organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Talatisamine, a C19-diterpenoid alkaloid from Chinese traditional herbal `Chuanwu'

aInstitute of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, People's Republic of China
*Correspondence e-mail: wangxq193@126.com

(Received 28 September 2011; accepted 24 October 2011; online 2 November 2011)

The title compound [systematic name: (1S,4S,5R,7S,8S,9R,10R,11S,13S,14S,16S,17R)-N-methyl-8,14-dihy­droxy-1,16-tri­meth­oxy-4-(meth­oxy­methyl­ene)aconitane], C24H39NO5, was isolated from the roots of Aconitum carmichaelii Debx., which is known as `Chuanwu' in Chinese traditional herbal medicine. The mol­ecule has an aconitane carbon skeleton with four six-membered rings and two five-membered rings, including a six-membered N-containing heterocyclic ring. Both five-membered rings adopt envelope conformations. The four six-membered adopt chair conformations. Two intra­molecular O—H⋯O hydrogen bonds occur.

Related literature

The title compound is an aconitine-type C19-diterpenoid alkaloid. For reviews of diterpenoid alkaloids, see: Wang et al. (2009[Wang, F.-P., Chen, Q.-H. & Liang, X.-T. (2009). The Alkaloids: Chemistry and Biology, Vol. 67, edited by G. A. Cordell, pp. 1-78. New York: Elsevier.], 2010[Wang, F.-P., Chen, Q.-H. & Liu, X.-Y. (2010). Nat. Prod. Rep. 27, 529-570.]). For the chemical structure of the title compound established from NMR and MS data, see: Pelletier et al. (1984[Pelletier, S. W., Mody, N. V., Joshi, B. S. & Schramm, L. C. (1984). The Alkaloids: Chemistry and Perspectives, Vol. 2, edited by S. W. Pelletier, pp. 206-264. New York: Wiley.]). For the total synthesis of the title compound, see: Wiesner et al. (1974[Wiesner, K., Tsai, T. Y. R., Huber, K., Bolton, S. E. & Vlahov, R. (1974). J. Am. Chem. Soc. 96, 4990-4992.]). For structures of related C19-diterpenoid alkaloids, see: Gao et al. (2010[Gao, F., Zhu, S.-A. & Xiong, S.-J. (2010). Acta Cryst. E66, o1342.]); Tashkhodjaev & Sultankhodjaev (2009[Tashkhodjaev, B. & Sultankhodjaev, M. N. (2009). Acta Cryst. E65, o1543-o1544.]); He et al. (2008[He, D.-H., Zhu, Y.-C. & Hu, A.-X. (2008). Acta Cryst. E64, o1033-o1034.]). For the absolute configuration of aconitine-type C19-diterpenoid alkaloids, see: Pelletier & Djarmati (1976[Pelletier, S. W. & Djarmati, Z. (1976). J. Am. Chem. Soc. 98, 2626-2636.]); Tsuda & Marion (1963[Tsuda, Y. & Marion, L. (1963). Can. J. Chem. 41, 1485-1489.]); Zhapova et al. (1986[Zhapova, T., Modonova, L. D. & Semenov, A. A. (1986). Chem. Nat. Compd, 21, 7678-679.]).

[Scheme 1]

Experimental

Crystal data
  • C24H39NO5

  • Mr = 421.56

  • Orthorhombic, P 21 21 21

  • a = 9.7124 (4) Å

  • b = 13.9401 (7) Å

  • c = 16.3729 (8) Å

  • V = 2216.77 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.40 × 0.40 × 0.35 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • 6644 measured reflections

  • 2572 independent reflections

  • 2068 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.097

  • S = 1.04

  • 2572 reflections

  • 277 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 2.28 2.926 (3) 136
O3—H3⋯O4 0.82 1.95 2.666 (3) 146

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a famous Chinese traditional herbal, the roots of Aconitum carmichaeli Debx., known as "Chuanwu", has been therapeutically used to the treatment of rheumatic pain, rheumatoid arthritis and some other inflammations. Recently, two important reviews focus on the alkaloids from the genus Aconitum (Wang et al., 2009 and 2010). The title compound, N-methyl-8β,14β-dihydroxy-1α,16β-trimethoxy-4β-(methoxymethylene)aconitane, talatisamine, has been isolated previously from many genus of AconitumL., inculding A. carmichaeli Debx. (Pelletier et al., 1984), and its structure was established from the NMR and MS data (Wiesner et al., 1974). However, in our recent investigation, it was isolation from the root of Aconitum carmichaeli Debx. collected in the Jiangyou country, Sichuan Province of China in June, 2011. The crystal structure of talatisamine has not been reported. In view of this, the crystal structure determination of the title compound was carried out and the result is presented here.

The molecular structure of the title compound is shown in Fig. 1. The molecule has a high rigid structure consisting of six main rings (A–F). Six-membered rings A (C1/C2/C3/C4/C5/C11), B (C7/C8/C9/C10/C11/C17) and D(C8/C9/C14/C13/C16/C15) adopt chair conformations; six-membered heterocyclicring E (C4/C5/C11/C17/N1/C19) adopts the same chair conformation. The five-membered rings C (C9/C10/C12/C13/C14) and F (C5/C6/C7/C17/C11) display anenvelope conformation, in which, the C14 and C11 act as the "envelope atom" respectively. Two cis-fused ring junctions are observed between rings A/E and between B/C. Two trans-fused ring junctions involve rings A/B and also E/F. The crystal structure contains intermolecular O—H···O hydrogen bond between the hydroxyl group and carbonyl O atom. The absolute configuration of the title compound can not be confirmed by the present MoKa diffraction data. But it can be assumed to be the same as that reported for C19-diterpenoidalkaloids from the nature (Gao et al., 2010; Tashkhodjaev & Sultankhodjaev, 2009; He et al.., 2008; Pelletier & Djarmati, 1976; Tsuda & Marion, 1963; Zhapova et al., 1986).

Related literature top

The title compound is an aconitine-type C19-diterpenoid alkaloid. For reviews of diterpenoid alkaloids, see: Wang et al. (2009, 2010). For the chemical structure of the title compound established from NMR and MS data, see: Pelletier et al. (1984). For the total synthesis of the title compound, see: Wiesner et al. (1974). For structures of related C19-diterpenoid alkaloids, see: Gao et al. (2010); Tashkhodjaev & Sultankhodjaev (2009); He et al. (2008). For the absolute configuration of aconitine-type C19-diterpenoid alkaloids, see: Pelletier & Djarmati (1976); Tsuda & Marion (1963); Zhapova et al. (1986).

Experimental top

The title compound was isolated from the roots of Aconitum carmichaeli Debx. according to the literature procedure of Gao et al. (2010) and crystals of X-ray quality were grown from MeOH at room temperature by slow evaporation.

Refinement top

Hydroxy H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were located geometrically with C—H = 0.93–0.98 Å, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others. The absolute configuration has not been determined from the X-ray analysis, owing to the absence of strong anomalous scattering.

Structure description top

As a famous Chinese traditional herbal, the roots of Aconitum carmichaeli Debx., known as "Chuanwu", has been therapeutically used to the treatment of rheumatic pain, rheumatoid arthritis and some other inflammations. Recently, two important reviews focus on the alkaloids from the genus Aconitum (Wang et al., 2009 and 2010). The title compound, N-methyl-8β,14β-dihydroxy-1α,16β-trimethoxy-4β-(methoxymethylene)aconitane, talatisamine, has been isolated previously from many genus of AconitumL., inculding A. carmichaeli Debx. (Pelletier et al., 1984), and its structure was established from the NMR and MS data (Wiesner et al., 1974). However, in our recent investigation, it was isolation from the root of Aconitum carmichaeli Debx. collected in the Jiangyou country, Sichuan Province of China in June, 2011. The crystal structure of talatisamine has not been reported. In view of this, the crystal structure determination of the title compound was carried out and the result is presented here.

The molecular structure of the title compound is shown in Fig. 1. The molecule has a high rigid structure consisting of six main rings (A–F). Six-membered rings A (C1/C2/C3/C4/C5/C11), B (C7/C8/C9/C10/C11/C17) and D(C8/C9/C14/C13/C16/C15) adopt chair conformations; six-membered heterocyclicring E (C4/C5/C11/C17/N1/C19) adopts the same chair conformation. The five-membered rings C (C9/C10/C12/C13/C14) and F (C5/C6/C7/C17/C11) display anenvelope conformation, in which, the C14 and C11 act as the "envelope atom" respectively. Two cis-fused ring junctions are observed between rings A/E and between B/C. Two trans-fused ring junctions involve rings A/B and also E/F. The crystal structure contains intermolecular O—H···O hydrogen bond between the hydroxyl group and carbonyl O atom. The absolute configuration of the title compound can not be confirmed by the present MoKa diffraction data. But it can be assumed to be the same as that reported for C19-diterpenoidalkaloids from the nature (Gao et al., 2010; Tashkhodjaev & Sultankhodjaev, 2009; He et al.., 2008; Pelletier & Djarmati, 1976; Tsuda & Marion, 1963; Zhapova et al., 1986).

The title compound is an aconitine-type C19-diterpenoid alkaloid. For reviews of diterpenoid alkaloids, see: Wang et al. (2009, 2010). For the chemical structure of the title compound established from NMR and MS data, see: Pelletier et al. (1984). For the total synthesis of the title compound, see: Wiesner et al. (1974). For structures of related C19-diterpenoid alkaloids, see: Gao et al. (2010); Tashkhodjaev & Sultankhodjaev (2009); He et al. (2008). For the absolute configuration of aconitine-type C19-diterpenoid alkaloids, see: Pelletier & Djarmati (1976); Tsuda & Marion (1963); Zhapova et al. (1986).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering, showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound.
(1S,4S,5R,7S,8S,9R,10R, 11S,13S,14S,16S,17R)-N-methyl- 8,14-dihydroxy-1,16-trimethoxy-4-(methoxymethylene)aconitane top
Crystal data top
C24H39NO5F(000) = 920
Mr = 421.56Dx = 1.263 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ac 2abCell parameters from 2165 reflections
a = 9.7124 (4) Åθ = 2.9–29.1°
b = 13.9401 (7) ŵ = 0.09 mm1
c = 16.3729 (8) ÅT = 293 K
V = 2216.77 (17) Å3Block, colourless
Z = 40.40 × 0.40 × 0.35 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2068 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 26.4°, θmin = 2.9°
Detector resolution: 16.0874 pixels mm-1h = 1112
ω scansk = 1716
6644 measured reflectionsl = 1620
2572 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.3082P]
where P = (Fo2 + 2Fc2)/3
2572 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C24H39NO5V = 2216.77 (17) Å3
Mr = 421.56Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.7124 (4) ŵ = 0.09 mm1
b = 13.9401 (7) ÅT = 293 K
c = 16.3729 (8) Å0.40 × 0.40 × 0.35 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2068 reflections with I > 2σ(I)
6644 measured reflectionsRint = 0.026
2572 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
2572 reflectionsΔρmin = 0.15 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32334 (17)0.44018 (14)0.41854 (12)0.0435 (5)
O20.89891 (18)0.25592 (15)0.37591 (14)0.0564 (6)
H20.90460.22230.33500.085*
O30.7579 (2)0.17270 (16)0.23475 (15)0.0605 (6)
H30.74290.12080.25650.091*
O40.6335 (2)0.05223 (14)0.33745 (13)0.0561 (6)
O50.7984 (2)0.70995 (17)0.35432 (14)0.0662 (6)
N10.6111 (2)0.47017 (16)0.54202 (13)0.0365 (5)
C10.4310 (2)0.50466 (19)0.39450 (17)0.0368 (6)
H10.41240.52320.33780.044*
C20.4232 (3)0.5949 (2)0.44516 (18)0.0448 (7)
H2B0.41670.57800.50250.054*
H2A0.34110.63060.43050.054*
C30.5493 (3)0.6571 (2)0.43140 (19)0.0440 (7)
H3B0.54620.71140.46830.053*
H3A0.54800.68160.37600.053*
C40.6830 (3)0.60164 (19)0.44529 (16)0.0385 (6)
C50.6955 (2)0.51749 (18)0.38407 (17)0.0356 (6)
H50.70340.54070.32780.043*
C60.8211 (3)0.45461 (19)0.40829 (18)0.0402 (7)
H6A0.87340.43630.36030.048*
H6B0.88120.48910.44540.048*
C70.7596 (2)0.3657 (2)0.45023 (17)0.0375 (6)
H70.81280.34890.49900.045*
C80.7561 (3)0.2812 (2)0.38994 (17)0.0403 (7)
C90.6954 (3)0.31884 (19)0.30943 (16)0.0381 (6)
H90.76250.35960.28120.046*
C100.5624 (2)0.37418 (19)0.32477 (16)0.0356 (6)
H100.54150.40920.27440.043*
C110.5686 (2)0.44982 (18)0.39451 (15)0.0317 (6)
C120.4537 (3)0.29090 (19)0.33160 (18)0.0431 (7)
H12B0.42380.28330.38780.052*
H12A0.37390.30470.29800.052*
C130.5264 (3)0.1990 (2)0.30144 (17)0.0434 (7)
H130.46570.16140.26590.052*
C140.6491 (3)0.2379 (2)0.25413 (17)0.0459 (7)
H140.61520.26590.20310.055*
C150.6805 (3)0.1936 (2)0.42678 (18)0.0459 (7)
H15B0.74980.14810.44470.055*
H15A0.63170.21520.47510.055*
C160.5773 (3)0.13917 (19)0.37274 (18)0.0448 (7)
H160.49780.12160.40640.054*
C170.6132 (2)0.40139 (19)0.47427 (15)0.0338 (6)
H170.55300.34680.48640.041*
C180.8026 (3)0.6714 (2)0.43440 (19)0.0491 (8)
H18B0.79580.72270.47420.059*
H18A0.88920.63820.44300.059*
C190.6885 (3)0.55955 (19)0.53215 (17)0.0425 (7)
H19A0.78390.54790.54650.051*
H19B0.65250.60670.57010.051*
C200.6367 (3)0.4256 (2)0.62167 (17)0.0474 (7)
H20B0.73420.43000.63410.057*
H20A0.61270.35820.61870.057*
C210.5563 (4)0.4716 (2)0.68945 (19)0.0646 (9)
H21A0.46010.47120.67590.097*
H21C0.58680.53660.69660.097*
H21B0.57060.43650.73920.097*
C220.1962 (3)0.4556 (2)0.3787 (2)0.0625 (9)
H22A0.20840.44910.32080.094*
H22C0.16340.51890.39090.094*
H22B0.13030.40910.39730.094*
C230.9152 (4)0.7649 (3)0.3346 (2)0.0748 (11)
H23A0.90800.78700.27930.112*
H23B0.99640.72620.34040.112*
H23C0.92100.81900.37070.112*
C240.6424 (4)0.0258 (2)0.3919 (2)0.0741 (11)
H24B0.67710.08100.36350.111*
H24A0.55270.03990.41340.111*
H24C0.70350.00980.43590.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0259 (9)0.0517 (11)0.0530 (11)0.0006 (10)0.0017 (8)0.0075 (10)
O20.0364 (11)0.0614 (14)0.0715 (15)0.0142 (11)0.0029 (10)0.0154 (12)
O30.0587 (12)0.0572 (13)0.0657 (16)0.0016 (12)0.0165 (11)0.0190 (12)
O40.0651 (13)0.0430 (11)0.0603 (13)0.0047 (11)0.0012 (11)0.0085 (11)
O50.0634 (13)0.0682 (14)0.0670 (15)0.0224 (13)0.0008 (12)0.0161 (12)
N10.0382 (11)0.0412 (12)0.0300 (11)0.0002 (11)0.0029 (10)0.0015 (10)
C10.0279 (12)0.0447 (15)0.0378 (16)0.0005 (13)0.0033 (12)0.0065 (12)
C20.0360 (14)0.0466 (16)0.0518 (18)0.0059 (14)0.0000 (13)0.0005 (15)
C30.0427 (15)0.0407 (15)0.0486 (17)0.0047 (14)0.0016 (13)0.0011 (13)
C40.0369 (14)0.0371 (14)0.0414 (16)0.0017 (13)0.0041 (12)0.0010 (12)
C50.0274 (12)0.0435 (14)0.0360 (15)0.0021 (12)0.0004 (11)0.0008 (13)
C60.0276 (12)0.0482 (16)0.0449 (16)0.0010 (14)0.0043 (12)0.0064 (14)
C70.0285 (12)0.0430 (15)0.0410 (16)0.0022 (12)0.0093 (12)0.0026 (13)
C80.0314 (13)0.0436 (15)0.0459 (16)0.0044 (13)0.0037 (12)0.0054 (14)
C90.0359 (13)0.0430 (15)0.0354 (14)0.0062 (14)0.0001 (12)0.0016 (12)
C100.0316 (12)0.0445 (14)0.0305 (14)0.0012 (13)0.0052 (11)0.0007 (12)
C110.0255 (11)0.0377 (14)0.0318 (14)0.0004 (12)0.0013 (10)0.0015 (11)
C120.0352 (14)0.0495 (16)0.0447 (16)0.0038 (14)0.0087 (13)0.0032 (14)
C130.0394 (15)0.0495 (17)0.0413 (16)0.0062 (14)0.0032 (13)0.0107 (14)
C140.0458 (16)0.0530 (17)0.0389 (16)0.0011 (15)0.0012 (13)0.0081 (14)
C150.0501 (17)0.0405 (15)0.0471 (17)0.0035 (15)0.0062 (14)0.0014 (13)
C160.0444 (15)0.0428 (15)0.0473 (17)0.0024 (14)0.0063 (14)0.0055 (14)
C170.0302 (12)0.0371 (13)0.0339 (14)0.0001 (12)0.0058 (11)0.0021 (12)
C180.0472 (16)0.0451 (16)0.0550 (19)0.0078 (16)0.0027 (15)0.0015 (15)
C190.0428 (15)0.0443 (15)0.0406 (15)0.0008 (15)0.0051 (13)0.0056 (13)
C200.0462 (15)0.0544 (17)0.0416 (16)0.0001 (15)0.0075 (14)0.0002 (15)
C210.088 (2)0.068 (2)0.0375 (17)0.000 (2)0.0023 (17)0.0056 (16)
C220.0278 (13)0.071 (2)0.089 (3)0.0022 (16)0.0100 (16)0.008 (2)
C230.068 (2)0.073 (2)0.084 (3)0.021 (2)0.017 (2)0.006 (2)
C240.084 (3)0.0498 (19)0.088 (3)0.009 (2)0.001 (2)0.003 (2)
Geometric parameters (Å, º) top
O1—C11.434 (3)C9—C101.526 (4)
O1—C221.413 (3)C9—C141.515 (4)
O2—H20.8200C10—H100.9800
O2—C81.449 (3)C10—C111.556 (3)
O3—H30.8200C10—C121.573 (4)
O3—C141.429 (3)C11—C171.532 (3)
O4—C161.449 (3)C12—H12B0.9700
O4—C241.410 (4)C12—H12A0.9700
O5—C181.418 (4)C12—C131.543 (4)
O5—C231.406 (4)C13—H130.9800
N1—C171.466 (3)C13—C141.521 (4)
N1—C191.464 (3)C13—C161.518 (4)
N1—C201.466 (3)C14—H140.9800
C1—H10.9800C15—H15B0.9700
C1—C21.508 (4)C15—H15A0.9700
C1—C111.540 (3)C15—C161.537 (4)
C2—H2B0.9700C16—H160.9800
C2—H2A0.9700C17—H170.9800
C2—C31.518 (4)C18—H18B0.9700
C3—H3B0.9700C18—H18A0.9700
C3—H3A0.9700C19—H19A0.9700
C3—C41.527 (4)C19—H19B0.9700
C4—C51.548 (4)C20—H20B0.9700
C4—C181.525 (4)C20—H20A0.9700
C4—C191.539 (4)C20—C211.501 (4)
C5—H50.9800C21—H21A0.9600
C5—C61.554 (3)C21—H21C0.9600
C5—C111.561 (3)C21—H21B0.9600
C6—H6A0.9700C22—H22A0.9600
C6—H6B0.9700C22—H22C0.9600
C6—C71.538 (4)C22—H22B0.9600
C7—H70.9800C23—H23A0.9600
C7—C81.537 (4)C23—H23B0.9600
C7—C171.558 (3)C23—H23C0.9600
C8—C91.536 (4)C24—H24B0.9600
C8—C151.548 (4)C24—H24A0.9600
C9—H90.9800C24—H24C0.9600
O1—C1—H1106.9C8—C15—H15A107.7
O1—C1—C2109.6 (2)C9—C8—C7107.3 (2)
O1—C1—C11108.77 (19)C9—C8—C15114.9 (2)
O1—C22—H22A109.5C9—C10—H10106.8
O1—C22—H22C109.5C9—C10—C11115.5 (2)
O1—C22—H22B109.5C9—C10—C12101.9 (2)
O2—C8—C7105.5 (2)C9—C14—C13101.2 (2)
O2—C8—C9108.3 (2)C9—C14—H14108.2
O2—C8—C15108.9 (2)C10—C9—C8110.9 (2)
O3—C14—C9112.7 (2)C10—C9—H9110.3
O3—C14—C13117.8 (2)C10—C11—C5111.1 (2)
O3—C14—H14108.2C10—C12—H12B110.4
O4—C16—C13106.0 (2)C10—C12—H12A110.4
O4—C16—C15113.4 (2)C11—C1—H1106.9
O4—C16—H16108.2C11—C5—H5111.4
O4—C24—H24B109.5C11—C10—H10106.8
O4—C24—H24A109.5C11—C10—C12118.3 (2)
O4—C24—H24C109.5C11—C17—C7100.6 (2)
O5—C18—C4109.1 (2)C11—C17—H17110.3
O5—C18—H18B109.9C12—C10—H10106.8
O5—C18—H18A109.9C12—C13—H13111.0
O5—C23—H23A109.5H12B—C12—H12A108.6
O5—C23—H23B109.5C13—C12—C10106.4 (2)
O5—C23—H23C109.5C13—C12—H12B110.4
N1—C17—C7114.36 (19)C13—C12—H12A110.4
N1—C17—C11110.7 (2)C13—C14—H14108.2
N1—C17—H17110.3C13—C16—C15112.6 (2)
N1—C19—C4114.1 (2)C13—C16—H16108.2
N1—C19—H19A108.7C14—O3—H3109.5
N1—C19—H19B108.7C14—C9—C8111.9 (2)
N1—C20—H20B109.0C14—C9—H9110.3
N1—C20—H20A109.0C14—C9—C10102.9 (2)
N1—C20—C21112.9 (2)C14—C13—C12103.1 (2)
C1—C2—H2B109.5C14—C13—H13111.0
C1—C2—H2A109.5C15—C16—H16108.2
C1—C2—C3110.7 (2)H15B—C15—H15A107.1
C1—C11—C5112.7 (2)C16—C13—C12111.0 (2)
C1—C11—C10107.6 (2)C16—C13—H13111.0
C2—C1—H1106.9C16—C13—C14109.4 (2)
C2—C1—C11117.2 (2)C16—C15—C8118.3 (2)
C2—C3—H3B109.2C16—C15—H15B107.7
C2—C3—H3A109.2C16—C15—H15A107.7
C2—C3—C4112.0 (2)C17—C7—H7110.6
H2B—C2—H2A108.1C17—C11—C1117.6 (2)
C3—C2—H2B109.5C17—C11—C597.86 (19)
C3—C2—H2A109.5C17—C11—C10109.7 (2)
C3—C4—C5110.7 (2)C18—C4—C3107.9 (2)
C3—C4—C19111.1 (2)C18—C4—C5110.3 (2)
H3B—C3—H3A107.9C18—C4—C19108.9 (2)
C4—C3—H3B109.2H18B—C18—H18A108.3
C4—C3—H3A109.2C19—N1—C17117.8 (2)
C4—C5—H5111.4C19—N1—C20111.8 (2)
C4—C5—C6108.9 (2)C19—C4—C5107.9 (2)
C4—C5—C11109.0 (2)H19A—C19—H19B107.6
C4—C18—H18B109.9C20—N1—C17113.2 (2)
C4—C18—H18A109.9C20—C21—H21A109.5
C4—C19—H19A108.7C20—C21—H21C109.5
C4—C19—H19B108.7C20—C21—H21B109.5
C5—C6—H6A110.7H20B—C20—H20A107.8
C5—C6—H6B110.7C21—C20—H20B109.0
C6—C5—H5111.4C21—C20—H20A109.0
C6—C5—C11104.53 (19)H21A—C21—H21C109.5
C6—C7—H7110.6H21A—C21—H21B109.5
C6—C7—C17102.1 (2)H21C—C21—H21B109.5
H6A—C6—H6B108.8C22—O1—C1114.6 (2)
C7—C6—C5105.31 (19)H22A—C22—H22C109.5
C7—C6—H6A110.7H22A—C22—H22B109.5
C7—C6—H6B110.7H22C—C22—H22B109.5
C7—C8—C15111.4 (2)C23—O5—C18113.3 (3)
C7—C17—H17110.3H23A—C23—H23B109.5
C8—O2—H2109.5H23A—C23—H23C109.5
C8—C7—C6109.8 (2)H23B—C23—H23C109.5
C8—C7—H7110.6C24—O4—C16114.6 (2)
C8—C7—C17112.8 (2)H24B—C24—H24A109.5
C8—C9—H9110.3H24B—C24—H24C109.5
C8—C15—H15B107.7H24A—C24—H24C109.5
O1—C1—C2—C3170.4 (2)C9—C10—C11—C1174.2 (2)
O1—C1—C11—C5170.0 (2)C9—C10—C11—C550.5 (3)
O1—C1—C11—C1067.2 (2)C9—C10—C11—C1756.6 (3)
O1—C1—C11—C1757.3 (3)C9—C10—C12—C1312.0 (3)
O2—C8—C9—C10162.8 (2)C10—C9—C14—O3177.0 (2)
O2—C8—C9—C1482.9 (3)C10—C9—C14—C1350.3 (3)
O2—C8—C15—C16108.1 (3)C10—C11—C17—N1176.36 (19)
C1—C2—C3—C453.5 (3)C10—C11—C17—C762.4 (2)
C1—C11—C17—N152.9 (3)C10—C12—C13—C1418.0 (3)
C1—C11—C17—C7174.2 (2)C10—C12—C13—C1699.0 (2)
C2—C1—C11—C545.0 (3)C11—C1—C2—C345.9 (3)
C2—C1—C11—C10167.8 (2)C11—C5—C6—C713.3 (3)
C2—C1—C11—C1767.7 (3)C11—C10—C12—C13139.9 (2)
C2—C3—C4—C562.1 (3)C12—C10—C11—C164.6 (3)
C2—C3—C4—C18177.1 (2)C12—C10—C11—C5171.6 (2)
C2—C3—C4—C1957.7 (3)C12—C10—C11—C1764.5 (3)
C3—C4—C5—C6171.8 (2)C12—C13—C14—O3164.7 (2)
C3—C4—C5—C1158.4 (3)C12—C13—C14—C941.4 (3)
C3—C4—C18—O559.6 (3)C12—C13—C16—O4175.7 (2)
C3—C4—C19—N180.8 (3)C12—C13—C16—C1559.8 (3)
C4—C5—C6—C7103.0 (2)C14—C9—C10—C11167.5 (2)
C4—C5—C11—C149.3 (3)C14—C9—C10—C1237.9 (3)
C4—C5—C11—C10170.1 (2)C14—C13—C16—O471.2 (3)
C4—C5—C11—C1775.1 (2)C14—C13—C16—C1553.3 (3)
C5—C4—C18—O561.5 (3)C15—C8—C9—C1075.1 (3)
C5—C4—C19—N140.7 (3)C15—C8—C9—C1439.1 (3)
C5—C6—C7—C8100.3 (2)C16—C13—C14—O346.5 (3)
C5—C6—C7—C1719.6 (3)C16—C13—C14—C976.8 (3)
C5—C11—C17—N167.8 (2)C17—N1—C19—C437.6 (3)
C5—C11—C17—C753.4 (2)C17—N1—C20—C21144.9 (2)
C6—C5—C11—C1165.6 (2)C17—C7—C8—O2178.7 (2)
C6—C5—C11—C1073.6 (2)C17—C7—C8—C966.0 (3)
C6—C5—C11—C1741.1 (2)C17—C7—C8—C1560.6 (3)
C6—C7—C8—O268.2 (3)C18—C4—C5—C668.8 (3)
C6—C7—C8—C947.2 (3)C18—C4—C5—C11177.8 (2)
C6—C7—C8—C15173.8 (2)C18—C4—C19—N1160.5 (2)
C6—C7—C17—N172.3 (3)C19—N1—C17—C758.9 (3)
C6—C7—C17—C1146.3 (2)C19—N1—C17—C1153.8 (3)
C7—C8—C9—C1049.4 (3)C19—N1—C20—C2179.3 (3)
C7—C8—C9—C14163.6 (2)C19—C4—C5—C650.1 (3)
C7—C8—C15—C16135.9 (2)C19—C4—C5—C1163.4 (3)
C8—C7—C17—N1169.9 (2)C19—C4—C18—O5179.7 (2)
C8—C7—C17—C1171.5 (3)C20—N1—C17—C774.2 (3)
C8—C9—C10—C1147.8 (3)C20—N1—C17—C11173.1 (2)
C8—C9—C10—C1281.9 (2)C20—N1—C19—C4171.3 (2)
C8—C9—C14—O358.0 (3)C22—O1—C1—C286.3 (3)
C8—C9—C14—C1368.8 (3)C22—O1—C1—C11144.4 (2)
C8—C15—C16—O499.8 (3)C23—O5—C18—C4171.7 (2)
C8—C15—C16—C1320.5 (3)C24—O4—C16—C13159.0 (3)
C9—C8—C15—C1613.6 (3)C24—O4—C16—C1577.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.822.282.926 (3)136
O3—H3···O40.821.952.666 (3)146

Experimental details

Crystal data
Chemical formulaC24H39NO5
Mr421.56
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.7124 (4), 13.9401 (7), 16.3729 (8)
V3)2216.77 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.40 × 0.35
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6644, 2572, 2068
Rint0.026
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.097, 1.04
No. of reflections2572
No. of parameters277
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.822.282.926 (3)136.0
O3—H3···O40.821.952.666 (3)145.6
 

Acknowledgements

This project was supported by the Scientific Research Fund of Mianyang Normal University, China.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, F., Zhu, S.-A. & Xiong, S.-J. (2010). Acta Cryst. E66, o1342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, D.-H., Zhu, Y.-C. & Hu, A.-X. (2008). Acta Cryst. E64, o1033–o1034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPelletier, S. W. & Djarmati, Z. (1976). J. Am. Chem. Soc. 98, 2626–2636.  CrossRef CAS Web of Science Google Scholar
First citationPelletier, S. W., Mody, N. V., Joshi, B. S. & Schramm, L. C. (1984). The Alkaloids: Chemistry and Perspectives, Vol. 2, edited by S. W. Pelletier, pp. 206–264. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTashkhodjaev, B. & Sultankhodjaev, M. N. (2009). Acta Cryst. E65, o1543–o1544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTsuda, Y. & Marion, L. (1963). Can. J. Chem. 41, 1485–1489.  CrossRef CAS Web of Science Google Scholar
First citationWang, F.-P., Chen, Q.-H. & Liang, X.-T. (2009). The Alkaloids: Chemistry and Biology, Vol. 67, edited by G. A. Cordell, pp. 1–78. New York: Elsevier.  Google Scholar
First citationWang, F.-P., Chen, Q.-H. & Liu, X.-Y. (2010). Nat. Prod. Rep. 27, 529–570.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWiesner, K., Tsai, T. Y. R., Huber, K., Bolton, S. E. & Vlahov, R. (1974). J. Am. Chem. Soc. 96, 4990–4992.  CrossRef CAS Web of Science Google Scholar
First citationZhapova, T., Modonova, L. D. & Semenov, A. A. (1986). Chem. Nat. Compd, 21, 7678–679.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds