metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(di­iodidocadmium)-μ-{1-[(1H-benzimidazol-2-yl)meth­yl]-1H-imidazole-κ2N:N′}] N,N-di­methyl­formamide monosolvate]

aSchool of Environmental and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, People's Republic of China, bSchool of Chemical and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China, and cDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: mxr@zzu.edu.cn

(Received 23 November 2011; accepted 26 November 2011; online 30 November 2011)

In the title complex, {[CdI2(C11H10N4)]·C3H7NO}n, the CdII ion is four-coordinated by two N atoms from two 1-[(1H-benzimidazol-1-yl)meth­yl]-1H-imidazole (bmi) ligands and by two terminal I anions in a distorted tetra­hedral geometry. One of the two I anions is disordered over two sets of sites, with refined occupancies of 0.66 (5) and 0.34 (5). The CdII ions are bridged by bmi ligands, leading to the formation of a chain along [001]. Dimethyl­formamide solvent mol­ecules are located between these chains. Classical N—H⋯O hydrogen bonding between the bmi ligands and the solvent mol­ecules leads to a consolidation of the structure.

Related literature

For background information on complexes based on N-heterocyclic ligands, see: Meng et al. (2010[Meng, X.-R., Wu, X.-J., Li, D.-W., Hou, H.-W. & Fan, Y.-T. (2010). Polyhedron, 29, 2619-2628.]); Mondal et al. (2009[Mondal, R., Basu, T., Sadhukhan, D., Chattopadhyay, T. & Bhunia, M. (2009). Cryst. Growth Des. 9, 1095-1105.]); Zhou et al. (2011[Zhou, X.-L., Li, W.-Q., Jin, G.-H., Zhao, D., Zhu, X.-Q., Meng, X.-R. & Hou, H.-W. (2011). J. Mol. Struct. 995, 148-156.]).

[Scheme 1]

Experimental

Crystal data
  • [CdI2(C11H10N4)]·C3H7NO

  • Mr = 637.53

  • Monoclinic, P 21 /c

  • a = 7.2216 (14) Å

  • b = 17.181 (3) Å

  • c = 16.374 (3) Å

  • β = 96.34 (3)°

  • V = 2019.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.15 mm−1

  • T = 293 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.575, Tmax = 0.682

  • 16931 measured reflections

  • 3950 independent reflections

  • 3597 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.071

  • S = 1.15

  • 3950 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O1 0.86 1.92 2.741 (5) 159

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A large number of complexes based on N-heterocyclic ligands have been synthesized (Meng et al., 2010; Mondal et al., 2009; Zhou et al., 2011). In order to further explore metal-organic frameworks with new structures, we selected 1-[(1H-benzimidazole-1-yl)methyl]-1H-1,3-imidazole which has abundant N-donor sites to self-assembly with CdI2 and obtained the polymeric title complex, {[CdI2(C11H10N4)].C3H7NO}n, of which the crystal structure is reported herein.

As shown in Figure 1, the CdII ion is in a distorted tetrahedral coordination environment defined by two nitrogen atoms from two 1-[(1H-benzimidazole-1-yl)methyl]-1H-1,3-imidazole (bmi) ligands and two terminal iodine atoms. One of the two iodine atoms is disordered over two positions in a 0.66 (5):0.34 (5) ratio. Each bmi ligand bridges two CdII ions yielding a chain parallel to [001] with a Cd···Cd distance of 8.2123 (16) Å (Figure 2). In addition, there are N—H···O hydrogen bonds present between benzimidazole groups and N,N-dimethylformamide solvent molecules.

Related literature top

For background information on complexes based on N-heterocyclic ligands, see: Meng et al. (2010); Mondal et al. (2009); Zhou et al. (2011).

Experimental top

The ligand 1-[(1H-benzimidazole-1-yl)methyl]-1H-1,3-imidazole (0.1 mmol) in methanol (4 ml) was added dropwise to an aqueous solution (2 ml) of cadmium iodide (0.1 mmol). The resulting solution was allowed to stand at room temperature. After four weeks colourless crystals of good quality were obtained from the filtrate and dried in air.

Refinement top

The disordered iodine atom was modeled by splitting the atom into two components (I1 and I1'), the site occupation factors of which refined in a ratio of 0.66 (5):0.34 (5). H atoms are positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) Å, 0.96 (—CH3) Å, 0.97 (—CH2) Å, and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N), 1.5(CH3) Ueq(C).

Structure description top

A large number of complexes based on N-heterocyclic ligands have been synthesized (Meng et al., 2010; Mondal et al., 2009; Zhou et al., 2011). In order to further explore metal-organic frameworks with new structures, we selected 1-[(1H-benzimidazole-1-yl)methyl]-1H-1,3-imidazole which has abundant N-donor sites to self-assembly with CdI2 and obtained the polymeric title complex, {[CdI2(C11H10N4)].C3H7NO}n, of which the crystal structure is reported herein.

As shown in Figure 1, the CdII ion is in a distorted tetrahedral coordination environment defined by two nitrogen atoms from two 1-[(1H-benzimidazole-1-yl)methyl]-1H-1,3-imidazole (bmi) ligands and two terminal iodine atoms. One of the two iodine atoms is disordered over two positions in a 0.66 (5):0.34 (5) ratio. Each bmi ligand bridges two CdII ions yielding a chain parallel to [001] with a Cd···Cd distance of 8.2123 (16) Å (Figure 2). In addition, there are N—H···O hydrogen bonds present between benzimidazole groups and N,N-dimethylformamide solvent molecules.

For background information on complexes based on N-heterocyclic ligands, see: Meng et al. (2010); Mondal et al. (2009); Zhou et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex showing atom labelling and 30% probability displacement ellipsolids. Hydrogen bonding is indicated by a dashed line. Only one component of the disordered I1 atom is shown. [Symmetry code A: x, -y + 3/2, z - 1/2.]
[Figure 2] Fig. 2. View of the one-dimensional chain in the title complex. [Symmetry codes A: x, -y + 3/2, z - 1/2; B: x, -y + 3/2, z + 1/2.]
catena-Poly[[(diiodidocadmium)-µ-{1-[(1H-benzimidazol- 2-yl)methyl]-1H-imidazole-κ2N:N'}] N,N-dimethylformamide monosolvate] top
Crystal data top
[CdI2(C11H10N4)]·C3H7NOF(000) = 1192
Mr = 637.53Dx = 2.097 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5502 reflections
a = 7.2216 (14) Åθ = 2.5–27.8°
b = 17.181 (3) ŵ = 4.15 mm1
c = 16.374 (3) ÅT = 293 K
β = 96.34 (3)°Prism, colourless
V = 2019.1 (7) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
3950 independent reflections
Radiation source: fine-focus sealed tube3597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 28.5714 pixels mm-1θmax = 26.0°, θmin = 2.5°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 2121
Tmin = 0.575, Tmax = 0.682l = 2020
16931 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0274P)2 + 1.599P]
where P = (Fo2 + 2Fc2)/3
3950 reflections(Δ/σ)max = 0.004
218 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[CdI2(C11H10N4)]·C3H7NOV = 2019.1 (7) Å3
Mr = 637.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2216 (14) ŵ = 4.15 mm1
b = 17.181 (3) ÅT = 293 K
c = 16.374 (3) Å0.15 × 0.12 × 0.10 mm
β = 96.34 (3)°
Data collection top
Rigaku Saturn
diffractometer
3950 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
3597 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.682Rint = 0.028
16931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.15Δρmax = 0.42 e Å3
3950 reflectionsΔρmin = 0.77 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.01312 (4)0.731203 (18)0.878202 (17)0.04345 (10)
I10.1380 (7)0.5878 (3)0.9078 (3)0.0636 (8)0.67 (5)
I1'0.108 (4)0.5857 (7)0.9160 (12)0.081 (2)0.33 (5)
I20.37470 (4)0.76342 (2)0.90167 (2)0.06053 (11)
N10.0248 (5)0.7542 (2)0.7464 (2)0.0472 (9)
N20.1550 (5)0.75706 (19)0.63150 (19)0.0420 (8)
N30.3002 (4)0.6008 (2)0.54610 (19)0.0425 (8)
H3B0.36610.58960.59160.051*
N40.1442 (4)0.67192 (18)0.44848 (17)0.0364 (7)
N50.5574 (5)0.5004 (2)0.7876 (3)0.0617 (10)
C10.1732 (6)0.7355 (2)0.7110 (2)0.0442 (10)
H1A0.27740.71050.73750.053*
C20.0939 (7)0.7889 (3)0.6863 (3)0.0598 (13)
H2A0.21180.80780.69330.072*
C30.0154 (7)0.7916 (3)0.6155 (3)0.0610 (13)
H3A0.06680.81270.56580.073*
C40.2911 (6)0.7427 (2)0.5727 (2)0.0451 (10)
H4A0.41380.73610.60260.054*
H4B0.29560.78770.53710.054*
C50.2437 (5)0.6721 (2)0.5212 (2)0.0367 (8)
C60.1353 (5)0.5940 (2)0.4243 (2)0.0391 (9)
C70.0492 (6)0.5583 (3)0.3534 (3)0.0514 (11)
H7A0.01670.58730.31190.062*
C80.0650 (6)0.4791 (3)0.3471 (3)0.0574 (12)
H8A0.00910.45410.30040.069*
C90.1627 (6)0.4351 (3)0.4090 (3)0.0568 (12)
H9A0.16990.38150.40240.068*
C100.2487 (6)0.4682 (3)0.4794 (3)0.0512 (11)
H10A0.31350.43850.52070.061*
C110.2335 (5)0.5487 (2)0.4856 (2)0.0412 (9)
C120.5480 (8)0.5743 (3)0.7687 (3)0.0761 (16)
H12A0.59600.60920.80900.091*
C130.4896 (11)0.4450 (5)0.7255 (5)0.124 (3)
H13A0.44810.47200.67550.187*
H13B0.38750.41640.74370.187*
H13C0.58790.40960.71600.187*
C140.6277 (11)0.4732 (5)0.8671 (4)0.125 (3)
H14A0.66720.51680.90150.188*
H14B0.73170.43930.86270.188*
H14C0.53160.44530.89080.188*
O10.4814 (5)0.6021 (2)0.7023 (2)0.0803 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.05384 (19)0.04766 (19)0.03022 (16)0.00195 (14)0.01071 (13)0.00394 (12)
I10.0812 (19)0.0510 (9)0.0590 (10)0.0095 (5)0.0096 (6)0.0014 (9)
I1'0.126 (5)0.0482 (13)0.067 (2)0.011 (3)0.006 (3)0.0078 (14)
I20.05041 (19)0.0619 (2)0.0716 (2)0.00441 (14)0.01688 (15)0.01633 (16)
N10.059 (2)0.054 (2)0.0300 (17)0.0094 (17)0.0098 (16)0.0026 (15)
N20.052 (2)0.049 (2)0.0251 (16)0.0037 (16)0.0056 (14)0.0033 (14)
N30.0425 (18)0.054 (2)0.0317 (17)0.0087 (16)0.0062 (14)0.0063 (15)
N40.0402 (17)0.0411 (19)0.0287 (16)0.0022 (14)0.0070 (13)0.0006 (14)
N50.060 (2)0.056 (3)0.067 (3)0.000 (2)0.004 (2)0.009 (2)
C10.049 (2)0.052 (2)0.032 (2)0.011 (2)0.0064 (17)0.0023 (18)
C20.056 (3)0.085 (4)0.039 (2)0.023 (3)0.004 (2)0.009 (2)
C30.070 (3)0.083 (4)0.029 (2)0.031 (3)0.002 (2)0.001 (2)
C40.049 (2)0.054 (3)0.033 (2)0.0058 (19)0.0099 (18)0.0033 (18)
C50.0346 (19)0.046 (2)0.0309 (19)0.0018 (17)0.0112 (15)0.0017 (17)
C60.036 (2)0.049 (2)0.033 (2)0.0018 (17)0.0114 (16)0.0012 (17)
C70.054 (3)0.061 (3)0.039 (2)0.002 (2)0.0052 (19)0.005 (2)
C80.064 (3)0.056 (3)0.053 (3)0.011 (2)0.013 (2)0.019 (2)
C90.059 (3)0.043 (3)0.073 (3)0.001 (2)0.026 (3)0.006 (2)
C100.054 (3)0.048 (3)0.054 (3)0.008 (2)0.015 (2)0.004 (2)
C110.041 (2)0.047 (2)0.038 (2)0.0049 (18)0.0134 (17)0.0013 (18)
C120.091 (4)0.070 (4)0.062 (3)0.016 (3)0.015 (3)0.014 (3)
C130.139 (7)0.114 (6)0.119 (6)0.035 (5)0.007 (5)0.035 (5)
C140.149 (7)0.121 (7)0.095 (5)0.001 (5)0.034 (5)0.037 (5)
O10.092 (3)0.100 (3)0.048 (2)0.036 (2)0.0028 (18)0.0057 (19)
Geometric parameters (Å, º) top
Cd1—N12.241 (3)C3—H3A0.9300
Cd1—N4i2.258 (3)C4—C51.496 (5)
Cd1—I1'2.698 (12)C4—H4A0.9700
Cd1—I12.716 (6)C4—H4B0.9700
Cd1—I22.7375 (7)C6—C71.396 (6)
N1—C11.313 (5)C6—C111.400 (5)
N1—C21.369 (6)C7—C81.372 (6)
N2—C11.346 (5)C7—H7A0.9300
N2—C31.365 (5)C8—C91.392 (7)
N2—C41.471 (5)C8—H8A0.9300
N3—C51.339 (5)C9—C101.371 (6)
N3—C111.383 (5)C9—H9A0.9300
N3—H3B0.8600C10—C111.392 (6)
N4—C51.321 (5)C10—H10A0.9300
N4—C61.395 (5)C12—O11.235 (6)
N4—Cd1ii2.258 (3)C12—H12A0.9300
N5—C121.307 (7)C13—H13A0.9600
N5—C141.424 (7)C13—H13B0.9600
N5—C131.438 (7)C13—H13C0.9600
C1—H1A0.9300C14—H14A0.9600
C2—C31.346 (6)C14—H14B0.9600
C2—H2A0.9300C14—H14C0.9600
N1—Cd1—N4i104.65 (12)C5—C4—H4B109.2
N1—Cd1—I1'108.3 (6)H4A—C4—H4B107.9
N4i—Cd1—I1'115.7 (3)N4—C5—N3112.9 (3)
N1—Cd1—I1104.02 (15)N4—C5—C4125.3 (4)
N4i—Cd1—I1114.07 (14)N3—C5—C4121.8 (3)
I1'—Cd1—I15.7 (7)N4—C6—C7131.3 (4)
N1—Cd1—I2108.64 (10)N4—C6—C11109.0 (3)
N4i—Cd1—I2102.34 (8)C7—C6—C11119.7 (4)
I1'—Cd1—I2116.4 (7)C8—C7—C6117.7 (4)
I1—Cd1—I2121.94 (12)C8—C7—H7A121.1
C1—N1—C2105.5 (3)C6—C7—H7A121.1
C1—N1—Cd1125.0 (3)C7—C8—C9121.6 (4)
C2—N1—Cd1129.5 (3)C7—C8—H8A119.2
C1—N2—C3107.2 (3)C9—C8—H8A119.2
C1—N2—C4125.9 (4)C10—C9—C8122.3 (4)
C3—N2—C4126.9 (3)C10—C9—H9A118.9
C5—N3—C11107.7 (3)C8—C9—H9A118.9
C5—N3—H3B126.2C9—C10—C11116.1 (4)
C11—N3—H3B126.2C9—C10—H10A121.9
C5—N4—C6105.2 (3)C11—C10—H10A121.9
C5—N4—Cd1ii130.6 (3)N3—C11—C10132.2 (4)
C6—N4—Cd1ii123.9 (2)N3—C11—C6105.2 (3)
C12—N5—C14122.6 (5)C10—C11—C6122.6 (4)
C12—N5—C13118.1 (5)O1—C12—N5126.1 (5)
C14—N5—C13119.2 (6)O1—C12—H12A116.9
N1—C1—N2111.2 (4)N5—C12—H12A116.9
N1—C1—H1A124.4N5—C13—H13A109.5
N2—C1—H1A124.4N5—C13—H13B109.5
C3—C2—N1110.1 (4)H13A—C13—H13B109.5
C3—C2—H2A124.9N5—C13—H13C109.5
N1—C2—H2A124.9H13A—C13—H13C109.5
C2—C3—N2106.0 (4)H13B—C13—H13C109.5
C2—C3—H3A127.0N5—C14—H14A109.5
N2—C3—H3A127.0N5—C14—H14B109.5
N2—C4—C5112.1 (3)H14A—C14—H14B109.5
N2—C4—H4A109.2N5—C14—H14C109.5
C5—C4—H4A109.2H14A—C14—H14C109.5
N2—C4—H4B109.2H14B—C14—H14C109.5
N4i—Cd1—N1—C180.6 (4)C11—N3—C5—N40.1 (4)
I1'—Cd1—N1—C143.3 (7)C11—N3—C5—C4179.7 (3)
I1—Cd1—N1—C139.4 (4)N2—C4—C5—N492.8 (4)
I2—Cd1—N1—C1170.6 (3)N2—C4—C5—N387.0 (4)
N4i—Cd1—N1—C299.6 (4)C5—N4—C6—C7179.9 (4)
I1'—Cd1—N1—C2136.4 (7)Cd1ii—N4—C6—C76.0 (6)
I1—Cd1—N1—C2140.4 (4)C5—N4—C6—C110.0 (4)
I2—Cd1—N1—C29.1 (4)Cd1ii—N4—C6—C11173.9 (2)
C2—N1—C1—N20.4 (5)N4—C6—C7—C8179.9 (4)
Cd1—N1—C1—N2179.8 (3)C11—C6—C7—C80.0 (6)
C3—N2—C1—N10.0 (5)C6—C7—C8—C90.2 (6)
C4—N2—C1—N1177.6 (4)C7—C8—C9—C100.1 (7)
C1—N1—C2—C30.7 (6)C8—C9—C10—C110.2 (6)
Cd1—N1—C2—C3179.5 (3)C5—N3—C11—C10179.4 (4)
N1—C2—C3—N20.7 (6)C5—N3—C11—C60.0 (4)
C1—N2—C3—C20.4 (6)C9—C10—C11—N3179.9 (4)
C4—N2—C3—C2177.2 (4)C9—C10—C11—C60.5 (6)
C1—N2—C4—C597.1 (5)N4—C6—C11—N30.0 (4)
C3—N2—C4—C580.1 (6)C7—C6—C11—N3180.0 (3)
C6—N4—C5—N30.1 (4)N4—C6—C11—C10179.5 (3)
Cd1ii—N4—C5—N3173.4 (2)C7—C6—C11—C100.4 (6)
C6—N4—C5—C4179.7 (3)C14—N5—C12—O1176.6 (6)
Cd1ii—N4—C5—C46.4 (5)C13—N5—C12—O11.9 (9)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O10.861.922.741 (5)159

Experimental details

Crystal data
Chemical formula[CdI2(C11H10N4)]·C3H7NO
Mr637.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.2216 (14), 17.181 (3), 16.374 (3)
β (°) 96.34 (3)
V3)2019.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.15
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.575, 0.682
No. of measured, independent and
observed [I > 2σ(I)] reflections
16931, 3950, 3597
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.071, 1.15
No. of reflections3950
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.77

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O10.861.922.741 (5)158.7
 

Acknowledgements

We gratefully acknowledge financial support by the Education Department of He'nan Province (2009 A150029).

References

First citationMeng, X.-R., Wu, X.-J., Li, D.-W., Hou, H.-W. & Fan, Y.-T. (2010). Polyhedron, 29, 2619–2628.  Web of Science CSD CrossRef CAS Google Scholar
First citationMondal, R., Basu, T., Sadhukhan, D., Chattopadhyay, T. & Bhunia, M. (2009). Cryst. Growth Des. 9, 1095–1105.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, X.-L., Li, W.-Q., Jin, G.-H., Zhao, D., Zhu, X.-Q., Meng, X.-R. & Hou, H.-W. (2011). J. Mol. Struct. 995, 148–156.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds