metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{N′-[(pyridin-2-yl)methyl­­idene-κN]acetohydrazide-κ2N′,O}copper(II)

aDepartment of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan, and bDepartment of Occupational Health and Safety, Chang Jung Christian University, Tainan City 71101, Taiwan
*Correspondence e-mail: juihuang@cc.ncue.edu.tw

(Received 29 October 2011; accepted 21 November 2011; online 30 November 2011)

In the title compound, [CuCl2(C8H9N3O)], the CuII atom has a distorted square-pyramidal CuCl2N2O coordination geometry. The tridentate acetohydrazide ligand occupies three basal positions, the fourth basal position being defined by a chloride anion at a distance of 2.2116 (6) Å. The second chloride anion is in the apical position and forms a longer Cu—Cl distance of 2.4655 (7) Å. Inter­molecular N—H⋯Cl hydrogen bonds are present in the crystal, leading to the formation of chains along [10[\overline{1}]].

Related literature

For related copper(II) complexes with a similar tridentate ligand, see: Sen et al. (2005[Sen, S., Talukder, P., Rosair, G. M. & Mitra, S. (2005). Struct. Chem. 16, 605-610.], 2007a[Sen, S., Mitra, S., Hughes, D. L., Rosair, G. M. & Desplanches, C. (2007a). Inorg. Chim. Acta, 360, 4085-4092.],b[Sen, S., Mitra, S., Hughes, D. L., Rosair, G. M. & Desplanches, C. (2007b). Polyhedron, 26, 1740-1744.]), Ray et al. (2008a[Ray, A., Banerjee, S., Sen, S., Butcher, R. J., Rosair, G. M., Garland, M. T. & Mitra, S. (2008a). Struct. Chem. 19, 209-217.],b[Ray, A., Banerjee, S., Butcher, R. J., Desplanches, C. & Mitra, S. (2008b). Polyhedron, 27, 2409-2415.]), Recio Despaigne et al. (2009[Recio Despaigne, A. A., Da Silva, J. G., Do Carmo, A. C. M., Piro, O. E., Castellano, E. E. & Beraldo, H. (2009). J. Mol. Struct. 920, 97-102.]); Datta et al. (2010a[Datta, A., Chuang, N.-T., Sie, M.-H., Huang, J.-H. & Lee, H. M. (2010a). Acta Cryst. E66, m359.],b[Datta, A., Das, K., Jhou, Y.-M., Huang, J.-H. & Lee, H. M. (2010b). Acta Cryst. E66, m1271.], 2011[Datta, A., Das, K., Jhou, Y.-M., Huang, J.-H. & Lee, H. M. (2011). Acta Cryst. E67, m123.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C8H9N3O)]

  • Mr = 297.62

  • Monoclinic, P 21 /n

  • a = 6.8326 (12) Å

  • b = 15.137 (3) Å

  • c = 10.689 (3) Å

  • β = 95.664 (13)°

  • V = 1100.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.45 mm−1

  • T = 150 K

  • 0.40 × 0.25 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttinhen, Germany.]) Tmin = 0.485, Tmax = 0.543

  • 9791 measured reflections

  • 2836 independent reflections

  • 2378 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.070

  • S = 1.04

  • 2836 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl3i 0.88 2.21 3.0799 (16) 170
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title compound (Fig. 1), the copper(II) ion exhibits a distorted square pyramidal geometry. The N'-(pyridine-2-ylmethylene)acetohydrazide ligand is in its keto form as indicated by the short C—O distance of 1.235 (2) Å and defines three of the basal positions via the pyridyl N, imine N, and keto O atoms. The fourth basal position is provided by a chloride anion, trans to the imine N atom. Another chloride ligand occupies the apical position. The two Cu—Cl distances are unequal in length. The chloride ligand in the apical position forms a long Cu—Cl bond of 2.4655 (7) Å, whereas the Cu—Cl bond to the basal chloride anion is much shorter (2.2116 (6) Å).

Classical intermolecular hydrogen bonds of the type N—H···Cl are present along the [101] direction (Fig. 2), leading to the formation of chains.

The structure of a copper(II) dichloride complex with a similar tridentate hydrazone ligand has been reported in the literature (Datta, et al., 2011). For other related copper(II) complexes with similar tridentate ligands, see: Sen et al. (2005, 2007a,b), Ray et al. (2008a,b), Recio Despaigne et al. (2009); Datta et al. (2010a,b).

Related literature top

For related copper(II) complexes with a similar tridentate ligand, see: Sen et al. (2005, 2007a,b), Ray et al. (2008a,b), Recio Despaigne et al. (2009); Datta et al.(2010a,b, 2011).

Experimental top

The tridentate acetohydrazide ligand precursor was prepared according to the literature procedure (Ray et al., 2008b). To a hot methanolic solution (20 ml) of anhydrous CuCl2 (0.134 g, 1.0 mmol), the ligand (0.163 g, 1.0 mmol) was added, which produced immediately an intensely green solution. The mixture was then heated to boiling. On cooling to room temperature and after slow evaporation of the green solution, dark green rectangular shaped single crystals of the complex were separated out after 3 days. The crystals were filtered off and washed with water and dried in air.

Refinement top

Carbon- and nitrogen-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å and N—H 0.88 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 and 1.5 times Ueq(C,N).

Structure description top

In the title compound (Fig. 1), the copper(II) ion exhibits a distorted square pyramidal geometry. The N'-(pyridine-2-ylmethylene)acetohydrazide ligand is in its keto form as indicated by the short C—O distance of 1.235 (2) Å and defines three of the basal positions via the pyridyl N, imine N, and keto O atoms. The fourth basal position is provided by a chloride anion, trans to the imine N atom. Another chloride ligand occupies the apical position. The two Cu—Cl distances are unequal in length. The chloride ligand in the apical position forms a long Cu—Cl bond of 2.4655 (7) Å, whereas the Cu—Cl bond to the basal chloride anion is much shorter (2.2116 (6) Å).

Classical intermolecular hydrogen bonds of the type N—H···Cl are present along the [101] direction (Fig. 2), leading to the formation of chains.

The structure of a copper(II) dichloride complex with a similar tridentate hydrazone ligand has been reported in the literature (Datta, et al., 2011). For other related copper(II) complexes with similar tridentate ligands, see: Sen et al. (2005, 2007a,b), Ray et al. (2008a,b), Recio Despaigne et al. (2009); Datta et al. (2010a,b).

For related copper(II) complexes with a similar tridentate ligand, see: Sen et al. (2005, 2007a,b), Ray et al. (2008a,b), Recio Despaigne et al. (2009); Datta et al.(2010a,b, 2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound as viewed down the a axis. Intermolecular N—H···Cl hydrogen bonds are shown as dashed lines.
Dichlorido{N'-[(pyridin-2-yl)methylidene-κN]acetohydrazide- κ2N',O}copper(II) top
Crystal data top
[CuCl2(C8H9N3O)]F(000) = 596
Mr = 297.62Dx = 1.797 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4370 reflections
a = 6.8326 (12) Åθ = 3.3–28.6°
b = 15.137 (3) ŵ = 2.45 mm1
c = 10.689 (3) ÅT = 150 K
β = 95.664 (13)°Rectangular, green
V = 1100.0 (4) Å30.40 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2836 independent reflections
Radiation source: fine-focus sealed tube2378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 28.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.485, Tmax = 0.543k = 1920
9791 measured reflectionsl = 146
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.2632P]
where P = (Fo2 + 2Fc2)/3
2836 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[CuCl2(C8H9N3O)]V = 1100.0 (4) Å3
Mr = 297.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8326 (12) ŵ = 2.45 mm1
b = 15.137 (3) ÅT = 150 K
c = 10.689 (3) Å0.40 × 0.25 × 0.25 mm
β = 95.664 (13)°
Data collection top
Bruker APEXII CCD
diffractometer
2836 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2378 reflections with I > 2σ(I)
Tmin = 0.485, Tmax = 0.543Rint = 0.024
9791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
2836 reflectionsΔρmin = 0.35 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.24493 (3)0.323357 (14)0.19561 (2)0.03400 (8)
Cl20.47106 (7)0.41980 (4)0.26879 (5)0.04816 (13)
Cl30.05430 (7)0.30589 (3)0.37823 (4)0.04052 (12)
N10.4124 (2)0.21177 (10)0.19800 (14)0.0346 (3)
C50.3171 (3)0.14208 (12)0.13949 (16)0.0345 (4)
C40.4016 (3)0.05932 (13)0.13604 (19)0.0443 (4)
H40.33160.01150.09520.053*
C10.5949 (3)0.19982 (15)0.25159 (19)0.0427 (4)
H10.66330.24830.29180.051*
C20.6879 (3)0.11807 (16)0.2502 (2)0.0517 (5)
H20.81850.11120.28850.062*
C30.5901 (3)0.04753 (15)0.1932 (2)0.0524 (5)
H30.65110.00880.19310.063*
C60.1226 (3)0.16357 (13)0.07736 (18)0.0385 (4)
H60.04000.12120.03300.046*
N20.0738 (2)0.24430 (10)0.08798 (14)0.0340 (3)
N30.0947 (2)0.28140 (11)0.03418 (14)0.0391 (3)
H3A0.19160.25060.00480.047*
O10.0387 (2)0.40997 (9)0.10589 (13)0.0437 (3)
C70.0995 (3)0.37105 (13)0.04643 (16)0.0377 (4)
C80.2756 (3)0.41705 (15)0.0143 (2)0.0498 (5)
H8A0.33160.45500.04740.075*
H8B0.37370.37330.04650.075*
H8C0.23800.45330.08410.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02943 (13)0.03512 (13)0.03591 (13)0.00313 (9)0.00455 (8)0.00127 (8)
Cl20.0370 (2)0.0471 (3)0.0583 (3)0.0125 (2)0.0054 (2)0.0031 (2)
Cl30.0328 (2)0.0516 (3)0.0369 (2)0.0043 (2)0.00207 (16)0.00244 (18)
N10.0301 (7)0.0391 (8)0.0342 (7)0.0002 (7)0.0019 (6)0.0013 (6)
C50.0336 (9)0.0372 (9)0.0327 (8)0.0003 (8)0.0042 (7)0.0003 (7)
C40.0477 (11)0.0359 (10)0.0504 (11)0.0001 (9)0.0104 (9)0.0017 (8)
C10.0306 (9)0.0526 (11)0.0441 (10)0.0015 (9)0.0010 (7)0.0026 (9)
C20.0347 (10)0.0626 (14)0.0573 (12)0.0107 (10)0.0017 (9)0.0118 (11)
C30.0501 (12)0.0462 (12)0.0621 (13)0.0136 (10)0.0117 (10)0.0111 (10)
C60.0375 (10)0.0394 (10)0.0380 (9)0.0045 (8)0.0003 (7)0.0056 (7)
N20.0298 (7)0.0398 (8)0.0312 (7)0.0005 (6)0.0035 (5)0.0016 (6)
N30.0320 (8)0.0430 (9)0.0396 (8)0.0006 (7)0.0092 (6)0.0028 (6)
O10.0435 (7)0.0380 (7)0.0466 (7)0.0043 (6)0.0103 (6)0.0044 (6)
C70.0365 (9)0.0445 (10)0.0313 (8)0.0000 (8)0.0013 (7)0.0054 (7)
C80.0432 (11)0.0520 (12)0.0516 (12)0.0059 (10)0.0086 (9)0.0072 (9)
Geometric parameters (Å, º) top
Cu1—N21.9638 (15)C2—C31.370 (3)
Cu1—N12.0390 (16)C2—H20.9500
Cu1—O12.0872 (14)C3—H30.9500
Cu1—Cl22.2116 (6)C6—N21.275 (2)
Cu1—Cl32.4655 (7)C6—H60.9500
N1—C11.332 (2)N2—N31.357 (2)
N1—C51.359 (2)N3—C71.364 (3)
C5—C41.381 (3)N3—H3A0.8800
C5—C61.462 (3)O1—C71.235 (2)
C4—C31.381 (3)C7—C81.484 (3)
C4—H40.9500C8—H8A0.9800
C1—C21.392 (3)C8—H8B0.9800
C1—H10.9500C8—H8C0.9800
N2—Cu1—N178.67 (6)C1—C2—H2120.2
N2—Cu1—O177.16 (6)C2—C3—C4119.2 (2)
N1—Cu1—O1151.48 (6)C2—C3—H3120.4
N2—Cu1—Cl2164.60 (5)C4—C3—H3120.4
N1—Cu1—Cl299.83 (5)N2—C6—C5114.00 (16)
O1—Cu1—Cl299.45 (4)N2—C6—H6123.0
N2—Cu1—Cl393.90 (5)C5—C6—H6123.0
N1—Cu1—Cl3103.94 (4)C6—N2—N3125.27 (16)
O1—Cu1—Cl392.62 (5)C6—N2—Cu1119.37 (13)
Cl2—Cu1—Cl3101.30 (2)N3—N2—Cu1115.30 (12)
C1—N1—C5118.57 (17)N2—N3—C7113.47 (15)
C1—N1—Cu1128.19 (14)N2—N3—H3A123.3
C5—N1—Cu1113.21 (12)C7—N3—H3A123.3
N1—C5—C4122.24 (18)C7—O1—Cu1112.58 (12)
N1—C5—C6114.14 (16)O1—C7—N3119.99 (17)
C4—C5—C6123.58 (18)O1—C7—C8123.20 (19)
C3—C4—C5118.6 (2)N3—C7—C8116.80 (17)
C3—C4—H4120.7C7—C8—H8A109.5
C5—C4—H4120.7C7—C8—H8B109.5
N1—C1—C2121.7 (2)H8A—C8—H8B109.5
N1—C1—H1119.2C7—C8—H8C109.5
C2—C1—H1119.2H8A—C8—H8C109.5
C3—C2—C1119.7 (2)H8B—C8—H8C109.5
C3—C2—H2120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl3i0.882.213.0799 (16)170
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[CuCl2(C8H9N3O)]
Mr297.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)6.8326 (12), 15.137 (3), 10.689 (3)
β (°) 95.664 (13)
V3)1100.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.45
Crystal size (mm)0.40 × 0.25 × 0.25
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.485, 0.543
No. of measured, independent and
observed [I > 2σ(I)] reflections
9791, 2836, 2378
Rint0.024
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.070, 1.04
No. of reflections2836
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.35

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl3i0.882.213.0799 (16)170.2
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

We are grateful to the National Science Council of Taiwan for financial support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDatta, A., Chuang, N.-T., Sie, M.-H., Huang, J.-H. & Lee, H. M. (2010a). Acta Cryst. E66, m359.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDatta, A., Das, K., Jhou, Y.-M., Huang, J.-H. & Lee, H. M. (2010b). Acta Cryst. E66, m1271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDatta, A., Das, K., Jhou, Y.-M., Huang, J.-H. & Lee, H. M. (2011). Acta Cryst. E67, m123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRay, A., Banerjee, S., Butcher, R. J., Desplanches, C. & Mitra, S. (2008b). Polyhedron, 27, 2409–2415.  Web of Science CSD CrossRef CAS Google Scholar
First citationRay, A., Banerjee, S., Sen, S., Butcher, R. J., Rosair, G. M., Garland, M. T. & Mitra, S. (2008a). Struct. Chem. 19, 209–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationRecio Despaigne, A. A., Da Silva, J. G., Do Carmo, A. C. M., Piro, O. E., Castellano, E. E. & Beraldo, H. (2009). J. Mol. Struct. 920, 97–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, S., Mitra, S., Hughes, D. L., Rosair, G. M. & Desplanches, C. (2007a). Inorg. Chim. Acta, 360, 4085–4092.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, S., Mitra, S., Hughes, D. L., Rosair, G. M. & Desplanches, C. (2007b). Polyhedron, 26, 1740–1744.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, S., Talukder, P., Rosair, G. M. & Mitra, S. (2005). Struct. Chem. 16, 605–610.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttinhen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds