inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The β-polymorph of uranium phosphide selenide

aDepartment of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
*Correspondence e-mail: ibers@chem.northwestern.edu

(Received 9 November 2011; accepted 21 November 2011; online 30 November 2011)

β-UPSe was synthesized from the reaction of U2Se3, P and Se in a CsCl flux in a fused-silica tube. It crystallizes with four formula units in the tetra­gonal space group I4/mmm in the UGeTe structure type. The asymmetric unit comprises one U (site symmetry 4mm), one Se (4mm), and one P (mmm.) atom. The U atom is coordinated in a monocapped square-anti­prismatic arrangement, where the square face is formed by P atoms and the other five vertices are Se atoms. The P site is disordered about a mirror plane, showing half-ocupancy for each of the two resulting P atoms. The title structure is related to that of α-UPSe, which crystallizes with two formula units in the tetra­gonal space group P4/nmm in the PbFCl structure type.

Related literature

Whereas β-UPSe crystallizes in the UGeTe structure type (Haneveld & Jellinek, 1969[Haneveld, A. J. K. & Jellinek, F. (1969). J. Less Common Met. 18, 123-129.]), α-UPSe (Hulliger, 1968[Hulliger, F. (1968). J. Less Common Met. 16, 113-117.]; Zygmunt et al., 1974a[Zygmunt, A., Ligenza, S., Ptasiewicz, H. & Leciejewicz, J. (1974a). Phys. Status Solidi A, 25, K77-K80.]) crystallizes in the PbFCl structure type (Nieuwenkamp & Bijvoet, 1932[Nieuwenkamp, W. & Bijvoet, J. M. (1932). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 81, 469-474.]). Isostructural compounds UTQ have been synthesized (T = P–Bi, Q = Se–Te) (Hulliger, 1968[Hulliger, F. (1968). J. Less Common Met. 16, 113-117.]; Leciejewicz & Zygmunt, 1972[Leciejewicz, J. & Zygmunt, A. (1972). Phys. Status Solidi A, 13, 657-660.]; Haneveld & Jellinek, 1969[Haneveld, A. J. K. & Jellinek, F. (1969). J. Less Common Met. 18, 123-129.]; Zygmunt et al., 1974a[Zygmunt, A., Ligenza, S., Ptasiewicz, H. & Leciejewicz, J. (1974a). Phys. Status Solidi A, 25, K77-K80.],b[Zygmunt, A., Murasik, A., Ligenza, S. & Leciejewicz, J. (1974b). Phys. Status Solidi A, 22, 75-79.]; Pietraszko & Lukaszewicz, 1975[Pietraszko, D. & Lukaszewicz, K. (1975). Bull. Acad. Pol. Sci., Ser. Sci. Chim. 23, 337-340.]; Pearson, 1985[Pearson, W. B. (1985). Z. Kristallogr. 171, 23-29.]). Magnetic studies have been performed on single crystals of β-UPSe synthesized by the vapor-transport method (Kaczorowski et al., 1995[Kaczorowski, D., Noël, H. & Zygmunt, A. (1995). J. Magn. Magn. Mater. 140-144, 1431-1432.]), and other compounds with formula UTQ (Troc, 1987[Troc, R. (1987). Inorg. Chim. Acta, 140, 67-77.]). For synthetic details, see: Bugaris & Ibers (2008[Bugaris, D. E. & Ibers, J. A. (2008). J. Solid State Chem. 181, 3189-3193.]) and Haneveld & Jellinek (1969[Haneveld, A. J. K. & Jellinek, F. (1969). J. Less Common Met. 18, 123-129.]). For stand­ard­ization of structural data, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]).

Experimental

Crystal data
  • UPSe

  • Mr = 347.96

  • Tetragonal, I 4/m m m

  • a = 3.9443 (4) Å

  • c = 16.2836 (17) Å

  • V = 253.33 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 78.66 mm−1

  • T = 298 K

  • 0.41 × 0.39 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical face-indexed (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]) Tmin = 0.013, Tmax = 0.175

  • 1506 measured reflections

  • 128 independent reflections

  • 128 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.052

  • S = 1.31

  • 128 reflections

  • 12 parameters

  • Δρmax = 1.89 e Å−3

  • Δρmin = −4.77 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]); molecular graphics: CrystalMaker (Palmer, 2009[Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The compounds UTQ (T = P, As, As, Bi; Q = S, Se, Te) crystallize in one of two structure types. UBiTe, UTQ (T = As, Sb; Q = S, Se, Te), and UPQ (Q = S, Se) (Hulliger, 1968; Leciejewicz & Zygmunt, 1972; Haneveld & Jellinek, 1969; Zygmunt et al., 1974a; Pietraszko & Lukaszewicz, 1975; Pearson, 1985) crystallize in the tetragonal space group P4/nmm in the PbFCl (Nieuwenkamp & Bijvoet, 1932) structure type. UPTe and UAsTe (Pietraszko & Lukaszewicz, 1975; Pearson, 1985; Zygmunt et al., 1974b) crystallize in the tetragonal space group I4/mmm in the UGeTe (Haneveld & Jellinek, 1969) structure type. Magnetic studies have been performed on single crystals of β-UPSe crystallizing in the UGeTe structure type, but no structural data were reported. β-UPSe orders antiferromagnetically at low temperature (Troc, 1987; Kaczorowski et al., 1995).

We have synthesized β-UPSe from a CsCl flux, in contrast to previous reported synthetic methods. This compound crystallizes with four formula units in the tetragonal space group I4/mmm (Figure 1) in the UGeTe structure type. The asymmetric unit comprises atoms U1 (site symmetry 4mm), Se1 (4mm), and P1 (mmm.) (Figure 2). U is coordinated in a monocapped square-antiprismatic arrangement, where the square face is formed by P atoms and the other five vertices are Se atoms. These moieties face-share along the four triangular faces formed by two Se atoms and one P atom with adjacent moieties. They also face-share along the square faces formed by P atoms. Finally, each of the four edges on the cap are shared with another moiety so that the U atoms are staggered when viewed down [001]. Viewed on the side of the basal plane, each atom type lies on its own plane.

The structure is related to that of α-UPSe (Zygmunt et al., 1974a; Hulliger, 1968). The only difference is that instead of face-sharing along the square faces formed by the P atoms, the moieties edge-share with four other moieties, such that the U atoms are staggered in a checkerboard pattern when viewed down [001].

Interatomic distances are typical. The U–P distance is 2.8514 (7) Å, comparable to 2.91 Å in α-UPSe (Zygmunt et al., 1974a). The U–Se distances are 2.9605 (5) Å and 3.0633 (11) Å, compared to 2.901 Å and 3.131 Å in α-UPSe.

Related literature top

Whereas β-UPSe crystallizes in the UGeTe structure type (Haneveld & Jellinek, 1969), α-UPSe (Hulliger, 1968; Zygmunt et al., 1974a) crystallizes in the PbFCl structure type (Nieuwenkamp & Bijvoet, 1932). Isostructural compounds UTQ have been synthesized (T = P – Bi, Q = Se – Te) (Hulliger, 1968; Leciejewicz & Zygmunt, 1972; Haneveld & Jellinek, 1969; Zygmunt et al., 1974a,b; Pietraszko & Lukaszewicz, 1975; Pearson, 1985). Magnetic studies have been performed on single crystals of β-UPSe synthesized by the vapor-transport method (Kaczorowski et al., 1995), and other compounds with formula UTQ (Troc, 1987). For synthetic details, see: Bugaris & Ibers (2008) and Haneveld & Jellinek (1969). For standardization of structural data, see: Gelato & Parthé (1987).

Experimental top

U filings (Oak Ridge National Laboratory) were powdered as previously described (Bugaris & Ibers, 2008; Haneveld & Jellinek, 1969), and U2Se3 was synthesized by the stoichiometric reaction of U and Se (Cerac 99.999%) in a fused-silica tube at 1273 K. Black square plates of β-UPSe were synthesized in the reaction of U2Se3 (0.215 mmol), red P (Aldrich 99%, 0.064 mmol), Se (0.215 mmol), and CsCl (MP Biomedical 99.9%, 1.21 mmol) in a carbon-coated fused-silica tube. Reagents were loaded in an argon-filled glove box, and the tube was flame-sealed under 10—4 Torr vacuum. The tube was placed in a computer-controlled furnace and heated to 1273 K in 96 h, held there for 4 h, cooled to 1223 K in 12 h, held there for 96 h, and then cooled to 298 K in 350 h. The solidified flux was washed off with water. Qualitative EDS analysis using a Hitachi S-3400 SEM showed the presence of U, P, and Se, with no detectable Cs or Cl content in the crystals.

Refinement top

The structure was standardized with the use of STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak in the difference electron density map is 1.9 (6) e/Å3, 0.03 Å from atom U1, and the deepest hole is -4.8 (6) e/Å3, 0.91 Å from atom U1.

The refinement results in the placement of a half-occupied P1 atom in the 8j position. The resultant disorder at +x,1/2,0 (P1a) and -x,1/2,0 (P1b) leads to impossible P1a–P1b distances of 0.52 Å and 2.42 Å. The P1 atoms are arranged in a square net 2.813 Å on a side. The distribution of P1a squares and P1b squares within a structure is random, as no supercell reflections were observed.

Structure description top

The compounds UTQ (T = P, As, As, Bi; Q = S, Se, Te) crystallize in one of two structure types. UBiTe, UTQ (T = As, Sb; Q = S, Se, Te), and UPQ (Q = S, Se) (Hulliger, 1968; Leciejewicz & Zygmunt, 1972; Haneveld & Jellinek, 1969; Zygmunt et al., 1974a; Pietraszko & Lukaszewicz, 1975; Pearson, 1985) crystallize in the tetragonal space group P4/nmm in the PbFCl (Nieuwenkamp & Bijvoet, 1932) structure type. UPTe and UAsTe (Pietraszko & Lukaszewicz, 1975; Pearson, 1985; Zygmunt et al., 1974b) crystallize in the tetragonal space group I4/mmm in the UGeTe (Haneveld & Jellinek, 1969) structure type. Magnetic studies have been performed on single crystals of β-UPSe crystallizing in the UGeTe structure type, but no structural data were reported. β-UPSe orders antiferromagnetically at low temperature (Troc, 1987; Kaczorowski et al., 1995).

We have synthesized β-UPSe from a CsCl flux, in contrast to previous reported synthetic methods. This compound crystallizes with four formula units in the tetragonal space group I4/mmm (Figure 1) in the UGeTe structure type. The asymmetric unit comprises atoms U1 (site symmetry 4mm), Se1 (4mm), and P1 (mmm.) (Figure 2). U is coordinated in a monocapped square-antiprismatic arrangement, where the square face is formed by P atoms and the other five vertices are Se atoms. These moieties face-share along the four triangular faces formed by two Se atoms and one P atom with adjacent moieties. They also face-share along the square faces formed by P atoms. Finally, each of the four edges on the cap are shared with another moiety so that the U atoms are staggered when viewed down [001]. Viewed on the side of the basal plane, each atom type lies on its own plane.

The structure is related to that of α-UPSe (Zygmunt et al., 1974a; Hulliger, 1968). The only difference is that instead of face-sharing along the square faces formed by the P atoms, the moieties edge-share with four other moieties, such that the U atoms are staggered in a checkerboard pattern when viewed down [001].

Interatomic distances are typical. The U–P distance is 2.8514 (7) Å, comparable to 2.91 Å in α-UPSe (Zygmunt et al., 1974a). The U–Se distances are 2.9605 (5) Å and 3.0633 (11) Å, compared to 2.901 Å and 3.131 Å in α-UPSe.

Whereas β-UPSe crystallizes in the UGeTe structure type (Haneveld & Jellinek, 1969), α-UPSe (Hulliger, 1968; Zygmunt et al., 1974a) crystallizes in the PbFCl structure type (Nieuwenkamp & Bijvoet, 1932). Isostructural compounds UTQ have been synthesized (T = P – Bi, Q = Se – Te) (Hulliger, 1968; Leciejewicz & Zygmunt, 1972; Haneveld & Jellinek, 1969; Zygmunt et al., 1974a,b; Pietraszko & Lukaszewicz, 1975; Pearson, 1985). Magnetic studies have been performed on single crystals of β-UPSe synthesized by the vapor-transport method (Kaczorowski et al., 1995), and other compounds with formula UTQ (Troc, 1987). For synthetic details, see: Bugaris & Ibers (2008) and Haneveld & Jellinek (1969). For standardization of structural data, see: Gelato & Parthé (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008a).

Figures top
[Figure 1] Fig. 1. Structure of β-UPSe. U atoms are black, P atoms are brown, and Se atoms are orange.
[Figure 2] Fig. 2. : Asymmetric unit of β-UPSe. Displacement ellipsoids are drawn at the 95% probability level. Color code as in Fig. 1.
uranium phosphide selenide top
Crystal data top
UPSeDx = 9.123 Mg m3
Mr = 347.96Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mmmCell parameters from 1519 reflections
Hall symbol: -I 4 2θ = 5.0–28.4°
a = 3.9443 (4) ŵ = 78.66 mm1
c = 16.2836 (17) ÅT = 298 K
V = 253.33 (4) Å3Square plate, black
Z = 40.41 × 0.39 × 0.03 mm
F(000) = 564
Data collection top
Bruker APEXII CCD
diffractometer
128 independent reflections
Radiation source: fine-focus sealed tube128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: numerical
face-indexed (SADABS; Sheldrick, 2008b)
h = 55
Tmin = 0.013, Tmax = 0.175k = 55
1506 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 [1.00000 + 0.00000exp(0.00(sinθ/λ)2)]/ [σ2(Fo2) + 0.0000 + 0.0000*P + (0.0377P)2 + 0.0000sinθ/λ]
where P = 1.00000Fo2 + 0.00000Fc2
wR(F2) = 0.052(Δ/σ)max < 0.001
S = 1.31Δρmax = 1.89 e Å3
128 reflectionsΔρmin = 4.77 e Å3
12 parametersExtinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0139 (12)
Crystal data top
UPSeZ = 4
Mr = 347.96Mo Kα radiation
Tetragonal, I4/mmmµ = 78.66 mm1
a = 3.9443 (4) ÅT = 298 K
c = 16.2836 (17) Å0.41 × 0.39 × 0.03 mm
V = 253.33 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
128 independent reflections
Absorption correction: numerical
face-indexed (SADABS; Sheldrick, 2008b)
128 reflections with I > 2σ(I)
Tmin = 0.013, Tmax = 0.175Rint = 0.034
1506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02412 parameters
wR(F2) = 0.0520 restraints
S = 1.31Δρmax = 1.89 e Å3
128 reflectionsΔρmin = 4.77 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U10.00000.00000.125455 (18)0.0090 (3)
Se10.00000.00000.31358 (6)0.0093 (4)
P10.0660 (18)0.50000.00000.021 (2)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0066 (3)0.0066 (3)0.0138 (4)0.0000.0000.000
Se10.0068 (4)0.0068 (4)0.0142 (6)0.0000.0000.000
P10.040 (7)0.0114 (18)0.0107 (13)0.0000.0000.000
Geometric parameters (Å, º) top
U1—P1i2.8514 (7)U1—U1iv3.9443 (4)
U1—P1ii2.8514 (7)U1—U1ii4.0858 (7)
U1—P1iii2.8514 (7)P1—P1vii0.520 (14)
U1—P1iv2.8514 (7)P1—P1xv2.421 (10)
U1—P1v2.8514 (7)P1—P1vi2.421 (10)
U1—P1vi2.8514 (7)P1—P1xvi2.8132 (13)
U1—P1vii2.8514 (7)P1—P1iii2.8132 (13)
U1—P12.8514 (7)P1—P1xvii2.8132 (13)
U1—Se1viii2.9605 (5)P1—P1v2.8132 (13)
U1—Se1ix2.9605 (5)P1—U1ii2.8514 (7)
U1—Se1x2.9605 (5)P1—U1xiv2.8514 (7)
U1—Se1xi2.9605 (5)P1—U1vii2.8514 (7)
U1—Se13.0633 (11)P1—P1i3.157 (10)
U1—U1xii3.9443 (4)P1—P1xviii3.157 (10)
U1—U1xiii3.9443 (4)P1—P1xix3.424 (14)
U1—U1xiv3.9443 (4)
P1i—U1—P1ii50.2 (2)P1iii—U1—Se1xi139.62 (13)
P1ii—U1—P1iii59.116 (17)P1iv—U1—Se1xi73.66 (10)
P1i—U1—P1iv59.116 (17)P1v—U1—Se1xi73.66 (10)
P1iii—U1—P1iv67.2 (2)P1vi—U1—Se1xi80.81 (10)
P1i—U1—P1v87.52 (3)P1vii—U1—Se1xi139.62 (13)
P1ii—U1—P1v59.116 (17)P1—U1—Se1xi129.81 (13)
P1iii—U1—P1v88.48 (3)Se1viii—U1—Se1xi83.543 (13)
P1iv—U1—P1v50.2 (2)Se1ix—U1—Se1xi83.543 (13)
P1i—U1—P1vi88.48 (3)Se1x—U1—Se1xi140.81 (4)
P1ii—U1—P1vi67.2 (2)P1i—U1—Se1135.762 (15)
P1iii—U1—P1vi87.52 (3)P1ii—U1—Se1135.762 (15)
P1iv—U1—P1vi59.116 (17)P1iii—U1—Se1135.762 (15)
P1i—U1—P1vii59.116 (17)P1iv—U1—Se1135.762 (15)
P1ii—U1—P1vii87.52 (3)P1v—U1—Se1135.762 (15)
P1iii—U1—P1vii50.2 (2)P1vi—U1—Se1135.762 (15)
P1iv—U1—P1vii88.48 (3)P1vii—U1—Se1135.762 (15)
P1v—U1—P1vii67.2 (2)P1—U1—Se1135.762 (15)
P1vi—U1—P1vii59.116 (17)Se1viii—U1—Se170.41 (2)
P1i—U1—P167.2 (2)Se1ix—U1—Se170.41 (2)
P1ii—U1—P188.48 (3)Se1x—U1—Se170.41 (2)
P1iii—U1—P159.116 (17)Se1xi—U1—Se170.41 (2)
P1iv—U1—P187.52 (3)P1i—U1—P1xx47.14 (19)
P1v—U1—P159.116 (17)P1ii—U1—P1xx25.69 (12)
P1vi—U1—P150.2 (2)P1iii—U1—P1xx57.61 (9)
P1i—U1—Se1viii139.62 (13)P1iv—U1—P1xx34.53 (13)
P1ii—U1—Se1viii139.62 (13)P1v—U1—P1xx84.63 (11)
P1iii—U1—Se1viii129.81 (13)P1vi—U1—P1xx92.92 (11)
P1iv—U1—Se1viii129.81 (13)P1vii—U1—P1xx101.21 (11)
P1v—U1—Se1viii80.81 (10)P1—U1—P1xx105.774 (19)
P1vi—U1—Se1viii73.66 (10)Se1viii—U1—P1xx163.21 (3)
P1vii—U1—Se1viii80.81 (10)Se1ix—U1—P1xx48.49 (3)
P1—U1—Se1viii73.66 (10)Se1x—U1—P1xx113.11 (3)
P1i—U1—Se1ix73.66 (10)Se1xi—U1—P1xx84.38 (5)
P1ii—U1—Se1ix73.66 (10)Se1—U1—P1xx116.05 (3)
P1iii—U1—Se1ix80.81 (10)Se1viii—U1—P1xxi163.21 (3)
P1iv—U1—Se1ix80.81 (10)Se1ix—U1—P1xxi48.49 (2)
P1v—U1—Se1ix129.81 (13)Se1x—U1—P1xxi84.38 (5)
P1vi—U1—Se1ix139.62 (13)Se1xi—U1—P1xxi113.11 (3)
P1vii—U1—Se1ix129.81 (13)Se1—U1—P1xxi116.05 (3)
P1—U1—Se1ix139.62 (13)U1viii—Se1—U1ix140.82 (4)
Se1viii—U1—Se1ix140.81 (4)U1viii—Se1—U1x83.544 (13)
P1i—U1—Se1x80.81 (10)U1ix—Se1—U1x83.544 (13)
P1ii—U1—Se1x129.81 (13)U1viii—Se1—U1xi83.544 (13)
P1iii—U1—Se1x73.66 (10)U1ix—Se1—U1xi83.544 (13)
P1iv—U1—Se1x139.62 (13)U1x—Se1—U1xi140.82 (4)
P1v—U1—Se1x139.62 (13)U1viii—Se1—U1109.59 (2)
P1vi—U1—Se1x129.81 (13)U1ix—Se1—U1109.59 (2)
P1vii—U1—Se1x73.66 (10)U1x—Se1—U1109.59 (2)
P1—U1—Se1x80.81 (10)U1xi—Se1—U1109.59 (2)
Se1viii—U1—Se1x83.543 (13)U1xxii—P1—U1xxiii176.41 (10)
Se1ix—U1—Se1x83.543 (13)U1xii—P1—U1xxiii131.945 (10)
P1i—U1—Se1xi129.81 (13)U1xix—P1—U1xxiii130.116 (13)
P1ii—U1—Se1xi80.81 (10)U1xxiv—P1—U1xxiii108.344 (10)
Symmetry codes: (i) y1, x, z; (ii) x, y, z; (iii) y, x, z; (iv) x, y1, z; (v) y, x, z; (vi) y+1, x, z; (vii) x, y+1, z; (viii) x+1/2, y+1/2, z+1/2; (ix) x1/2, y1/2, z+1/2; (x) x1/2, y+1/2, z+1/2; (xi) x+1/2, y1/2, z+1/2; (xii) x+1, y, z; (xiii) x1, y, z; (xiv) x, y+1, z; (xv) y, x+1, z; (xvi) y+1, x+1, z; (xvii) y1, x+1, z; (xviii) y, x+1, z; (xix) x+1, y+1, z; (xx) y, x1, z; (xxi) x1, y1, z; (xxii) x+1, y+1, z; (xxiii) x1, y, z; (xxiv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaUPSe
Mr347.96
Crystal system, space groupTetragonal, I4/mmm
Temperature (K)298
a, c (Å)3.9443 (4), 16.2836 (17)
V3)253.33 (4)
Z4
Radiation typeMo Kα
µ (mm1)78.66
Crystal size (mm)0.41 × 0.39 × 0.03
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionNumerical
face-indexed (SADABS; Sheldrick, 2008b)
Tmin, Tmax0.013, 0.175
No. of measured, independent and
observed [I > 2σ(I)] reflections
1506, 128, 128
Rint0.034
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.052, 1.31
No. of reflections128
No. of parameters12
Δρmax, Δρmin (e Å3)1.89, 4.77

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), CrystalMaker (Palmer, 2009).

 

Acknowledgements

Funding for this research was kindly provided by the US Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Science and Engineering grant ER–15522. SEM analyses were conducted in the Electron Probe Instrumentation Center (EPIC) at the Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, supported by the NSF-NSEC, the NSF-MRSEC, the Keck Foundation, the State of Illinois, and Northwestern University. Single-crystal data were collected at the IMSERC X-ray Facility at Northwestern University, supported by the Inter­national Institute of Nanotechnology (IIN).

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBugaris, D. E. & Ibers, J. A. (2008). J. Solid State Chem. 181, 3189–3193.  Web of Science CrossRef CAS Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHaneveld, A. J. K. & Jellinek, F. (1969). J. Less Common Met. 18, 123–129.  CrossRef CAS Web of Science Google Scholar
First citationHulliger, F. (1968). J. Less Common Met. 16, 113–117.  CrossRef CAS Google Scholar
First citationKaczorowski, D., Noël, H. & Zygmunt, A. (1995). J. Magn. Magn. Mater. 140–144, 1431–1432.  CrossRef CAS Google Scholar
First citationLeciejewicz, J. & Zygmunt, A. (1972). Phys. Status Solidi A, 13, 657–660.  CrossRef CAS Web of Science Google Scholar
First citationNieuwenkamp, W. & Bijvoet, J. M. (1932). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 81, 469–474.  CAS Google Scholar
First citationPalmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxford, England.  Google Scholar
First citationPearson, W. B. (1985). Z. Kristallogr. 171, 23–29.  CrossRef CAS Web of Science Google Scholar
First citationPietraszko, D. & Lukaszewicz, K. (1975). Bull. Acad. Pol. Sci., Ser. Sci. Chim. 23, 337–340.  Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTroc, R. (1987). Inorg. Chim. Acta, 140, 67–77.  CAS Google Scholar
First citationZygmunt, A., Ligenza, S., Ptasiewicz, H. & Leciejewicz, J. (1974a). Phys. Status Solidi A, 25, K77–K80.  CrossRef CAS Web of Science Google Scholar
First citationZygmunt, A., Murasik, A., Ligenza, S. & Leciejewicz, J. (1974b). Phys. Status Solidi A, 22, 75–79.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds