metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis­[μ-3-(3-hy­dr­oxy­phen­yl)propenoato]bis­­{aqua­(2,2′-bi­pyridine)­[3-(3-hy­dr­oxy­phen­yl)propenoato]neodymium(III)} 2,2′-bi­pyridine disolvate dihydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wyh@zjnu.edu.cn

(Received 27 October 2011; accepted 25 November 2011; online 30 November 2011)

The dinuclear title compound, [Nd2(C9H7O3)6(C10H8N2)2]·2C10H8N2·2H2O, was synthesized under hydro­thermal conditions. The centrosymmetric complex consists of two nine-coordinated Nd3+ cations, six 3-hy­droxy­cinnamate anions and two chelating 2,2′-bipyridine mol­ecules. The coordination geometry around the cations can be best described as distorted tricapped trigonal-prismatic. The carboxyl­ate groups show different coordination and bridging modes. Two of them chelate to one Nd3+ cation, two bridge the two cations in a bis-monodentate fashion, and two chelate to one and bridge monodentately to the symmetry-related Nd3+ cation. The dinuclear mol­ecule is surrounded by two 2,2′-bipyridine solvent and two water mol­ecules. Extensive O—H⋯O and O—H⋯N hydrogen-bonding inter­actions between the components lead to the formation of a three-dimensional network.

Related literature

For related structures, see: Casas et al. (2008[Casas, J., Couse, M. D., Garcia-Vega, M., Rosende, M., Sanchez, A., Sordo, J., Varela, J. M. & Vazquez-Lopez, E. M. (2008). Polyhedron, 27, 2436-2446.]); Crowther et al. (2008[Crowther, D., Chowdhury, M. & Kariuki, B. M. (2008). J. Mol. Struct. 872, 64-74.]); Gossauer et al. (2004[Gossauer, A., Nydegger, F., Kiss, T., Sleziak, R. & Stoeckli-Evans, H. (2004). J. Am. Chem. Soc. 126, 1764-1783.]); Zhang et al. (2010[Zhang, C.-Y., Fu, J.-D. & Wen, Y.-H. (2010). Acta Cryst. E66, m1519.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd2(C9H7O3)6(C10H8N2)2]·2C10H8N2·2H2O

  • Mr = 1928.12

  • Monoclinic, P 21 /c

  • a = 10.7333 (2) Å

  • b = 28.9077 (5) Å

  • c = 14.3276 (3) Å

  • β = 108.274 (1)°

  • V = 4221.30 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 296 K

  • 0.24 × 0.11 × 0.07 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göettingen, Germany.]) Tmin = 0.84, Tmax = 0.91

  • 36893 measured reflections

  • 9735 independent reflections

  • 6140 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.083

  • S = 1.00

  • 9735 reflections

  • 574 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯N4i 0.87 (5) 2.04 (5) 2.897 (6) 168 (5)
O3—H3⋯O1Wii 0.96 (4) 1.68 (2) 2.618 (5) 163 (5)
O6—H6⋯O1iii 0.93 (4) 1.79 (2) 2.703 (4) 168 (4)
O9—H9⋯N3i 0.96 (4) 1.90 (2) 2.849 (5) 175 (5)
O1W—H1WA⋯O8 0.87 (4) 1.96 (4) 2.825 (4) 175 (5)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Compounds containing metal ions with 3-hydroxycinnamate ligands (L) have been reported previously (e.g. Casas et al., 2008; Crowther et al., 2008; Gossauer et al., 2004; Zhang et al., 2010). Herein we report a new Nd3+ compound, Nd2L6(bipy)2.2(bipy).2(H2O), derived from 3-hydroxycinnamic acid and 2,2'-bipyridine (bipy) ligands.

A perspective view of the molecular struture of the centrosymmetric binuclear compound is presented in Fig. 1. It contains two nine-coordinated Nd3+ cations, which are linked by four carboxylate groups from four 3-hydroxycinnamate anions, and are also coordinated by two N atoms from two chelating 2,2'-bipyridine molecules. The molecule is surrounded by two solvent 2,2'-bipyridine and two solvent H2O molecules. The carboxylate groups adopt different coordination and bridging modes. Two groups are chelating; two are monodentate and bridging; two are both chelating and bridging. Corresponding Nd—O distances are in the range 2.380 (3) to 2.635 (2) Å, with an Nd···Nd separation of 3.9928 (2) Å. Two N atoms of 2,2'-bipyridine [Nd—N distances are 2.617 (3) and 2.646 (3) Å] complete the nine-coordinate configuration of Nd3+. Its coordination geometry can be best described as a distorted tricapped trigonal prism.

The dihedral angles between two pyridyl rings from the coordinating and the solvent 2,2'-bipyridine molecules are quite different (10.65 (13) and 48.61 (16) °, respectively). There are extensive intermolecular O—H···N and O—H···O hydrogen-bonding interactions involving the 3-hydroxycinnamate anions, the solvent 2,2'-bipyridine and water molecules (Table 1), resulting in the formation of three-dimensional network structure (Fig. 2).

Related literature top

For related structures, see: Casas et al. (2008); Crowther et al. (2008); Gossauer et al. (2004); Zhang et al. (2010).

Experimental top

A mixture of Nd(NO3)3 (0.3302 g, 0.5 mmol) ,3-hydroxycinnamic acid (0.2462 g, 1.5 mmol) and 2,2'-bipyridine (0.2343 g, 1.5 mmol) was dissolved in 16 mL EtOH/H2O (v/v, 1:15) and then sealed in a 25 ml stainless steel reactor with a telflon liner and heated at 433 K for 72 h, and subsequently cooled to room temperature over 3 days. Then, the reactor was cooled to room temperature at a speed of 5 Kh-1. Colourless single crystals of the title compound were obtained by slow evaporation of the filtrate over a few days.

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93Å Uiso(H) = 1.2Ueq(C)]. Water H atoms were located in different maps and refined with distance restraints of O—H = 0.85 (2) Å and H—H = 1.35 Å, with displacement parameters set at 1.5Ueq(O).

Structure description top

Compounds containing metal ions with 3-hydroxycinnamate ligands (L) have been reported previously (e.g. Casas et al., 2008; Crowther et al., 2008; Gossauer et al., 2004; Zhang et al., 2010). Herein we report a new Nd3+ compound, Nd2L6(bipy)2.2(bipy).2(H2O), derived from 3-hydroxycinnamic acid and 2,2'-bipyridine (bipy) ligands.

A perspective view of the molecular struture of the centrosymmetric binuclear compound is presented in Fig. 1. It contains two nine-coordinated Nd3+ cations, which are linked by four carboxylate groups from four 3-hydroxycinnamate anions, and are also coordinated by two N atoms from two chelating 2,2'-bipyridine molecules. The molecule is surrounded by two solvent 2,2'-bipyridine and two solvent H2O molecules. The carboxylate groups adopt different coordination and bridging modes. Two groups are chelating; two are monodentate and bridging; two are both chelating and bridging. Corresponding Nd—O distances are in the range 2.380 (3) to 2.635 (2) Å, with an Nd···Nd separation of 3.9928 (2) Å. Two N atoms of 2,2'-bipyridine [Nd—N distances are 2.617 (3) and 2.646 (3) Å] complete the nine-coordinate configuration of Nd3+. Its coordination geometry can be best described as a distorted tricapped trigonal prism.

The dihedral angles between two pyridyl rings from the coordinating and the solvent 2,2'-bipyridine molecules are quite different (10.65 (13) and 48.61 (16) °, respectively). There are extensive intermolecular O—H···N and O—H···O hydrogen-bonding interactions involving the 3-hydroxycinnamate anions, the solvent 2,2'-bipyridine and water molecules (Table 1), resulting in the formation of three-dimensional network structure (Fig. 2).

For related structures, see: Casas et al. (2008); Crowther et al. (2008); Gossauer et al. (2004); Zhang et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x + 2,-y,-z + 1]
[Figure 2] Fig. 2. View of the supramolecular network defined by hydrogen bonding interactions.
Tetrakis[µ-3-(3-hydroxyphenyl)propenoato]bis{aqua(2,2'-bipyridine)[3-(3- hydroxyphenyl)propenoato]neodymium(III)} 2,2'-bipyridine disolvate dihydrate top
Crystal data top
[Nd2(C9H7O3)6(C10H8N2)2]·2C10H8N2·2H2OF(000) = 1956
Mr = 1928.12Dx = 1.517 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3747 reflections
a = 10.7333 (2) Åθ = 1.4–27.6°
b = 28.9077 (5) ŵ = 1.30 mm1
c = 14.3276 (3) ÅT = 296 K
β = 108.274 (1)°Block, colorless
V = 4221.30 (14) Å30.24 × 0.11 × 0.07 mm
Z = 2
Data collection top
Bruker APEXII area-detector
diffractometer
9735 independent reflections
Radiation source: fine-focus sealed tube6140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω scansθmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.84, Tmax = 0.91k = 3137
36893 measured reflectionsl = 1218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0225P)2]
where P = (Fo2 + 2Fc2)/3
9735 reflections(Δ/σ)max = 0.001
574 parametersΔρmax = 1.13 e Å3
7 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Nd2(C9H7O3)6(C10H8N2)2]·2C10H8N2·2H2OV = 4221.30 (14) Å3
Mr = 1928.12Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.7333 (2) ŵ = 1.30 mm1
b = 28.9077 (5) ÅT = 296 K
c = 14.3276 (3) Å0.24 × 0.11 × 0.07 mm
β = 108.274 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
9735 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6140 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.91Rint = 0.078
36893 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0457 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.13 e Å3
9735 reflectionsΔρmin = 0.65 e Å3
574 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.831518 (18)0.015918 (7)0.397023 (15)0.02703 (7)
N10.6264 (3)0.07010 (11)0.3784 (2)0.0384 (8)
N20.7276 (3)0.06032 (11)0.2317 (2)0.0341 (8)
N31.0336 (4)0.19224 (15)0.6936 (3)0.0627 (11)
N40.9520 (4)0.30801 (15)0.6957 (3)0.0653 (12)
O10.7649 (2)0.04827 (9)0.27042 (19)0.0390 (7)
O1W0.8072 (4)0.18385 (12)0.3349 (3)0.0835 (12)
H1WA0.845 (5)0.1579 (12)0.358 (4)0.125*
H1WB0.841 (5)0.1884 (19)0.288 (3)0.125*
O20.6300 (3)0.03295 (10)0.3539 (2)0.0475 (8)
O30.3636 (3)0.25709 (12)0.1387 (3)0.0891 (13)
H30.290 (3)0.2761 (15)0.138 (4)0.107*
O40.8074 (2)0.01453 (9)0.55653 (19)0.0407 (7)
O50.9911 (2)0.00966 (9)0.67152 (18)0.0362 (7)
O60.8780 (3)0.06697 (11)1.1306 (2)0.0553 (9)
H60.837 (4)0.0650 (14)1.179 (2)0.066*
O71.0478 (2)0.05061 (8)0.52033 (18)0.0313 (6)
O80.9189 (2)0.09865 (8)0.4161 (2)0.0389 (7)
O91.2759 (3)0.30599 (12)0.3496 (3)0.0791 (11)
H91.196 (3)0.3049 (17)0.296 (3)0.095*
C11.2941 (5)0.27173 (16)0.4170 (4)0.0547 (13)
C21.2018 (4)0.23699 (13)0.4114 (3)0.0436 (11)
H2A1.12240.23760.36080.052*
C31.2264 (4)0.20148 (13)0.4801 (3)0.0376 (10)
C41.3427 (4)0.20126 (15)0.5574 (3)0.0461 (11)
H4A1.36020.17780.60410.055*
C51.4324 (5)0.23641 (17)0.5640 (4)0.0648 (15)
H5A1.50930.23700.61690.078*
C61.4101 (5)0.27068 (17)0.4937 (4)0.0640 (15)
H6A1.47370.29320.49800.077*
C71.1278 (4)0.16482 (14)0.4648 (3)0.0395 (10)
H7A1.04780.17130.41770.047*
C81.1346 (4)0.12442 (13)0.5070 (3)0.0375 (10)
H8A1.21110.11680.55680.045*
C91.0275 (4)0.09037 (13)0.4796 (3)0.0322 (9)
C100.3132 (5)0.21370 (16)0.1416 (4)0.0548 (13)
C110.4023 (4)0.17935 (15)0.1817 (3)0.0472 (12)
H11A0.49170.18570.20210.057*
C120.3574 (4)0.13491 (15)0.1914 (3)0.0407 (10)
C130.2243 (4)0.12596 (16)0.1601 (3)0.0529 (12)
H13A0.19420.09650.16780.063*
C140.1352 (5)0.16042 (18)0.1175 (4)0.0609 (14)
H14A0.04590.15390.09470.073*
C150.1795 (4)0.20420 (18)0.1091 (3)0.0616 (14)
H15A0.11990.22760.08150.074*
C160.4520 (4)0.09847 (14)0.2386 (3)0.0440 (11)
H16A0.42130.07500.27010.053*
C170.5764 (4)0.09551 (13)0.2408 (3)0.0393 (10)
H17A0.61120.11830.21050.047*
C180.6605 (4)0.05660 (13)0.2908 (3)0.0337 (9)
C190.7990 (4)0.05164 (14)1.0418 (3)0.0391 (10)
C200.8559 (4)0.04089 (14)0.9707 (3)0.0385 (10)
H20A0.94610.04430.98490.046*
C210.7824 (4)0.02509 (13)0.8783 (3)0.0338 (10)
C220.6472 (4)0.01986 (14)0.8582 (3)0.0421 (11)
H22A0.59540.00960.79670.050*
C230.5911 (4)0.03002 (15)0.9300 (3)0.0500 (12)
H23A0.50140.02560.91710.060*
C240.6654 (4)0.04660 (15)1.0208 (3)0.0455 (11)
H24A0.62530.05431.06760.055*
C250.8479 (4)0.01611 (13)0.8042 (3)0.0358 (9)
H25A0.93900.01750.82630.043*
C260.7942 (4)0.00642 (13)0.7111 (3)0.0371 (10)
H26A0.70350.00340.68710.045*
C270.8703 (4)0.00003 (13)0.6416 (3)0.0334 (10)
C280.7741 (4)0.05261 (14)0.1567 (3)0.0401 (10)
H28A0.83110.02790.16150.048*
C290.7424 (4)0.07910 (16)0.0735 (3)0.0563 (13)
H29A0.77400.07160.02190.068*
C300.6637 (5)0.11667 (18)0.0676 (4)0.0704 (16)
H30A0.64310.13610.01320.084*
C310.6153 (5)0.12521 (16)0.1442 (4)0.0640 (15)
H31A0.56150.15070.14160.077*
C320.6458 (4)0.09633 (14)0.2249 (3)0.0393 (10)
C330.5880 (4)0.10092 (15)0.3063 (3)0.0433 (11)
C340.4948 (5)0.13386 (18)0.3052 (4)0.0732 (16)
H34A0.47210.15620.25600.088*
C350.4354 (5)0.1334 (2)0.3779 (4)0.088 (2)
H35A0.37270.15550.37830.106*
C360.4694 (5)0.10040 (19)0.4486 (4)0.0692 (15)
H36A0.42800.09860.49660.083*
C370.5658 (4)0.07005 (16)0.4474 (3)0.0507 (12)
H37A0.59100.04800.49710.061*
C381.0081 (6)0.3500 (2)0.7036 (5)0.0863 (19)
H38A0.97060.37430.72800.104*
C391.1184 (7)0.3586 (2)0.6771 (5)0.095 (2)
H39A1.15320.38830.68200.114*
C401.1758 (6)0.3233 (3)0.6436 (5)0.097 (2)
H40A1.24950.32850.62410.117*
C411.1234 (5)0.2798 (2)0.6391 (4)0.0735 (16)
H41A1.16330.25480.61910.088*
C421.0109 (5)0.27347 (16)0.6644 (3)0.0523 (12)
C430.9506 (5)0.22716 (17)0.6563 (3)0.0536 (13)
C440.8195 (5)0.22010 (18)0.6091 (4)0.0713 (16)
H44A0.76400.24520.58680.086*
C450.7705 (6)0.1761 (2)0.5949 (5)0.0888 (19)
H45A0.68210.17100.56180.107*
C460.8526 (7)0.1401 (2)0.6297 (5)0.0864 (19)
H46A0.82190.10990.61970.104*
C470.9818 (7)0.14907 (19)0.6802 (4)0.0776 (17)
H47A1.03660.12420.70650.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.02956 (11)0.02835 (12)0.02408 (12)0.00029 (10)0.00971 (9)0.00308 (11)
N10.0387 (19)0.041 (2)0.037 (2)0.0041 (15)0.0140 (18)0.0011 (18)
N20.0314 (17)0.041 (2)0.028 (2)0.0013 (14)0.0063 (16)0.0028 (16)
N30.078 (3)0.057 (3)0.052 (3)0.014 (2)0.020 (2)0.004 (2)
N40.075 (3)0.051 (3)0.069 (3)0.016 (2)0.020 (3)0.002 (2)
O10.0421 (16)0.0423 (17)0.0365 (18)0.0090 (13)0.0178 (14)0.0054 (14)
O1W0.079 (3)0.048 (2)0.130 (4)0.0187 (18)0.042 (3)0.019 (2)
O20.0482 (17)0.0483 (19)0.054 (2)0.0147 (13)0.0275 (16)0.0184 (16)
O30.070 (2)0.057 (3)0.142 (4)0.0180 (18)0.036 (3)0.022 (3)
O40.0400 (16)0.0577 (19)0.0272 (16)0.0100 (14)0.0144 (14)0.0092 (15)
O50.0337 (15)0.0500 (18)0.0273 (16)0.0039 (13)0.0131 (13)0.0050 (14)
O60.0544 (19)0.086 (2)0.0281 (18)0.0196 (17)0.0169 (16)0.0153 (18)
O70.0415 (12)0.0225 (15)0.0278 (15)0.0023 (11)0.0078 (10)0.0015 (12)
O80.0383 (16)0.0288 (16)0.0443 (19)0.0016 (12)0.0052 (15)0.0083 (14)
O90.081 (3)0.062 (2)0.081 (3)0.034 (2)0.007 (2)0.029 (2)
C10.059 (3)0.048 (3)0.058 (4)0.017 (2)0.019 (3)0.003 (3)
C20.046 (3)0.037 (3)0.045 (3)0.011 (2)0.011 (2)0.001 (2)
C30.040 (2)0.032 (2)0.041 (3)0.0062 (18)0.014 (2)0.003 (2)
C40.043 (3)0.044 (3)0.048 (3)0.007 (2)0.010 (2)0.001 (2)
C50.049 (3)0.072 (4)0.066 (4)0.013 (3)0.008 (3)0.000 (3)
C60.061 (3)0.062 (4)0.066 (4)0.032 (3)0.014 (3)0.004 (3)
C70.035 (2)0.042 (3)0.038 (3)0.0013 (19)0.007 (2)0.003 (2)
C80.036 (2)0.033 (3)0.039 (3)0.0012 (18)0.006 (2)0.006 (2)
C90.039 (2)0.027 (2)0.033 (3)0.0019 (18)0.014 (2)0.000 (2)
C100.058 (3)0.041 (3)0.069 (4)0.007 (2)0.025 (3)0.008 (3)
C110.044 (3)0.044 (3)0.051 (3)0.012 (2)0.011 (2)0.007 (2)
C120.044 (2)0.045 (3)0.033 (3)0.012 (2)0.013 (2)0.002 (2)
C130.053 (3)0.051 (3)0.054 (3)0.006 (2)0.016 (3)0.002 (3)
C140.051 (3)0.066 (4)0.061 (4)0.011 (3)0.009 (3)0.003 (3)
C150.056 (3)0.066 (4)0.058 (4)0.026 (3)0.012 (3)0.013 (3)
C160.047 (3)0.043 (3)0.041 (3)0.007 (2)0.012 (2)0.005 (2)
C170.050 (3)0.033 (3)0.036 (3)0.0044 (19)0.014 (2)0.003 (2)
C180.041 (2)0.030 (2)0.027 (2)0.0016 (18)0.008 (2)0.001 (2)
C190.041 (2)0.048 (3)0.029 (3)0.002 (2)0.012 (2)0.001 (2)
C200.034 (2)0.048 (3)0.036 (3)0.0041 (19)0.014 (2)0.002 (2)
C210.038 (2)0.038 (3)0.027 (2)0.0010 (17)0.013 (2)0.0041 (19)
C220.037 (2)0.062 (3)0.029 (2)0.000 (2)0.013 (2)0.002 (2)
C230.035 (2)0.076 (4)0.041 (3)0.002 (2)0.016 (2)0.000 (3)
C240.044 (3)0.068 (3)0.034 (3)0.007 (2)0.026 (2)0.005 (2)
C250.033 (2)0.046 (3)0.032 (2)0.0017 (19)0.016 (2)0.002 (2)
C260.034 (2)0.050 (3)0.030 (2)0.0030 (18)0.015 (2)0.006 (2)
C270.042 (2)0.031 (2)0.028 (2)0.0016 (17)0.012 (2)0.0014 (19)
C280.038 (2)0.048 (3)0.035 (3)0.0058 (19)0.012 (2)0.005 (2)
C290.062 (3)0.069 (4)0.042 (3)0.002 (3)0.022 (3)0.012 (3)
C300.094 (4)0.073 (4)0.045 (3)0.028 (3)0.023 (3)0.033 (3)
C310.082 (4)0.053 (3)0.057 (4)0.030 (3)0.022 (3)0.024 (3)
C320.038 (2)0.035 (3)0.040 (3)0.0043 (19)0.007 (2)0.006 (2)
C330.041 (2)0.041 (3)0.044 (3)0.009 (2)0.007 (2)0.001 (2)
C340.083 (4)0.084 (4)0.053 (4)0.048 (3)0.022 (3)0.020 (3)
C350.087 (4)0.110 (5)0.073 (4)0.061 (4)0.033 (4)0.008 (4)
C360.057 (3)0.097 (4)0.058 (4)0.026 (3)0.025 (3)0.001 (3)
C370.043 (3)0.067 (3)0.042 (3)0.011 (2)0.013 (2)0.006 (3)
C380.108 (5)0.049 (4)0.097 (5)0.016 (3)0.025 (4)0.007 (4)
C390.120 (6)0.066 (5)0.092 (5)0.013 (4)0.023 (5)0.011 (4)
C400.101 (5)0.106 (6)0.093 (5)0.040 (4)0.043 (4)0.018 (4)
C410.074 (4)0.078 (4)0.074 (4)0.003 (3)0.030 (3)0.026 (3)
C420.064 (3)0.049 (3)0.041 (3)0.004 (2)0.012 (3)0.001 (2)
C430.068 (3)0.050 (3)0.045 (3)0.000 (3)0.020 (3)0.003 (3)
C440.065 (4)0.062 (4)0.076 (4)0.003 (3)0.008 (3)0.002 (3)
C450.082 (4)0.085 (5)0.090 (5)0.028 (4)0.014 (4)0.006 (4)
C460.120 (6)0.063 (4)0.081 (5)0.021 (4)0.038 (5)0.013 (4)
C470.121 (5)0.053 (4)0.064 (4)0.019 (4)0.037 (4)0.004 (3)
Geometric parameters (Å, º) top
Nd1—O42.380 (3)C14—C151.370 (6)
Nd1—O5i2.407 (2)C14—H14A0.9300
Nd1—O7i2.412 (2)C15—H15A0.9300
Nd1—O22.494 (2)C16—C171.328 (5)
Nd1—O12.536 (3)C16—H16A0.9300
Nd1—O82.552 (2)C17—C181.479 (5)
Nd1—N22.617 (3)C17—H17A0.9300
Nd1—O72.635 (2)C19—C201.378 (5)
Nd1—N12.646 (3)C19—C241.379 (5)
N1—C331.329 (5)C20—C211.388 (5)
N1—C371.343 (5)C20—H20A0.9300
N2—C281.337 (5)C21—C221.396 (5)
N2—C321.346 (4)C21—C251.469 (5)
N3—C431.342 (5)C22—C231.377 (5)
N3—C471.355 (6)C22—H22A0.9300
N4—C421.333 (5)C23—C241.381 (5)
N4—C381.343 (6)C23—H23A0.9300
O1—C181.267 (4)C24—H24A0.9300
O1W—H1WA0.87 (4)C25—C261.307 (5)
O1W—H1WB0.87 (19)C25—H25A0.9300
O2—C181.256 (4)C26—C271.484 (5)
O3—C101.372 (5)C26—H26A0.9300
O3—H30.96 (4)C28—C291.368 (5)
O4—C271.266 (4)C28—H28A0.9300
O5—C271.262 (4)C29—C301.362 (6)
O5—Nd1i2.407 (2)C29—H29A0.9300
O6—C191.363 (4)C30—C311.376 (6)
O6—H60.93 (4)C30—H30A0.9300
O7—C91.277 (4)C31—C321.379 (6)
O7—Nd1i2.412 (2)C31—H31A0.9300
O8—C91.256 (4)C32—C331.488 (6)
O9—C11.354 (5)C33—C341.378 (5)
O9—H90.96 (4)C34—C351.381 (7)
C1—C61.378 (6)C34—H34A0.9300
C1—C21.395 (5)C35—C361.356 (7)
C2—C31.389 (5)C35—H35A0.9300
C2—H2A0.9300C36—C371.361 (5)
C3—C41.384 (5)C36—H36A0.9300
C3—C71.465 (5)C37—H37A0.9300
C4—C51.383 (5)C38—C391.375 (8)
C4—H4A0.9300C38—H38A0.9300
C5—C61.379 (6)C39—C401.354 (7)
C5—H5A0.9300C39—H39A0.9300
C6—H6A0.9300C40—C411.372 (7)
C7—C81.306 (5)C40—H40A0.9300
C7—H7A0.9300C41—C421.377 (6)
C8—C91.470 (5)C41—H41A0.9300
C8—H8A0.9300C42—C431.476 (6)
C10—C111.373 (5)C43—C441.372 (6)
C10—C151.390 (6)C44—C451.366 (6)
C11—C121.394 (5)C44—H44A0.9300
C11—H11A0.9300C45—C461.353 (7)
C12—C131.381 (5)C45—H45A0.9300
C12—C161.472 (5)C46—C471.373 (7)
C13—C141.383 (6)C46—H46A0.9300
C13—H13A0.9300C47—H47A0.9300
O4—Nd1—O5i136.78 (8)O3—C10—C15123.1 (4)
O4—Nd1—O7i73.65 (8)C11—C10—C15120.5 (4)
O5i—Nd1—O7i76.62 (8)C10—C11—C12119.4 (4)
O4—Nd1—O283.19 (9)C10—C11—H11A120.3
O5i—Nd1—O2126.29 (9)C12—C11—H11A120.3
O7i—Nd1—O287.75 (9)C13—C12—C11119.6 (4)
O4—Nd1—O1125.69 (9)C13—C12—C16120.6 (4)
O5i—Nd1—O174.62 (8)C11—C12—C16119.7 (4)
O7i—Nd1—O175.84 (8)C12—C13—C14120.7 (4)
O2—Nd1—O151.69 (8)C12—C13—H13A119.7
O4—Nd1—O893.43 (9)C14—C13—H13A119.7
O5i—Nd1—O878.64 (8)C15—C14—C13119.5 (5)
O7i—Nd1—O8124.88 (8)C15—C14—H14A120.2
O2—Nd1—O8144.94 (9)C13—C14—H14A120.2
O1—Nd1—O8140.72 (8)C14—C15—C10120.2 (4)
O4—Nd1—N2137.21 (9)C14—C15—H15A119.9
O5i—Nd1—N280.48 (9)C10—C15—H15A119.9
O7i—Nd1—N2147.84 (9)C17—C16—C12126.9 (4)
O2—Nd1—N287.88 (9)C17—C16—H16A116.5
O1—Nd1—N276.52 (9)C12—C16—H16A116.5
O8—Nd1—N271.06 (9)C16—C17—C18121.2 (4)
O4—Nd1—O772.59 (8)C16—C17—H17A119.4
O5i—Nd1—O770.06 (8)C18—C17—H17A119.4
O7i—Nd1—O775.50 (8)O2—C18—O1120.8 (4)
O2—Nd1—O7153.53 (9)O2—C18—C17120.3 (4)
O1—Nd1—O7138.55 (8)O1—C18—C17118.9 (4)
O8—Nd1—O749.80 (8)O2—C18—Nd159.42 (19)
N2—Nd1—O7117.13 (8)O1—C18—Nd161.38 (19)
O4—Nd1—N176.64 (9)C17—C18—Nd1176.9 (3)
O5i—Nd1—N1137.98 (9)O6—C19—C20118.3 (4)
O7i—Nd1—N1145.40 (9)O6—C19—C24122.5 (4)
O2—Nd1—N171.38 (10)C20—C19—C24119.2 (4)
O1—Nd1—N1108.79 (9)C19—C20—C21121.8 (4)
O8—Nd1—N173.88 (9)C19—C20—H20A119.1
N2—Nd1—N160.90 (10)C21—C20—H20A119.1
O7—Nd1—N1111.86 (9)C20—C21—C22118.5 (4)
O4—Nd1—C18104.56 (10)C20—C21—C25119.3 (3)
O5i—Nd1—C18100.60 (10)C22—C21—C25122.2 (4)
O7i—Nd1—C1880.48 (9)C23—C22—C21119.4 (4)
O2—Nd1—C1825.69 (9)C23—C22—H22A120.3
O1—Nd1—C1826.01 (9)C21—C22—H22A120.3
O8—Nd1—C18152.73 (10)C22—C23—C24121.3 (4)
N2—Nd1—C1881.88 (10)C22—C23—H23A119.3
O7—Nd1—C18155.64 (9)C24—C23—H23A119.3
N1—Nd1—C1890.31 (10)C19—C24—C23119.7 (4)
O4—Nd1—C984.66 (10)C19—C24—H24A120.1
O5i—Nd1—C970.51 (9)C23—C24—H24A120.1
O7i—Nd1—C9100.21 (10)C26—C25—C21128.2 (4)
O2—Nd1—C9162.98 (9)C26—C25—H25A115.9
O1—Nd1—C9144.81 (9)C21—C25—H25A115.9
O8—Nd1—C924.69 (8)C25—C26—C27123.5 (4)
N2—Nd1—C993.00 (10)C25—C26—H26A118.2
O7—Nd1—C925.31 (8)C27—C26—H26A118.2
N1—Nd1—C994.23 (10)O5—C27—O4125.6 (4)
C18—Nd1—C9170.47 (11)O5—C27—C26117.8 (4)
O4—Nd1—Nd1i68.44 (6)O4—C27—C26116.6 (3)
O5i—Nd1—Nd1i68.60 (6)N2—C28—C29123.6 (4)
O7i—Nd1—Nd1i39.71 (6)N2—C28—H28A118.2
O2—Nd1—Nd1i124.54 (7)C29—C28—H28A118.2
O1—Nd1—Nd1i110.29 (6)C30—C29—C28118.7 (4)
O8—Nd1—Nd1i85.38 (6)C30—C29—H29A120.7
N2—Nd1—Nd1i144.33 (6)C28—C29—H29A120.7
O7—Nd1—Nd1i35.79 (5)C29—C30—C31118.4 (5)
N1—Nd1—Nd1i137.98 (7)C29—C30—H30A120.8
C18—Nd1—Nd1i120.09 (8)C31—C30—H30A120.8
C9—Nd1—Nd1i60.69 (8)C30—C31—C32120.7 (4)
C33—N1—C37118.0 (4)C30—C31—H31A119.7
C33—N1—Nd1121.3 (3)C32—C31—H31A119.7
C37—N1—Nd1120.4 (3)N2—C32—C31120.4 (4)
C28—N2—C32118.1 (4)N2—C32—C33115.8 (4)
C28—N2—Nd1119.0 (3)C31—C32—C33123.7 (4)
C32—N2—Nd1121.9 (3)N1—C33—C34121.3 (4)
C43—N3—C47116.4 (5)N1—C33—C32116.5 (3)
C42—N4—C38117.2 (5)C34—C33—C32122.2 (4)
C18—O1—Nd192.6 (2)C33—C34—C35119.4 (5)
H1WA—O1W—H1WB100 (3)C33—C34—H34A120.3
C18—O2—Nd194.9 (2)C35—C34—H34A120.3
C10—O3—H3101 (3)C36—C35—C34119.4 (5)
C27—O4—Nd1138.1 (2)C36—C35—H35A120.3
C27—O5—Nd1i137.5 (2)C34—C35—H35A120.3
C19—O6—H6112 (3)C35—C36—C37118.1 (5)
C9—O7—Nd1i158.6 (2)C35—C36—H36A120.9
C9—O7—Nd192.7 (2)C37—C36—H36A120.9
Nd1i—O7—Nd1104.50 (8)N1—C37—C36123.7 (4)
C9—O8—Nd197.2 (2)N1—C37—H37A118.2
C1—O9—H9116 (3)C36—C37—H37A118.2
O9—C1—C6118.5 (4)N4—C38—C39122.8 (6)
O9—C1—C2122.9 (4)N4—C38—H38A118.6
C6—C1—C2118.6 (4)C39—C38—H38A118.6
C3—C2—C1121.1 (4)C40—C39—C38119.3 (6)
C3—C2—H2A119.4C40—C39—H39A120.4
C1—C2—H2A119.4C38—C39—H39A120.4
C4—C3—C2119.6 (4)C39—C40—C41118.8 (6)
C4—C3—C7123.0 (4)C39—C40—H40A120.6
C2—C3—C7117.4 (4)C41—C40—H40A120.6
C5—C4—C3119.0 (4)C40—C41—C42119.3 (5)
C5—C4—H4A120.5C40—C41—H41A120.3
C3—C4—H4A120.5C42—C41—H41A120.3
C6—C5—C4121.4 (5)N4—C42—C41122.5 (5)
C6—C5—H5A119.3N4—C42—C43117.6 (4)
C4—C5—H5A119.3C41—C42—C43119.9 (5)
C1—C6—C5120.2 (4)N3—C43—C44122.3 (5)
C1—C6—H6A119.9N3—C43—C42115.5 (5)
C5—C6—H6A119.9C44—C43—C42122.0 (5)
C8—C7—C3130.1 (4)C45—C44—C43119.9 (5)
C8—C7—H7A114.9C45—C44—H44A120.0
C3—C7—H7A114.9C43—C44—H44A120.0
C7—C8—C9123.3 (4)C46—C45—C44119.0 (6)
C7—C8—H8A118.3C46—C45—H45A120.5
C9—C8—H8A118.3C44—C45—H45A120.5
O8—C9—O7119.3 (3)C45—C46—C47118.9 (6)
O8—C9—C8122.4 (4)C45—C46—H46A120.6
O7—C9—C8118.3 (4)C47—C46—H46A120.6
O8—C9—Nd158.09 (19)N3—C47—C46123.4 (5)
O7—C9—Nd161.94 (19)N3—C47—H47A118.3
C8—C9—Nd1169.8 (3)C46—C47—H47A118.3
O3—C10—C11116.4 (4)
O4—Nd1—N1—C33159.5 (3)O5i—Nd1—C9—O8105.6 (2)
O5i—Nd1—N1—C3310.7 (4)O7i—Nd1—C9—O8177.4 (2)
O7i—Nd1—N1—C33169.1 (3)O2—Nd1—C9—O865.7 (4)
O2—Nd1—N1—C33113.3 (3)O1—Nd1—C9—O897.5 (2)
O1—Nd1—N1—C3376.9 (3)N2—Nd1—C9—O826.8 (2)
O8—Nd1—N1—C3361.9 (3)O7—Nd1—C9—O8170.0 (4)
N2—Nd1—N1—C3315.1 (3)N1—Nd1—C9—O834.2 (2)
O7—Nd1—N1—C3394.8 (3)Nd1i—Nd1—C9—O8178.6 (2)
C18—Nd1—N1—C3395.6 (3)O4—Nd1—C9—O759.7 (2)
C9—Nd1—N1—C3376.0 (3)O5i—Nd1—C9—O784.4 (2)
Nd1i—Nd1—N1—C33125.4 (3)O7i—Nd1—C9—O712.6 (2)
O4—Nd1—N1—C3714.3 (3)O2—Nd1—C9—O7104.2 (4)
O5i—Nd1—N1—C37163.1 (3)O1—Nd1—C9—O792.5 (2)
O7i—Nd1—N1—C3717.1 (4)O8—Nd1—C9—O7170.0 (4)
O2—Nd1—N1—C3773.0 (3)N2—Nd1—C9—O7163.2 (2)
O1—Nd1—N1—C37109.3 (3)N1—Nd1—C9—O7135.8 (2)
O8—Nd1—N1—C37111.9 (3)Nd1i—Nd1—C9—O78.57 (17)
N2—Nd1—N1—C37171.2 (3)O4—Nd1—C9—C8153.6 (16)
O7—Nd1—N1—C3779.0 (3)O5i—Nd1—C9—C89.5 (16)
C18—Nd1—N1—C3790.6 (3)O7i—Nd1—C9—C881.3 (16)
C9—Nd1—N1—C3797.7 (3)O2—Nd1—C9—C8161.8 (14)
Nd1i—Nd1—N1—C3748.4 (3)O1—Nd1—C9—C81.4 (17)
O4—Nd1—N2—C28176.6 (2)O8—Nd1—C9—C896.1 (16)
O5i—Nd1—N2—C2821.6 (3)N2—Nd1—C9—C869.3 (16)
O7i—Nd1—N2—C2823.4 (4)O7—Nd1—C9—C893.9 (16)
O2—Nd1—N2—C28105.8 (3)N1—Nd1—C9—C8130.3 (16)
O1—Nd1—N2—C2854.7 (3)Nd1i—Nd1—C9—C885.4 (16)
O8—Nd1—N2—C28102.8 (3)O3—C10—C11—C12176.8 (4)
O7—Nd1—N2—C2883.3 (3)C15—C10—C11—C121.3 (7)
N1—Nd1—N2—C28175.6 (3)C10—C11—C12—C130.4 (7)
C18—Nd1—N2—C2880.7 (3)C10—C11—C12—C16177.1 (4)
C9—Nd1—N2—C2891.3 (3)C11—C12—C13—C141.3 (7)
Nd1i—Nd1—N2—C2851.4 (3)C16—C12—C13—C14178.8 (4)
O4—Nd1—N2—C328.6 (3)C12—C13—C14—C152.0 (7)
O5i—Nd1—N2—C32146.4 (3)C13—C14—C15—C101.1 (8)
O7i—Nd1—N2—C32168.6 (2)O3—C10—C15—C14177.4 (5)
O2—Nd1—N2—C3286.2 (3)C11—C10—C15—C140.5 (8)
O1—Nd1—N2—C32137.2 (3)C13—C12—C16—C17154.3 (5)
O8—Nd1—N2—C3265.3 (3)C11—C12—C16—C1728.3 (7)
O7—Nd1—N2—C3284.8 (3)C12—C16—C17—C18179.7 (4)
N1—Nd1—N2—C3216.4 (3)Nd1—O2—C18—O12.1 (4)
C18—Nd1—N2—C32111.3 (3)Nd1—O2—C18—C17176.4 (3)
C9—Nd1—N2—C3276.8 (3)Nd1—O1—C18—O22.0 (4)
Nd1i—Nd1—N2—C32116.6 (3)Nd1—O1—C18—C17176.4 (3)
O4—Nd1—O1—C1840.0 (3)C16—C17—C18—O219.7 (6)
O5i—Nd1—O1—C18177.1 (2)C16—C17—C18—O1161.9 (4)
O7i—Nd1—O1—C1897.4 (2)O4—Nd1—C18—O234.7 (2)
O2—Nd1—O1—C181.1 (2)O5i—Nd1—C18—O2179.2 (2)
O8—Nd1—O1—C18134.1 (2)O7i—Nd1—C18—O2104.9 (2)
N2—Nd1—O1—C1899.2 (2)O1—Nd1—C18—O2178.0 (4)
O7—Nd1—O1—C18144.9 (2)O8—Nd1—C18—O295.1 (3)
N1—Nd1—O1—C1846.8 (2)N2—Nd1—C18—O2102.1 (2)
C9—Nd1—O1—C18175.0 (2)O7—Nd1—C18—O2114.5 (3)
Nd1i—Nd1—O1—C18117.4 (2)N1—Nd1—C18—O241.6 (2)
O4—Nd1—O2—C18146.3 (2)Nd1i—Nd1—C18—O2107.9 (2)
O5i—Nd1—O2—C181.0 (3)O4—Nd1—C18—O1147.4 (2)
O7i—Nd1—O2—C1872.5 (2)O5i—Nd1—C18—O12.8 (2)
O1—Nd1—O2—C181.1 (2)O7i—Nd1—C18—O177.2 (2)
O8—Nd1—O2—C18127.4 (2)O2—Nd1—C18—O1178.0 (4)
N2—Nd1—O2—C1875.6 (2)O8—Nd1—C18—O182.9 (3)
O7—Nd1—O2—C18122.7 (2)N2—Nd1—C18—O175.8 (2)
N1—Nd1—O2—C18135.5 (3)O7—Nd1—C18—O167.5 (3)
C9—Nd1—O2—C18168.9 (3)N1—Nd1—C18—O1136.3 (2)
Nd1i—Nd1—O2—C1888.4 (2)Nd1i—Nd1—C18—O174.1 (2)
O5i—Nd1—O4—C2721.2 (4)O6—C19—C20—C21180.0 (4)
O7i—Nd1—O4—C2727.2 (4)C24—C19—C20—C210.0 (6)
O2—Nd1—O4—C27116.8 (4)C19—C20—C21—C220.4 (6)
O1—Nd1—O4—C2785.5 (4)C19—C20—C21—C25177.4 (4)
O8—Nd1—O4—C2798.2 (4)C20—C21—C22—C230.6 (6)
N2—Nd1—O4—C27163.8 (3)C25—C21—C22—C23178.3 (4)
O7—Nd1—O4—C2752.4 (4)C21—C22—C23—C241.9 (7)
N1—Nd1—O4—C27170.8 (4)O6—C19—C24—C23178.7 (4)
C18—Nd1—O4—C27102.5 (4)C20—C19—C24—C231.3 (7)
C9—Nd1—O4—C2775.1 (4)C22—C23—C24—C192.3 (7)
Nd1i—Nd1—O4—C2714.6 (4)C20—C21—C25—C26171.4 (4)
O4—Nd1—O7—C9115.8 (2)C22—C21—C25—C266.3 (7)
O5i—Nd1—O7—C986.4 (2)C21—C25—C26—C27177.2 (4)
O7i—Nd1—O7—C9167.2 (2)Nd1i—O5—C27—O47.0 (6)
O2—Nd1—O7—C9140.5 (2)Nd1i—O5—C27—C26172.3 (2)
O1—Nd1—O7—C9119.6 (2)Nd1—O4—C27—O519.2 (6)
O8—Nd1—O7—C95.5 (2)Nd1—O4—C27—C26160.1 (3)
N2—Nd1—O7—C918.9 (2)C25—C26—C27—O58.6 (6)
N1—Nd1—O7—C948.5 (2)C25—C26—C27—O4172.0 (4)
C18—Nd1—O7—C9157.3 (3)C32—N2—C28—C290.4 (6)
Nd1i—Nd1—O7—C9167.2 (2)Nd1—N2—C28—C29168.9 (3)
O4—Nd1—O7—Nd1i77.07 (10)N2—C28—C29—C302.9 (7)
O5i—Nd1—O7—Nd1i80.77 (9)C28—C29—C30—C312.5 (8)
O7i—Nd1—O7—Nd1i0.0C29—C30—C31—C320.1 (8)
O2—Nd1—O7—Nd1i52.4 (2)C28—N2—C32—C312.3 (6)
O1—Nd1—O7—Nd1i47.59 (15)Nd1—N2—C32—C31165.8 (3)
O8—Nd1—O7—Nd1i172.62 (14)C28—N2—C32—C33174.9 (3)
N2—Nd1—O7—Nd1i148.21 (9)Nd1—N2—C32—C3316.9 (5)
N1—Nd1—O7—Nd1i144.32 (10)C30—C31—C32—N22.6 (7)
C18—Nd1—O7—Nd1i9.9 (3)C30—C31—C32—C33174.4 (5)
C9—Nd1—O7—Nd1i167.2 (2)C37—N1—C33—C344.1 (7)
O4—Nd1—O8—C969.3 (2)Nd1—N1—C33—C34169.8 (4)
O5i—Nd1—O8—C967.8 (2)C37—N1—C33—C32172.8 (4)
O7i—Nd1—O8—C93.1 (3)Nd1—N1—C33—C3213.2 (5)
O2—Nd1—O8—C9152.3 (2)N2—C32—C33—N12.2 (6)
O1—Nd1—O8—C9115.5 (2)C31—C32—C33—N1179.4 (4)
N2—Nd1—O8—C9151.5 (2)N2—C32—C33—C34174.8 (4)
O7—Nd1—O8—C95.6 (2)C31—C32—C33—C342.4 (7)
N1—Nd1—O8—C9144.3 (2)N1—C33—C34—C353.3 (8)
C18—Nd1—O8—C9158.9 (3)C32—C33—C34—C35173.5 (5)
Nd1i—Nd1—O8—C91.3 (2)C33—C34—C35—C360.3 (9)
O9—C1—C2—C3177.6 (4)C34—C35—C36—C372.8 (9)
C6—C1—C2—C31.3 (7)C33—N1—C37—C361.5 (7)
C1—C2—C3—C42.1 (6)Nd1—N1—C37—C36172.5 (4)
C1—C2—C3—C7176.0 (4)C35—C36—C37—N12.0 (8)
C2—C3—C4—C50.4 (6)C42—N4—C38—C392.7 (9)
C7—C3—C4—C5177.6 (4)N4—C38—C39—C401.6 (10)
C3—C4—C5—C62.1 (7)C38—C39—C40—C411.3 (10)
O9—C1—C6—C5179.9 (5)C39—C40—C41—C422.8 (9)
C2—C1—C6—C51.3 (7)C38—N4—C42—C411.1 (7)
C4—C5—C6—C13.0 (8)C38—N4—C42—C43179.5 (5)
C4—C3—C7—C810.7 (7)C40—C41—C42—N41.7 (8)
C2—C3—C7—C8167.3 (4)C40—C41—C42—C43177.7 (5)
C3—C7—C8—C9177.0 (4)C47—N3—C43—C441.5 (7)
Nd1—O8—C9—O710.1 (4)C47—N3—C43—C42175.1 (4)
Nd1—O8—C9—C8167.9 (3)N4—C42—C43—N3134.0 (5)
Nd1i—O7—C9—O8153.7 (5)C41—C42—C43—N346.5 (6)
Nd1—O7—C9—O89.7 (4)N4—C42—C43—C4449.3 (7)
Nd1i—O7—C9—C824.5 (9)C41—C42—C43—C44130.1 (5)
Nd1—O7—C9—C8168.4 (3)N3—C43—C44—C452.9 (8)
Nd1i—O7—C9—Nd1143.9 (7)C42—C43—C44—C45173.5 (5)
C7—C8—C9—O83.1 (6)C43—C44—C45—C461.3 (9)
C7—C8—C9—O7174.9 (4)C44—C45—C46—C471.4 (10)
C7—C8—C9—Nd186.5 (16)C43—N3—C47—C461.4 (8)
O4—Nd1—C9—O8110.3 (2)C45—C46—C47—N32.9 (9)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···N4ii0.87 (5)2.04 (5)2.897 (6)168 (5)
O3—H3···O1Wiii0.96 (4)1.68 (2)2.618 (5)163 (5)
O6—H6···O1iv0.93 (4)1.79 (2)2.703 (4)168 (4)
O9—H9···N3ii0.96 (4)1.90 (2)2.849 (5)175 (5)
O1W—H1WA···O80.87 (4)1.96 (4)2.825 (4)175 (5)
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Nd2(C9H7O3)6(C10H8N2)2]·2C10H8N2·2H2O
Mr1928.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.7333 (2), 28.9077 (5), 14.3276 (3)
β (°) 108.274 (1)
V3)4221.30 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.24 × 0.11 × 0.07
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.84, 0.91
No. of measured, independent and
observed [I > 2σ(I)] reflections
36893, 9735, 6140
Rint0.078
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.083, 1.00
No. of reflections9735
No. of parameters574
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.13, 0.65

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···N4i0.87 (5)2.04 (5)2.897 (6)168 (5)
O3—H3···O1Wii0.96 (4)1.68 (2)2.618 (5)163 (5)
O6—H6···O1iii0.93 (4)1.79 (2)2.703 (4)168 (4)
O9—H9···N3i0.96 (4)1.90 (2)2.849 (5)175 (5)
O1W—H1WA···O80.87 (4)1.96 (4)2.825 (4)175 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y, z+1.
 

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J., Couse, M. D., Garcia-Vega, M., Rosende, M., Sanchez, A., Sordo, J., Varela, J. M. & Vazquez-Lopez, E. M. (2008). Polyhedron, 27, 2436–2446.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrowther, D., Chowdhury, M. & Kariuki, B. M. (2008). J. Mol. Struct. 872, 64–74.  Web of Science CSD CrossRef CAS Google Scholar
First citationGossauer, A., Nydegger, F., Kiss, T., Sleziak, R. & Stoeckli-Evans, H. (2004). J. Am. Chem. Soc. 126, 1764–1783.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göettingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C.-Y., Fu, J.-D. & Wen, Y.-H. (2010). Acta Cryst. E66, m1519.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds