organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Carb­­oxy­anilinium chloride

aDepartment of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and bDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China
*Correspondence e-mail: spyang69320@yahoo.cn

(Received 1 November 2011; accepted 5 November 2011; online 9 November 2011)

In the title salt, C7H8NO2+·Cl, the cation and anion are linked by an O—H⋯Cl hydrogen bond. The three-dimensional crystal structure is stabilized by N—H⋯O and N—H⋯Cl hydrogen bonds.

Related literature

For related structures, see: Athimoolam & Natarajan (2007[Athimoolam, S. & Natarajan, S. (2007). Acta Cryst. C63, o514-o517.]); Gracin & Fischer (2005[Gracin, S. & Fischer, A. (2005). Acta Cryst. E61, o1242-o1244.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8NO2+·Cl

  • Mr = 173.59

  • Monoclinic, P 21 /c

  • a = 5.601 (5) Å

  • b = 8.269 (5) Å

  • c = 17.118 (5) Å

  • β = 96.371 (5)°

  • V = 787.9 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 298 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.814, Tmax = 0.882

  • 4205 measured reflections

  • 1299 independent reflections

  • 1210 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.192

  • S = 1.26

  • 1299 reflections

  • 133 parameters

  • All H-atom parameters refined

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.99 (8) 2.10 (8) 3.059 (4) 164 (6)
N1—H1A⋯Cl1i 0.85 (6) 2.33 (6) 3.154 (6) 165 (5)
N1—H1B⋯O2ii 0.88 (9) 2.05 (8) 2.823 (6) 145 (7)
N1—H1B⋯Cl1iii 0.88 (9) 2.70 (9) 3.289 (5) 125 (6)
N1—H1C⋯Cl1ii 0.96 (8) 2.26 (8) 3.215 (5) 172 (6)
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We intended to prepare a cerium(III) complex of p-aminobenzoic acid. However, we obtained crystals of the title salt, and we report here its crystal structure.

In the title salt, the asymmetric unit consists of one p-aminobenzoic acid cation and one chloride anion (Fig. 1).

The amine group is protonated and the C4—N1 bond length is 1.471 (7) Å. In the crystal structure of 4-carboxyanilinium(2R, 3R)-tartrate (Athimoolam & Natarajan, 2007) the amine group is also protonated and the values of the corresponding C—N bond lengths are 1.464 (6) Å and 1.476 (5) Å.

In the crystal structures of the α-polymorph of p-aminobenzoic acid (Athimoolam & Natarajan, 2007) and β-polymorph of p-aminobenzoic acid (Gracin & Fischer, 2005) the amino group is not protonated. For the α-polymorph the C—N distance is 1.372 (5) Å; for the β-polymorph the distance is 1.408 (3) Å.

The hydrogen bonds listed in Table 1 result in a crystal structure generated by inversion and glide symmetry (Fig. 2).

Related literature top

For related structures, see: Athimoolam & Natarajan (2007); Gracin & Fischer (2005).

Experimental top

To a solution containing p-aminobenzoic acid (1.37 g, 10 mmol) in ethanol (30 ml), a solution of cerium(III) chloride (1.24 g, 5 mmol) in methanol (15 ml) was added with stirring for 2 h at 323 K, and then the solution was filtered. Colourless crystals suitable for X-ray crystal structure analysis were obtained from the filtered solution over a period of two weeks.

Refinement top

All H atoms were located in a difference Fourier map and refined freely; Csp2—H = 0.87 (6) – 0.96 (5) Å, N—H = 0.85 (6) – 0.96 (8) Å and O—H = 0.99 (8) Å.

Structure description top

We intended to prepare a cerium(III) complex of p-aminobenzoic acid. However, we obtained crystals of the title salt, and we report here its crystal structure.

In the title salt, the asymmetric unit consists of one p-aminobenzoic acid cation and one chloride anion (Fig. 1).

The amine group is protonated and the C4—N1 bond length is 1.471 (7) Å. In the crystal structure of 4-carboxyanilinium(2R, 3R)-tartrate (Athimoolam & Natarajan, 2007) the amine group is also protonated and the values of the corresponding C—N bond lengths are 1.464 (6) Å and 1.476 (5) Å.

In the crystal structures of the α-polymorph of p-aminobenzoic acid (Athimoolam & Natarajan, 2007) and β-polymorph of p-aminobenzoic acid (Gracin & Fischer, 2005) the amino group is not protonated. For the α-polymorph the C—N distance is 1.372 (5) Å; for the β-polymorph the distance is 1.408 (3) Å.

The hydrogen bonds listed in Table 1 result in a crystal structure generated by inversion and glide symmetry (Fig. 2).

For related structures, see: Athimoolam & Natarajan (2007); Gracin & Fischer (2005).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title structure. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure, with hydrogen bonds shown as dashed lines. For clarity, H atoms not involved in the hydrogen bonds have been omitted. [Symmetry code:(*).1 - x, 1 - y, 1 - z (#). 1 + x, 1/2 - y, 1/2 + z,(&). x, 1/2 - y, 1/2 + z].
4-Carboxyanilinium chloride top
Crystal data top
C7H8NO2+·ClF(000) = 360
Mr = 173.59Dx = 1.463 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3678 reflections
a = 5.601 (5) Åθ = 2.4–29.3°
b = 8.269 (5) ŵ = 0.43 mm1
c = 17.118 (5) ÅT = 298 K
β = 96.371 (5)°Block, yellow
V = 787.9 (9) Å30.50 × 0.40 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1299 independent reflections
Radiation source: fine-focus sealed tube1210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.814, Tmax = 0.882k = 97
4205 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054All H-atom parameters refined
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.0616P)2 + 2.6608P]
where P = (Fo2 + 2Fc2)/3
S = 1.26(Δ/σ)max < 0.001
1299 reflectionsΔρmax = 0.49 e Å3
133 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.075 (12)
Crystal data top
C7H8NO2+·ClV = 787.9 (9) Å3
Mr = 173.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.601 (5) ŵ = 0.43 mm1
b = 8.269 (5) ÅT = 298 K
c = 17.118 (5) Å0.50 × 0.40 × 0.30 mm
β = 96.371 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1299 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1210 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.882Rint = 0.030
4205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.192All H-atom parameters refined
S = 1.26Δρmax = 0.49 e Å3
1299 reflectionsΔρmin = 0.34 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5758 (9)0.2824 (5)0.5157 (3)0.0322 (11)
C20.3637 (8)0.1926 (6)0.4999 (3)0.0332 (11)
C30.3059 (9)0.1230 (6)0.4273 (3)0.0367 (12)
C40.4607 (8)0.1434 (5)0.3701 (3)0.0314 (11)
C50.6671 (9)0.2347 (6)0.3835 (3)0.0362 (12)
C60.7245 (9)0.3053 (6)0.4564 (3)0.0376 (12)
C70.6379 (9)0.3487 (6)0.5964 (3)0.0348 (11)
N10.4043 (9)0.0640 (6)0.2933 (3)0.0374 (10)
O10.8194 (7)0.4512 (5)0.6027 (2)0.0488 (11)
O20.5313 (8)0.3078 (5)0.6508 (2)0.0573 (12)
Cl10.9009 (2)0.60977 (15)0.76491 (7)0.0407 (5)
H10.858 (13)0.482 (9)0.659 (5)0.09 (2)*
H1A0.279 (10)0.006 (6)0.293 (3)0.032 (14)*
H1B0.393 (14)0.131 (11)0.253 (5)0.09 (3)*
H1C0.545 (14)0.002 (9)0.286 (4)0.08 (2)*
H20.262 (9)0.183 (6)0.541 (3)0.034 (13)*
H30.175 (10)0.067 (6)0.419 (3)0.033 (13)*
H50.780 (10)0.249 (6)0.347 (3)0.042 (15)*
H60.863 (9)0.363 (6)0.465 (3)0.026 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (3)0.030 (2)0.033 (2)0.0025 (19)0.008 (2)0.0034 (19)
C20.028 (2)0.039 (3)0.034 (2)0.001 (2)0.008 (2)0.006 (2)
C30.033 (3)0.035 (3)0.045 (3)0.004 (2)0.013 (2)0.003 (2)
C40.033 (2)0.028 (2)0.035 (2)0.0035 (19)0.009 (2)0.0035 (18)
C50.035 (3)0.040 (3)0.036 (3)0.000 (2)0.013 (2)0.005 (2)
C60.033 (3)0.037 (3)0.046 (3)0.007 (2)0.015 (2)0.001 (2)
C70.031 (2)0.038 (2)0.034 (2)0.002 (2)0.002 (2)0.003 (2)
N10.036 (2)0.041 (2)0.035 (2)0.004 (2)0.006 (2)0.0016 (19)
O10.054 (2)0.054 (2)0.039 (2)0.0211 (19)0.0078 (19)0.0046 (17)
O20.059 (3)0.080 (3)0.035 (2)0.025 (2)0.014 (2)0.0088 (19)
Cl10.0353 (8)0.0408 (8)0.0459 (8)0.0035 (5)0.0043 (5)0.0016 (5)
Geometric parameters (Å, º) top
C1—C61.395 (6)C5—C61.383 (7)
C1—C21.402 (7)C5—H50.94 (5)
C1—C71.491 (7)C6—H60.91 (5)
C2—C31.374 (7)C7—O21.209 (6)
C2—H20.96 (5)C7—O11.319 (6)
C3—C41.389 (6)N1—H1A0.85 (6)
C3—H30.87 (6)N1—H1B0.88 (9)
C4—C51.378 (7)N1—H1C0.96 (8)
C4—N11.471 (7)O1—H10.99 (8)
C6—C1—C2119.6 (5)C6—C5—H5116 (3)
C6—C1—C7121.8 (5)C5—C6—C1120.1 (5)
C2—C1—C7118.6 (4)C5—C6—H6118 (3)
C3—C2—C1120.4 (4)C1—C6—H6121 (3)
C3—C2—H2122 (3)O2—C7—O1124.0 (5)
C1—C2—H2117 (3)O2—C7—C1121.8 (5)
C2—C3—C4119.0 (5)O1—C7—C1114.2 (4)
C2—C3—H3118 (3)C4—N1—H1A111 (3)
C4—C3—H3123 (3)C4—N1—H1B114 (5)
C5—C4—C3121.7 (5)H1A—N1—H1B111 (6)
C5—C4—N1119.1 (4)C4—N1—H1C104 (5)
C3—C4—N1119.1 (4)H1A—N1—H1C113 (6)
C4—C5—C6119.3 (4)H1B—N1—H1C103 (6)
C4—C5—H5125 (3)C7—O1—H1109 (4)
C6—C1—C2—C32.1 (7)C4—C5—C6—C10.7 (8)
C7—C1—C2—C3176.9 (4)C2—C1—C6—C52.3 (7)
C1—C2—C3—C40.1 (7)C7—C1—C6—C5176.6 (5)
C2—C3—C4—C51.6 (7)C6—C1—C7—O2167.9 (5)
C2—C3—C4—N1177.7 (4)C2—C1—C7—O211.1 (7)
C3—C4—C5—C61.4 (7)C6—C1—C7—O110.8 (7)
N1—C4—C5—C6177.9 (5)C2—C1—C7—O1170.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.99 (8)2.10 (8)3.059 (4)164 (6)
N1—H1A···Cl1i0.85 (6)2.33 (6)3.154 (6)165 (5)
N1—H1B···O2ii0.88 (9)2.05 (8)2.823 (6)145 (7)
N1—H1B···Cl1iii0.88 (9)2.70 (9)3.289 (5)125 (6)
N1—H1C···Cl1ii0.96 (8)2.26 (8)3.215 (5)172 (6)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H8NO2+·Cl
Mr173.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.601 (5), 8.269 (5), 17.118 (5)
β (°) 96.371 (5)
V3)787.9 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.814, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
4205, 1299, 1210
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.192, 1.26
No. of reflections1299
No. of parameters133
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.49, 0.34

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.99 (8)2.10 (8)3.059 (4)164 (6)
N1—H1A···Cl1i0.85 (6)2.33 (6)3.154 (6)165 (5)
N1—H1B···O2ii0.88 (9)2.05 (8)2.823 (6)145 (7)
N1—H1B···Cl1iii0.88 (9)2.70 (9)3.289 (5)125 (6)
N1—H1C···Cl1ii0.96 (8)2.26 (8)3.215 (5)172 (6)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

The project was supported by the Natural Science Foundation of Huaihai Institute of Technology, China (No. Z2009019).

References

First citationAthimoolam, S. & Natarajan, S. (2007). Acta Cryst. C63, o514–o517.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGracin, S. & Fischer, A. (2005). Acta Cryst. E61, o1242–o1244.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds