a = 11.4784 (4), b = 8.2010 (3), c = 7.3799 (3) Å from the present study at 100 K. (See also Kokhno & Serebrennikov, 1977). Isostructural compounds have been previously reported based on X-ray powder diffraction measurements for all trivalent lanthanides and yttrium excluding promethium, europium and ytterbium (Du Pont de Nemours, 1976).
The La—S interatomic distances (Table 1, Fig. 1) in the face-sharing bicapped distorted trigonal prisms LaS8 (Fig. 2) range from 2.8861 (8) to 3.0698 (9) Å. The Zr—S distances range from 2.5704 (8) to 2.7421 (11) Å. These values are close to the distances of 3.00 Å for La—S and 2.62 Å for Zr—S calculated from the summed ionic radii (Shannon, 1976).
Physical property measurements of ZrLa2S5 have been reported by Alekseeva et al. (1980) and Senova et al. (1984).
The cell parameters of ZrLa2S5 were previously reported from X-ray powder diffraction measurements (Kokhno & Serebrennikov, 1977). In a separate study, single-crystal X-ray diffraction measurements were used to determine the lattice parameters but not the structural parameters (Donohue & Jeitschko, 1974). Given that these lattice parameters, the
and the stoichiometry are similar to those of U3S5, it was assumed that ZrLa2S5 and U3S5 are isotypic (Donohue & Jeitschko, 1974). For analogous structures, see: Du Pont de Nemours (1976) and Potel et al. (1972). Physical property measurements of this and related compounds have been reported. For optical properties, see: Alekseeva et al. (1980); for electrical properties, see: Senova et al. (1984). For synthetic details, see: Jin et al. (2009). For ionic radii, see: Shannon (1976). For standardization of structural data, see: Gelato & Parthé (1987).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The asymmetric unit of ZrLa2S5. Displacement ellipsoids are displayed at the 95% probability level. | |
Fig. 2. The ZrLa2S5 structure. La atoms are blue, Zr atoms are black, S atoms are yellow |
ZrLa2S5 | Dx = 5.061 Mg m−3 |
Mr = 529.34 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 6255 reflections |
a = 11.4784 (4) Å | θ = 3.1–27.9° |
b = 8.2010 (3) Å | µ = 14.93 mm−1 |
c = 7.3799 (3) Å | T = 100 K |
V = 694.70 (5) Å3 | Prism, black |
Z = 4 | 0.12 × 0.11 × 0.09 mm |
F(000) = 936 |
Bruker APEXII CCD diffractometer | 890 independent reflections |
Radiation source: fine-focus sealed tube | 877 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
φ and ω scans | θmax = 27.9°, θmin = 3.3° |
Absorption correction: numerical [face indexed (SADABS; Bruker, 2009)] | h = −14→15 |
Tmin = 0.263, Tmax = 0.340 | k = −10→6 |
8134 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.017 | [1.00000 + 0.00000exp(0.00(sinθ/λ)2)]/ [σ2(Fo2) + 0.0000 + 0.0000*P + (0.0158P)2 + 0.0000sinθ/λ] where P = 1.00000Fo2 + 0.00000Fc2 |
wR(F2) = 0.056 | (Δ/σ)max = 0.001 |
S = 2.51 | Δρmax = 2.20 e Å−3 |
890 reflections | Δρmin = −0.54 e Å−3 |
44 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0015 (2) |
ZrLa2S5 | V = 694.70 (5) Å3 |
Mr = 529.34 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 11.4784 (4) Å | µ = 14.93 mm−1 |
b = 8.2010 (3) Å | T = 100 K |
c = 7.3799 (3) Å | 0.12 × 0.11 × 0.09 mm |
Bruker APEXII CCD diffractometer | 890 independent reflections |
Absorption correction: numerical [face indexed (SADABS; Bruker, 2009)] | 877 reflections with I > 2σ(I) |
Tmin = 0.263, Tmax = 0.340 | Rint = 0.018 |
8134 measured reflections |
R[F2 > 2σ(F2)] = 0.017 | 44 parameters |
wR(F2) = 0.056 | 0 restraints |
S = 2.51 | Δρmax = 2.20 e Å−3 |
890 reflections | Δρmin = −0.54 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.328759 (18) | 0.501789 (17) | 0.44160 (3) | 0.00537 (12) | |
Zr1 | 0.01001 (3) | 0.2500 | 0.42914 (5) | 0.00286 (13) | |
S1 | 0.29147 (10) | 0.2500 | 0.15995 (15) | 0.0061 (2) | |
S2 | 0.07363 (7) | 0.53474 (10) | 0.32234 (11) | 0.00812 (18) | |
S3 | 0.19311 (10) | 0.2500 | 0.64058 (15) | 0.0063 (2) | |
S4 | 0.00443 (9) | 0.2500 | 0.05768 (14) | 0.0073 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.00643 (17) | 0.00439 (17) | 0.00529 (17) | 0.00023 (5) | −0.00022 (6) | −0.00036 (5) |
Zr1 | 0.0030 (2) | 0.0028 (2) | 0.0028 (2) | 0.000 | −0.00063 (13) | 0.000 |
S1 | 0.0073 (5) | 0.0053 (5) | 0.0056 (5) | 0.000 | −0.0013 (4) | 0.000 |
S2 | 0.0102 (4) | 0.0080 (3) | 0.0062 (4) | 0.0004 (3) | 0.0007 (3) | −0.0005 (3) |
S3 | 0.0086 (5) | 0.0051 (5) | 0.0051 (5) | 0.000 | 0.0008 (4) | 0.000 |
S4 | 0.0066 (6) | 0.0062 (5) | 0.0090 (6) | 0.000 | 0.0007 (4) | 0.000 |
La1—S4i | 2.8861 (8) | Zr1—S2viii | 2.7206 (9) |
La1—S4ii | 2.9230 (7) | Zr1—S2ix | 2.7206 (9) |
La1—S1ii | 2.9402 (8) | Zr1—S4 | 2.7421 (11) |
La1—S1 | 2.9610 (8) | S1—Zr1i | 2.5932 (12) |
La1—S3 | 2.9740 (8) | S1—La1x | 2.9402 (8) |
La1—S3iii | 3.0235 (8) | S1—La1iii | 2.9402 (8) |
La1—S2ii | 3.0398 (8) | S1—La1vi | 2.9609 (8) |
La1—S2 | 3.0698 (9) | S2—Zr1viii | 2.7206 (9) |
La1—La1iv | 4.0247 (4) | S2—La1iii | 3.0398 (8) |
La1—La1v | 4.0712 (3) | S3—La1vi | 2.9739 (8) |
La1—La1iii | 4.1092 (2) | S3—La1ii | 3.0235 (8) |
La1—La1ii | 4.1092 (2) | S3—La1xi | 3.0235 (8) |
Zr1—S2vi | 2.5704 (8) | S4—La1xii | 2.8861 (8) |
Zr1—S2 | 2.5705 (8) | S4—La1vii | 2.8861 (8) |
Zr1—S1vii | 2.5932 (12) | S4—La1iii | 2.9230 (7) |
Zr1—S3 | 2.6176 (12) | S4—La1x | 2.9230 (7) |
S4i—La1—S4ii | 92.295 (9) | S2—La1—La1ii | 80.696 (17) |
S4i—La1—S1ii | 145.31 (3) | La1iv—La1—La1ii | 103.733 (7) |
S4ii—La1—S1ii | 70.41 (3) | La1v—La1—La1ii | 90.408 (4) |
S4i—La1—S1 | 66.63 (3) | La1iii—La1—La1ii | 127.785 (11) |
S4ii—La1—S1 | 141.82 (3) | S2vi—Zr1—S2 | 130.58 (4) |
S1ii—La1—S1 | 143.100 (13) | S2vi—Zr1—S1vii | 101.36 (2) |
S4i—La1—S3 | 82.42 (2) | S2—Zr1—S1vii | 101.36 (2) |
S4ii—La1—S3 | 132.98 (3) | S2vi—Zr1—S3 | 87.40 (2) |
S1ii—La1—S3 | 87.96 (2) | S2—Zr1—S3 | 87.40 (2) |
S1—La1—S3 | 77.69 (2) | S1vii—Zr1—S3 | 158.10 (3) |
S4i—La1—S3iii | 122.76 (3) | S2vi—Zr1—S2viii | 153.69 (2) |
S4ii—La1—S3iii | 78.51 (2) | S2—Zr1—S2viii | 73.59 (3) |
S1ii—La1—S3iii | 84.12 (2) | S1vii—Zr1—S2viii | 80.19 (3) |
S1—La1—S3iii | 86.66 (2) | S3—Zr1—S2viii | 83.19 (3) |
S3—La1—S3iii | 141.885 (17) | S2vi—Zr1—S2ix | 73.59 (3) |
S4i—La1—S2ii | 70.75 (3) | S2—Zr1—S2ix | 153.69 (2) |
S4ii—La1—S2ii | 63.66 (2) | S1vii—Zr1—S2ix | 80.19 (3) |
S1ii—La1—S2ii | 74.61 (3) | S3—Zr1—S2ix | 83.19 (3) |
S1—La1—S2ii | 129.30 (2) | S2viii—Zr1—S2ix | 80.92 (4) |
S3—La1—S2ii | 70.62 (3) | S2vi—Zr1—S4 | 72.55 (2) |
S3iii—La1—S2ii | 140.91 (2) | S2—Zr1—S4 | 72.55 (2) |
S4i—La1—S2 | 136.89 (2) | S1vii—Zr1—S4 | 73.97 (3) |
S4ii—La1—S2 | 130.36 (2) | S3—Zr1—S4 | 127.93 (4) |
S1ii—La1—S2 | 69.42 (3) | S2viii—Zr1—S4 | 131.74 (2) |
S1—La1—S2 | 73.87 (3) | S2ix—Zr1—S4 | 131.74 (2) |
S3—La1—S2 | 72.74 (3) | Zr1i—S1—La1x | 108.37 (3) |
S3iii—La1—S2 | 69.57 (3) | Zr1i—S1—La1iii | 108.37 (3) |
S2ii—La1—S2 | 128.71 (2) | La1x—S1—La1iii | 87.63 (3) |
S4i—La1—La1iv | 46.526 (16) | Zr1i—S1—La1vi | 92.19 (3) |
S4ii—La1—La1iv | 45.769 (15) | La1x—S1—La1vi | 88.267 (9) |
S1ii—La1—La1iv | 110.25 (2) | La1iii—S1—La1vi | 159.29 (4) |
S1—La1—La1iv | 106.65 (2) | Zr1i—S1—La1 | 92.19 (3) |
S3—La1—La1iv | 113.61 (2) | La1x—S1—La1 | 159.29 (4) |
S3iii—La1—La1iv | 104.09 (2) | La1iii—S1—La1 | 88.267 (9) |
S2ii—La1—La1iv | 56.031 (16) | La1vi—S1—La1 | 88.43 (3) |
S2—La1—La1iv | 173.643 (17) | Zr1—S2—Zr1viii | 106.41 (3) |
S4i—La1—La1v | 135.682 (15) | Zr1—S2—La1iii | 107.38 (3) |
S4ii—La1—La1v | 45.861 (14) | Zr1viii—S2—La1iii | 144.80 (3) |
S1ii—La1—La1v | 46.186 (15) | Zr1—S2—La1 | 95.92 (3) |
S1—La1—La1v | 134.217 (15) | Zr1viii—S2—La1 | 101.56 (3) |
S3—La1—La1v | 133.973 (16) | La1iii—S2—La1 | 84.53 (2) |
S3iii—La1—La1v | 47.682 (15) | Zr1—S3—La1vi | 97.24 (3) |
S2ii—La1—La1v | 95.655 (16) | Zr1—S3—La1 | 97.24 (3) |
S2—La1—La1v | 84.950 (15) | La1vi—S3—La1 | 87.95 (3) |
La1iv—La1—La1v | 90.417 (4) | Zr1—S3—La1ii | 111.80 (3) |
S4i—La1—La1iii | 107.70 (2) | La1vi—S3—La1ii | 150.89 (4) |
S4ii—La1—La1iii | 123.806 (19) | La1—S3—La1ii | 86.491 (11) |
S1ii—La1—La1iii | 106.89 (2) | Zr1—S3—La1xi | 111.80 (3) |
S1—La1—La1iii | 45.659 (16) | La1vi—S3—La1xi | 86.491 (11) |
S3—La1—La1iii | 102.01 (2) | La1—S3—La1xi | 150.89 (4) |
S3iii—La1—La1iii | 46.251 (17) | La1ii—S3—La1xi | 84.64 (3) |
S2ii—La1—La1iii | 172.533 (17) | Zr1—S4—La1xii | 90.83 (3) |
S2—La1—La1iii | 47.425 (16) | Zr1—S4—La1vii | 90.83 (3) |
La1iv—La1—La1iii | 128.467 (9) | La1xii—S4—La1vii | 91.36 (3) |
La1v—La1—La1iii | 90.409 (4) | Zr1—S4—La1iii | 106.12 (3) |
S4i—La1—La1ii | 107.50 (2) | La1xii—S4—La1iii | 163.03 (4) |
S4ii—La1—La1ii | 91.72 (2) | La1vii—S4—La1iii | 87.705 (9) |
S1ii—La1—La1ii | 46.074 (16) | Zr1—S4—La1x | 106.12 (3) |
S1—La1—La1ii | 124.18 (2) | La1xii—S4—La1x | 87.705 (9) |
S3—La1—La1ii | 47.258 (17) | La1vii—S4—La1x | 163.03 (4) |
S3iii—La1—La1ii | 128.91 (2) | La1iii—S4—La1x | 88.28 (3) |
S2ii—La1—La1ii | 48.044 (16) |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) −x+1/2, −y+1, z+1/2; (iii) −x+1/2, −y+1, z−1/2; (iv) −x+1, −y+1, −z+1; (v) x, −y+3/2, z; (vi) x, −y+1/2, z; (vii) x−1/2, y, −z+1/2; (viii) −x, −y+1, −z+1; (ix) −x, y−1/2, −z+1; (x) −x+1/2, y−1/2, z−1/2; (xi) −x+1/2, y−1/2, z+1/2; (xii) x−1/2, −y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | ZrLa2S5 |
Mr | 529.34 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 100 |
a, b, c (Å) | 11.4784 (4), 8.2010 (3), 7.3799 (3) |
V (Å3) | 694.70 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 14.93 |
Crystal size (mm) | 0.12 × 0.11 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Numerical [face indexed (SADABS; Bruker, 2009)] |
Tmin, Tmax | 0.263, 0.340 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8134, 890, 877 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.659 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.017, 0.056, 2.51 |
No. of reflections | 890 |
No. of parameters | 44 |
Δρmax, Δρmin (e Å−3) | 2.20, −0.54 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2009).
Acknowledgements
The research was kindly supported by the US Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Divison of Materials Science and Engineering grant ER-15522. Use was made of the IMSERC X-ray Facility at Northwestern University, supported by the International Institute of Nanotechnology (IIN)
References
Alekseeva, T. P., Senova, R. N., Cherkasova, T. G. & Kokhno, G. V. (1980). Khim. Khim. Tekhnol. Geol. Mater. Reg. Nauchno-Prakt. Konf. 3, 8–9. Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Donohue, P. C. & Jeitschko, W. (1974). Mater. Res. Bull. 9, 1333–1336. CrossRef CAS Google Scholar
Du Pont de Nemours, E. I., and Co. (1976). US Patent No. 3 956 461. Google Scholar
Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143. CrossRef Web of Science IUCr Journals Google Scholar
Jin, G. B., Choi, E. S. & Ibers, J. A. (2009). Inorg. Chem. 48, 8227–8232. Web of Science CrossRef PubMed CAS Google Scholar
Kokhno, G. V. & Serebrennikov, V. V. (1977). Zh. Neorg. Khim. 22, 2111–2114. CAS Google Scholar
Palmer, D. (2009). CrystalMaker Software. CrystalMaker Software Ltd, Oxford, England. Google Scholar
Potel, M., Brochu, R., Padiou, J. & Grandjean, D. (1972). C. R. Seances Acad. Sci. Ser. C, 275, 1419–1421. CAS Google Scholar
Senova, R. N., Alekseeva, T. P., Cherkasova, T. G. & Kokhno, G. V. (1984). Sintez i Reakts, pp. 89–92. Tomsk: Sposobnost Veshchestv. Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Single crystals of ZrLa2S5 resulted from attempts to synthesize zirconium analogues of the uranium lanthanide oxysulfide compound UYb2O2S3 (Jin et al., 2009).
ZrLa2S5 adopts the U3S5 structure type (Potel et al., 1972). The unit-cell dimensions have been previously reported from single-crystal X-ray diffraction data (Donohue & Jeitschko, 1974) and from powder X-ray diffraction data (Kokhno & Serebrennikov, 1977). Unit-cell dimensions for ZrLa2S5 from the two single-crystal determinations compare favorably: a = 11.4864 (5), b = 8.2167 (5), c = 7.3894 (3) Å at room temperature (Donohue & Jeitschko, 1974) versus a = 11.4784 (4), b = 8.2010 (3), c = 7.3799 (3) Å from the present study at 100 K. (See also Kokhno & Serebrennikov, 1977). Isostructural compounds have been previously reported based on X-ray powder diffraction measurements for all trivalent lanthanides and yttrium excluding promethium, europium and ytterbium (Du Pont de Nemours, 1976).
The La—S interatomic distances (Table 1, Fig. 1) in the face-sharing bicapped distorted trigonal prisms LaS8 (Fig. 2) range from 2.8861 (8) to 3.0698 (9) Å. The Zr—S distances range from 2.5704 (8) to 2.7421 (11) Å. These values are close to the distances of 3.00 Å for La—S and 2.62 Å for Zr—S calculated from the summed ionic radii (Shannon, 1976).
Physical property measurements of ZrLa2S5 have been reported by Alekseeva et al. (1980) and Senova et al. (1984).