organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(2-anilino-2-oxoeth­yl)-1H-imidazol-3-ium chloride aceto­nitrile monosolvate

aNational Changhua University of Education, Department of Chemistry, Changhua, Taiwan 50058
*Correspondence e-mail: leehm@cc.ncue.edu.tw

(Received 11 November 2011; accepted 15 November 2011; online 19 November 2011)

In the title compound, C19H19N4O2+·Cl·C2H3N, the dihedral angle between the two phenyl rings is 69.57 (8)° while the dihedral angles between the imidazole ring and the phenyl rings are 70.61 (7) and 82.11 (7)°. In the crystal, N—H⋯Cl, C—H⋯O, C—H⋯Cl and C—H⋯N hydrogen bonds link the imidazolium cations, chloride anions and acetonitrile solvent mol­ecules into a two-dimensional hydrogen-bonded network parallel to (001); an intra­molecular C—H⋯O hydrogen bond is also observed.

Related literature

For the crystal structures of nickel, palladium, and silver complexes with ligands derived from the title compound, see: Liao, Chan, Chang et al. (2007[Liao, C.-Y., Chan, K.-T., Chang, Y.-C., Chen, C.-Y., Tu, C.-Y., Hu, C.-H. & Lee, H. M. (2007). Organometallics, 26, 5826-5833.]), Liao, Chan, Zeng et al. (2007[Liao, C.-Y., Chan, K.-T., Zeng, J.-Y., Hu, C.-H., Tu, C.-Y. & Lee, H. M. (2007). Organometallics, 26, 1692-1702.]) and Liao et al. (2008[Liao, C.-Y., Chan, K.-T., Chiu, P.-L., Chen, C.-Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973-2978.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C19H19N4O2+·Cl·C2H3N

  • Mr = 411.89

  • Triclinic, [P \overline 1]

  • a = 8.7801 (6) Å

  • b = 10.4544 (6) Å

  • c = 12.1998 (7) Å

  • α = 91.842 (4)°

  • β = 95.492 (4)°

  • γ = 108.096 (4)°

  • V = 1057.28 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 150 K

  • 0.22 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.970

  • 13815 measured reflections

  • 5067 independent reflections

  • 3597 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.129

  • S = 1.06

  • 5067 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl1i 0.88 2.28 3.1624 (17) 175
N4—H4⋯Cl1ii 0.88 2.35 3.2287 (17) 175
C4—H4B⋯N5 0.99 2.50 3.262 (3) 134
C12—H12A⋯O1iii 0.99 2.25 3.126 (2) 147
C12—H12B⋯Cl1iii 0.99 2.67 3.400 (2) 131
C19—H19⋯O2 0.95 2.31 2.911 (2) 121
C20—H20A⋯O2 0.98 2.32 3.238 (3) 156
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

The title compound, C19H19N4O+.Cl-.C2H3N, is a precursor for N-heterocyclic carbene (NHC) ligands. Nickel (Liao, Chan, Chang et al., 2007), palladium (Liao, Chan, Zeng et al., 2007) and silver (Liao et al., 2008) complexes with NHC ligands derived from the salt have been reported by us previously.

The crystal structure of the title compound is shown in Fig. 1. The dihedral angle between the two phenyl rings is 69.57 (8)°; the dihedral angles between the imidazole ring and the phenyl rings are 70.61 (7)° for [C6–C11] and 82.11 (7)° for [C14–C19].

After deprotonation and metal coordination via C2, the N—C—N bond angles become slightly smaller. The N—C—N bond angle in the title compound is 108.59 (17)°, whereas the angles are 105.5 (2) and 106.3 (3) ° in the palladium complex (Liao, Chan, Zeng et al., 2007), 104.4 (4)° in the silver complex (Liao et al., 2008) and 104.9 (4)° in the nickel complex (Liao, Chan, Chang et al., 2007).

One non-classical intramolecular C—H···O hydrogen bond has been detected (Table 1), whereas classical and non-classical intermolecular hydrogen bonds of the type N—H···Cl, C—H···Cl, C—H···O and C—H···N link the imidazolium cations, chloride anions and the acetonitrile molecules into a two-dimensional hydrogen-bonded network (Fig. 2).

Related literature top

For the crystal structures of nickel, palladium, and silver complexes with ligands derived from the title compound, see: Liao, Chan, Chang et al. (2007), Liao, Chan, Zeng et al. (2007) and Liao et al. (2008), respectively.

Experimental top

The compound was prepared according to the literature procedure (Liao, Chan, Zeng et al., 2007). Suitable crystals were obtained by slow diffusion of diethyl ether into an acetonitrile solution of the compound at room temperature.

Refinement top

All H atoms could have been detected in the difference Fourier map; nevertheless, all H atoms were positioned geometrically and refined as riding atoms, with Csp2—H = 0.95, C(methyl)—H = 0.98, C(methylene)—H = 0.99, and N—H = 0.88 Å; Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Structure description top

The title compound, C19H19N4O+.Cl-.C2H3N, is a precursor for N-heterocyclic carbene (NHC) ligands. Nickel (Liao, Chan, Chang et al., 2007), palladium (Liao, Chan, Zeng et al., 2007) and silver (Liao et al., 2008) complexes with NHC ligands derived from the salt have been reported by us previously.

The crystal structure of the title compound is shown in Fig. 1. The dihedral angle between the two phenyl rings is 69.57 (8)°; the dihedral angles between the imidazole ring and the phenyl rings are 70.61 (7)° for [C6–C11] and 82.11 (7)° for [C14–C19].

After deprotonation and metal coordination via C2, the N—C—N bond angles become slightly smaller. The N—C—N bond angle in the title compound is 108.59 (17)°, whereas the angles are 105.5 (2) and 106.3 (3) ° in the palladium complex (Liao, Chan, Zeng et al., 2007), 104.4 (4)° in the silver complex (Liao et al., 2008) and 104.9 (4)° in the nickel complex (Liao, Chan, Chang et al., 2007).

One non-classical intramolecular C—H···O hydrogen bond has been detected (Table 1), whereas classical and non-classical intermolecular hydrogen bonds of the type N—H···Cl, C—H···Cl, C—H···O and C—H···N link the imidazolium cations, chloride anions and the acetonitrile molecules into a two-dimensional hydrogen-bonded network (Fig. 2).

For the crystal structures of nickel, palladium, and silver complexes with ligands derived from the title compound, see: Liao, Chan, Chang et al. (2007), Liao, Chan, Zeng et al. (2007) and Liao et al. (2008), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 2006).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the crystal packing along the c axis, displaying the hydrogen bonds as dashed lines.
1,3-Bis(2-anilino-2-oxoethyl)-1H-imidazol-3-ium chloride acetonitrile monosolvate top
Crystal data top
C19H19N4O2+·Cl·C2H3NZ = 2
Mr = 411.89F(000) = 432
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7801 (6) ÅCell parameters from 2360 reflections
b = 10.4544 (6) Åθ = 2.5–23.9°
c = 12.1998 (7) ŵ = 0.21 mm1
α = 91.842 (4)°T = 150 K
β = 95.492 (4)°Block, white
γ = 108.096 (4)°0.22 × 0.20 × 0.15 mm
V = 1057.28 (11) Å3
Data collection top
Bruker SMART APEXII
diffractometer
5067 independent reflections
Radiation source: fine-focus sealed tube3597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1111
Tmin = 0.956, Tmax = 0.970k = 1313
13815 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.377P]
where P = (Fo2 + 2Fc2)/3
5067 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
C19H19N4O2+·Cl·C2H3Nγ = 108.096 (4)°
Mr = 411.89V = 1057.28 (11) Å3
Triclinic, P1Z = 2
a = 8.7801 (6) ÅMo Kα radiation
b = 10.4544 (6) ŵ = 0.21 mm1
c = 12.1998 (7) ÅT = 150 K
α = 91.842 (4)°0.22 × 0.20 × 0.15 mm
β = 95.492 (4)°
Data collection top
Bruker SMART APEXII
diffractometer
5067 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3597 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.970Rint = 0.040
13815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.06Δρmax = 0.96 e Å3
5067 reflectionsΔρmin = 0.90 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5447 (2)0.28079 (19)0.54543 (15)0.0241 (4)
H10.59940.23110.50710.029*
C20.3554 (2)0.3390 (2)0.62012 (16)0.0305 (4)
H20.25360.33600.64230.037*
C30.4941 (2)0.4426 (2)0.64010 (17)0.0310 (5)
H30.50860.52590.67980.037*
C40.2737 (2)0.11100 (19)0.51452 (16)0.0275 (4)
H4A0.18240.08460.55980.033*
H4B0.32560.03940.51620.033*
C50.2105 (2)0.12423 (19)0.39559 (15)0.0247 (4)
C60.0091 (2)0.0133 (2)0.24692 (16)0.0261 (4)
C70.0460 (3)0.0873 (2)0.20240 (17)0.0356 (5)
H70.01710.17390.24000.043*
C80.1437 (3)0.0597 (2)0.10267 (19)0.0429 (6)
H80.18140.12820.07210.052*
C90.1872 (3)0.0659 (2)0.04710 (19)0.0440 (6)
H90.25350.08360.02140.053*
C100.1329 (3)0.1656 (2)0.09242 (19)0.0431 (6)
H100.16280.25230.05490.052*
C110.0351 (2)0.1401 (2)0.19235 (18)0.0336 (5)
H110.00130.20920.22310.040*
C120.7777 (2)0.4883 (2)0.59194 (16)0.0266 (4)
H12A0.78210.58270.58100.032*
H12B0.82380.45630.52960.032*
C130.8785 (2)0.4833 (2)0.69954 (16)0.0261 (4)
C141.1599 (2)0.59148 (19)0.78694 (15)0.0255 (4)
C151.3085 (2)0.6761 (2)0.76428 (17)0.0305 (4)
H151.31760.71790.69610.037*
C161.4440 (2)0.7002 (2)0.84055 (18)0.0350 (5)
H161.54570.75690.82400.042*
C171.4306 (3)0.6414 (2)0.94059 (18)0.0380 (5)
H171.52290.65730.99290.046*
C181.2824 (3)0.5596 (2)0.96405 (18)0.0400 (5)
H181.27340.52041.03330.048*
C191.1455 (2)0.5332 (2)0.88779 (17)0.0335 (5)
H191.04420.47620.90460.040*
C200.5812 (3)0.1257 (3)0.8373 (2)0.0472 (4)
H20A0.67850.20170.83130.071*
H20B0.60110.07340.89920.071*
H20C0.49180.15980.84990.071*
C210.5404 (3)0.0403 (3)0.7362 (2)0.0472 (4)
Cl10.07301 (6)0.75633 (5)0.49516 (4)0.03031 (14)
N10.38999 (17)0.23796 (16)0.56116 (12)0.0244 (3)
N20.61030 (17)0.40496 (15)0.59229 (12)0.0238 (3)
N30.10210 (18)0.00739 (16)0.35129 (13)0.0265 (4)
H3A0.08780.06300.39140.032*
N41.02870 (18)0.57136 (16)0.70405 (13)0.0263 (4)
H41.04770.62310.64820.032*
N50.5089 (2)0.0260 (2)0.65673 (17)0.0439 (5)
O10.25525 (16)0.22902 (13)0.34914 (11)0.0291 (3)
O20.82600 (17)0.40675 (16)0.77037 (12)0.0387 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0221 (9)0.0205 (9)0.0291 (9)0.0059 (7)0.0011 (7)0.0047 (7)
C20.0240 (9)0.0343 (12)0.0340 (10)0.0116 (9)0.0005 (8)0.0007 (9)
C30.0265 (10)0.0311 (11)0.0363 (11)0.0121 (9)0.0005 (8)0.0058 (9)
C40.0208 (9)0.0232 (10)0.0328 (10)0.0004 (8)0.0012 (7)0.0044 (8)
C50.0168 (8)0.0237 (10)0.0329 (10)0.0055 (7)0.0011 (7)0.0022 (8)
C60.0183 (8)0.0273 (10)0.0304 (10)0.0042 (8)0.0008 (7)0.0031 (8)
C70.0351 (11)0.0306 (12)0.0392 (11)0.0118 (9)0.0074 (9)0.0044 (9)
C80.0421 (13)0.0409 (13)0.0448 (13)0.0168 (11)0.0129 (10)0.0025 (10)
C90.0399 (13)0.0430 (14)0.0411 (12)0.0076 (11)0.0135 (10)0.0044 (10)
C100.0414 (13)0.0334 (13)0.0459 (13)0.0040 (10)0.0075 (10)0.0097 (10)
C110.0294 (10)0.0250 (11)0.0423 (12)0.0043 (8)0.0016 (9)0.0014 (9)
C120.0206 (9)0.0229 (10)0.0326 (10)0.0027 (7)0.0024 (7)0.0042 (8)
C130.0224 (9)0.0241 (10)0.0302 (10)0.0061 (8)0.0004 (7)0.0027 (8)
C140.0232 (9)0.0236 (10)0.0279 (9)0.0066 (8)0.0023 (7)0.0008 (8)
C150.0269 (10)0.0291 (11)0.0323 (10)0.0048 (8)0.0010 (8)0.0010 (8)
C160.0223 (10)0.0343 (12)0.0431 (12)0.0033 (9)0.0011 (8)0.0045 (9)
C170.0305 (11)0.0399 (13)0.0392 (12)0.0102 (9)0.0124 (9)0.0039 (10)
C180.0387 (12)0.0432 (13)0.0334 (11)0.0096 (10)0.0074 (9)0.0041 (10)
C190.0278 (10)0.0337 (12)0.0337 (11)0.0035 (9)0.0016 (8)0.0047 (9)
C200.0476 (10)0.0426 (10)0.0472 (10)0.0069 (8)0.0084 (8)0.0076 (8)
C210.0476 (10)0.0426 (10)0.0472 (10)0.0069 (8)0.0084 (8)0.0076 (8)
Cl10.0255 (2)0.0263 (3)0.0385 (3)0.00651 (19)0.00336 (18)0.0089 (2)
N10.0181 (7)0.0238 (9)0.0290 (8)0.0039 (6)0.0009 (6)0.0038 (6)
N20.0186 (7)0.0217 (8)0.0298 (8)0.0061 (6)0.0024 (6)0.0019 (6)
N30.0228 (8)0.0211 (8)0.0323 (8)0.0031 (7)0.0015 (6)0.0048 (7)
N40.0217 (8)0.0252 (9)0.0282 (8)0.0027 (7)0.0015 (6)0.0071 (7)
N50.0382 (11)0.0497 (13)0.0481 (12)0.0195 (9)0.0047 (9)0.0088 (10)
O10.0266 (7)0.0229 (7)0.0345 (7)0.0035 (6)0.0012 (6)0.0061 (6)
O20.0291 (8)0.0409 (9)0.0363 (8)0.0024 (7)0.0021 (6)0.0141 (7)
Geometric parameters (Å, º) top
C1—N11.327 (2)C12—N21.458 (2)
C1—N21.330 (2)C12—C131.523 (2)
C1—H10.9500C12—H12A0.9900
C2—C31.350 (3)C12—H12B0.9900
C2—N11.385 (2)C13—O21.221 (2)
C2—H20.9500C13—N41.349 (2)
C3—N21.373 (2)C14—C151.389 (3)
C3—H30.9500C14—C191.390 (3)
C4—N11.458 (2)C14—N41.416 (2)
C4—C51.529 (3)C15—C161.390 (3)
C4—H4A0.9900C15—H150.9500
C4—H4B0.9900C16—C171.383 (3)
C5—O11.221 (2)C16—H160.9500
C5—N31.352 (2)C17—C181.379 (3)
C6—C111.388 (3)C17—H170.9500
C6—C71.392 (3)C18—C191.396 (3)
C6—N31.417 (2)C18—H180.9500
C7—C81.387 (3)C19—H190.9500
C7—H70.9500C20—C211.446 (3)
C8—C91.383 (3)C20—H20A0.9800
C8—H80.9500C20—H20B0.9800
C9—C101.384 (3)C20—H20C0.9800
C9—H90.9500C21—N51.133 (3)
C10—C111.390 (3)N3—H3A0.8800
C10—H100.9500N4—H40.8800
C11—H110.9500
N1—C1—N2108.59 (17)H12A—C12—H12B108.0
N1—C1—H1125.7O2—C13—N4126.00 (17)
N2—C1—H1125.7O2—C13—C12122.57 (17)
C3—C2—N1106.85 (17)N4—C13—C12111.43 (17)
C3—C2—H2126.6C15—C14—C19119.79 (17)
N1—C2—H2126.6C15—C14—N4116.74 (17)
C2—C3—N2107.19 (17)C19—C14—N4123.47 (18)
C2—C3—H3126.4C14—C15—C16120.5 (2)
N2—C3—H3126.4C14—C15—H15119.7
N1—C4—C5110.81 (15)C16—C15—H15119.7
N1—C4—H4A109.5C17—C16—C15119.9 (2)
C5—C4—H4A109.5C17—C16—H16120.1
N1—C4—H4B109.5C15—C16—H16120.1
C5—C4—H4B109.5C18—C17—C16119.65 (18)
H4A—C4—H4B108.1C18—C17—H17120.2
O1—C5—N3125.89 (17)C16—C17—H17120.2
O1—C5—C4122.59 (16)C17—C18—C19121.2 (2)
N3—C5—C4111.52 (16)C17—C18—H18119.4
C11—C6—C7120.09 (17)C19—C18—H18119.4
C11—C6—N3118.26 (17)C14—C19—C18119.0 (2)
C7—C6—N3121.52 (17)C14—C19—H19120.5
C8—C7—C6119.33 (19)C18—C19—H19120.5
C8—C7—H7120.3C21—C20—H20A109.5
C6—C7—H7120.3C21—C20—H20B109.5
C9—C8—C7121.0 (2)H20A—C20—H20B109.5
C9—C8—H8119.5C21—C20—H20C109.5
C7—C8—H8119.5H20A—C20—H20C109.5
C8—C9—C10119.3 (2)H20B—C20—H20C109.5
C8—C9—H9120.4N5—C21—C20179.6 (3)
C10—C9—H9120.4C1—N1—C2108.53 (16)
C9—C10—C11120.6 (2)C1—N1—C4125.20 (16)
C9—C10—H10119.7C2—N1—C4126.02 (16)
C11—C10—H10119.7C1—N2—C3108.84 (16)
C6—C11—C10119.7 (2)C1—N2—C12125.67 (16)
C6—C11—H11120.2C3—N2—C12125.49 (16)
C10—C11—H11120.2C5—N3—C6126.67 (17)
N2—C12—C13111.46 (16)C5—N3—H3A116.7
N2—C12—H12A109.3C6—N3—H3A116.7
C13—C12—H12A109.3C13—N4—C14128.50 (17)
N2—C12—H12B109.3C13—N4—H4115.8
C13—C12—H12B109.3C14—N4—H4115.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl1i0.882.283.1624 (17)175
N4—H4···Cl1ii0.882.353.2287 (17)175
C4—H4B···N50.992.503.262 (3)134
C12—H12A···O1iii0.992.253.126 (2)147
C12—H12B···Cl1iii0.992.673.400 (2)131
C19—H19···O20.952.312.911 (2)121
C20—H20A···O20.982.323.238 (3)156
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H19N4O2+·Cl·C2H3N
Mr411.89
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.7801 (6), 10.4544 (6), 12.1998 (7)
α, β, γ (°)91.842 (4), 95.492 (4), 108.096 (4)
V3)1057.28 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.22 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.956, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
13815, 5067, 3597
Rint0.040
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.129, 1.06
No. of reflections5067
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.90

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl1i0.882.283.1624 (17)175.2
N4—H4···Cl1ii0.882.353.2287 (17)174.8
C4—H4B···N50.992.503.262 (3)134.0
C12—H12A···O1iii0.992.253.126 (2)147.1
C12—H12B···Cl1iii0.992.673.400 (2)131.0
C19—H19···O20.952.312.911 (2)120.6
C20—H20A···O20.982.323.238 (3)155.5
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank the National Science Council of Taiwan for financial support of this work.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiao, C.-Y., Chan, K.-T., Chang, Y.-C., Chen, C.-Y., Tu, C.-Y., Hu, C.-H. & Lee, H. M. (2007). Organometallics, 26, 5826–5833.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiao, C.-Y., Chan, K.-T., Chiu, P.-L., Chen, C.-Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973–2978.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiao, C.-Y., Chan, K.-T., Zeng, J.-Y., Hu, C.-H., Tu, C.-Y. & Lee, H. M. (2007). Organometallics, 26, 1692–1702.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds