organic compounds
9-(2,5-Dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the title compound, C23H20NO2+·CF3SO3−, the acridine ring system is oriented at a dihedral angle of 23.1 (1)° with respect to the benzene ring and the carboxyl group is twisted at an angle of 74.1 (1)° relative to the acridine skeleton. In the crystal, adjacent cations are linked through C—H⋯π interactions and neighboring cations and anions via weak C—H⋯O hydrogen bonds. The mean planes of adjacent acridine units are either parallel or inclined at angles of 15.0 (1), 26.9 (1) and 48.1 (1)° in the crystal structure.
Related literature
For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); King et al. (2007); Krzymiński et al. (2011); Roda et al. (2003). For related structures, see: Krzymiński et al. (2009). For intermolecular interactions, see: Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Krzymiński et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536811045090/xu5358sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811045090/xu5358Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811045090/xu5358Isup3.cml
2,5-Dimethylphenylacridine-9-carboxylate was synthesized by esterification of 9-(chlorocarbonyl)acridine (obtained in the reaction of acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 2,5-dimethylphenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 h) (Sato, 1996; Krzymiński et al., 2011). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v) and subsequently quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(2,5-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from ethanol/water solution (1:1 v/v) (m.p. 509–511 K).
H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.
Chemiluminescing 9-(phenoxycarbonyl)-10-methylacridinium cations are widely applied as indicators or fragments of labels in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized by H2O2 in alkaline media, a reaction that is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Krzymiński et al., 2011). The efficiency of
– crucial to analytical applications – is affected by the constitution of the phenyl fragment. Here we present the of 9-(2,5-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, whose chemiluminogenic features we have thoroughly investigated (Krzymiński et al., 2011).In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Krzymiński et al., 2009). With respective average deviations from planarity of 0.022 (3) Å and 0.006 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 23.1 (1)°. The carboxyl group is twisted at an angle of 74.1 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (at an angle 0.0 (1)°) or inclined at angles of 15.0 (1), 26.9 (1) and 48.1 (1)° in the crystal lattice.
In the π (Table 1, Fig. 2) contacts and the neighboring cations and anions via C–H···O (Table 1, Figs. 1 and 2) interactions. The C–H···O interactions are of the hydrogen bond type (Novoa et al. 2006), while the C–H···π (Takahashi et al., 2001) contacts should be of an attractive nature. The is stabilized by a network of these specific short-range interactions and by long-range electrostatic interactions between ions.
the adjacent cations are linked by C–H···For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); King et al. (2007); Krzymiński et al. (2011); Roda et al. (2003). For related structures, see: Krzymiński et al. (2009). For intermolecular interactions, see: Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Krzymiński et al. (2011).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg2 denotes the ring centroid. The C–H···O interactions are represented by dashed lines. | |
Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, –y + 1, –z + 1; (ii) –x + 1, y – 1/2, –z + 1/2; (iii) –x + 3/2, y – 1/2, z.] |
C23H20NO2+·CF3SO3− | F(000) = 2032 |
Mr = 491.48 | Dx = 1.444 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 4734 reflections |
a = 12.3604 (17) Å | θ = 3.4–26.0° |
b = 17.341 (3) Å | µ = 0.21 mm−1 |
c = 21.101 (3) Å | T = 295 K |
V = 4522.8 (12) Å3 | Needle, yellow |
Z = 8 | 0.60 × 0.15 × 0.10 mm |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 4000 independent reflections |
Radiation source: enhanced (Mo) X-ray source | 2050 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.106 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.1°, θmin = 3.5° |
ω scans | h = −14→12 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −20→20 |
Tmin = 0.960, Tmax = 0.985 | l = −23→25 |
32535 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.185 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0901P)2 + 0.2728P] where P = (Fo2 + 2Fc2)/3 |
4000 reflections | (Δ/σ)max < 0.001 |
310 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C23H20NO2+·CF3SO3− | V = 4522.8 (12) Å3 |
Mr = 491.48 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 12.3604 (17) Å | µ = 0.21 mm−1 |
b = 17.341 (3) Å | T = 295 K |
c = 21.101 (3) Å | 0.60 × 0.15 × 0.10 mm |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 4000 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 2050 reflections with I > 2σ(I) |
Tmin = 0.960, Tmax = 0.985 | Rint = 0.106 |
32535 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.185 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.36 e Å−3 |
4000 reflections | Δρmin = −0.23 e Å−3 |
310 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7203 (3) | 0.1485 (2) | 0.5953 (2) | 0.0692 (11) | |
H1 | 0.7452 | 0.0981 | 0.5906 | 0.083* | |
C2 | 0.7290 (4) | 0.1843 (3) | 0.6520 (2) | 0.0872 (14) | |
H2 | 0.7599 | 0.1587 | 0.6863 | 0.105* | |
C3 | 0.6911 (4) | 0.2608 (3) | 0.6593 (2) | 0.0858 (14) | |
H3 | 0.6977 | 0.2849 | 0.6984 | 0.103* | |
C4 | 0.6455 (3) | 0.2995 (2) | 0.6105 (2) | 0.0713 (12) | |
H4 | 0.6197 | 0.3493 | 0.6167 | 0.086* | |
C5 | 0.5462 (3) | 0.3125 (2) | 0.3893 (2) | 0.0667 (11) | |
H5 | 0.5235 | 0.3633 | 0.3943 | 0.080* | |
C6 | 0.5383 (4) | 0.2782 (2) | 0.3321 (2) | 0.0815 (13) | |
H6 | 0.5102 | 0.3061 | 0.2981 | 0.098* | |
C7 | 0.5711 (4) | 0.2021 (2) | 0.3224 (2) | 0.0720 (12) | |
H7 | 0.5637 | 0.1796 | 0.2826 | 0.086* | |
C8 | 0.6132 (3) | 0.1613 (2) | 0.3704 (2) | 0.0600 (10) | |
H8 | 0.6365 | 0.1111 | 0.3633 | 0.072* | |
C9 | 0.6641 (3) | 0.15331 (18) | 0.48358 (18) | 0.0474 (9) | |
N10 | 0.5964 (2) | 0.30431 (15) | 0.50005 (16) | 0.0503 (7) | |
C11 | 0.6738 (3) | 0.18708 (19) | 0.54298 (17) | 0.0502 (9) | |
C12 | 0.6370 (3) | 0.26519 (19) | 0.55098 (19) | 0.0503 (9) | |
C13 | 0.6231 (2) | 0.19343 (17) | 0.43212 (17) | 0.0452 (9) | |
C14 | 0.5886 (3) | 0.27166 (18) | 0.44149 (19) | 0.0493 (9) | |
C15 | 0.7004 (3) | 0.07054 (19) | 0.47513 (17) | 0.0504 (9) | |
O16 | 0.61431 (18) | 0.02474 (12) | 0.47079 (13) | 0.0576 (7) | |
O17 | 0.7921 (2) | 0.05008 (14) | 0.47341 (14) | 0.0755 (9) | |
C18 | 0.6283 (3) | −0.05622 (18) | 0.46459 (19) | 0.0483 (9) | |
C19 | 0.6315 (3) | −0.09995 (19) | 0.51964 (19) | 0.0518 (9) | |
C20 | 0.6311 (2) | −0.1796 (2) | 0.5100 (2) | 0.0563 (10) | |
H20 | 0.6318 | −0.2121 | 0.5451 | 0.068* | |
C21 | 0.6297 (3) | −0.2116 (2) | 0.4508 (2) | 0.0552 (10) | |
H21 | 0.6294 | −0.2650 | 0.4468 | 0.066* | |
C22 | 0.6289 (3) | −0.16674 (19) | 0.39689 (19) | 0.0542 (10) | |
C23 | 0.6272 (3) | −0.08684 (19) | 0.4050 (2) | 0.0553 (10) | |
H23 | 0.6252 | −0.0545 | 0.3699 | 0.066* | |
C24 | 0.6348 (3) | −0.0649 (2) | 0.5843 (2) | 0.0699 (11) | |
H24A | 0.5841 | −0.0231 | 0.5865 | 0.105* | |
H24B | 0.7063 | −0.0459 | 0.5927 | 0.105* | |
H24C | 0.6161 | −0.1032 | 0.6153 | 0.105* | |
C25 | 0.6290 (4) | −0.2022 (2) | 0.3319 (2) | 0.0846 (13) | |
H25A | 0.7006 | −0.1995 | 0.3143 | 0.127* | |
H25B | 0.5796 | −0.1746 | 0.3051 | 0.127* | |
H25C | 0.6070 | −0.2552 | 0.3348 | 0.127* | |
C26 | 0.5592 (3) | 0.38590 (18) | 0.5077 (2) | 0.0727 (12) | |
H26A | 0.5623 | 0.4000 | 0.5517 | 0.109* | |
H26B | 0.4862 | 0.3906 | 0.4927 | 0.109* | |
H26C | 0.6054 | 0.4194 | 0.4836 | 0.109* | |
S27 | 0.44245 (10) | 0.50390 (5) | 0.30301 (6) | 0.0740 (4) | |
O28 | 0.4254 (3) | 0.43431 (19) | 0.2715 (2) | 0.1310 (14) | |
O29 | 0.3900 (3) | 0.57019 (19) | 0.2803 (2) | 0.1239 (13) | |
O30 | 0.4320 (3) | 0.4936 (2) | 0.37051 (17) | 0.1162 (12) | |
C31 | 0.5832 (5) | 0.5223 (4) | 0.2920 (3) | 0.1130 (19) | |
F32 | 0.6101 (4) | 0.5876 (3) | 0.3223 (3) | 0.218 (3) | |
F33 | 0.6458 (3) | 0.4707 (3) | 0.3148 (2) | 0.1741 (18) | |
F34 | 0.6094 (4) | 0.5364 (4) | 0.2353 (3) | 0.221 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.084 (3) | 0.060 (2) | 0.064 (3) | 0.000 (2) | −0.005 (2) | 0.006 (2) |
C2 | 0.113 (4) | 0.092 (4) | 0.056 (3) | 0.000 (3) | −0.015 (3) | 0.008 (3) |
C3 | 0.103 (3) | 0.097 (4) | 0.058 (3) | −0.004 (3) | 0.010 (3) | −0.017 (3) |
C4 | 0.074 (3) | 0.072 (3) | 0.068 (3) | 0.001 (2) | 0.009 (2) | −0.011 (3) |
C5 | 0.085 (3) | 0.039 (2) | 0.076 (3) | 0.0017 (18) | −0.002 (2) | 0.014 (2) |
C6 | 0.115 (4) | 0.061 (3) | 0.069 (3) | 0.000 (2) | −0.019 (3) | 0.016 (3) |
C7 | 0.107 (3) | 0.059 (3) | 0.050 (3) | −0.010 (2) | −0.005 (2) | 0.002 (2) |
C8 | 0.076 (3) | 0.044 (2) | 0.061 (3) | −0.0047 (17) | 0.006 (2) | −0.002 (2) |
C9 | 0.0457 (18) | 0.0386 (18) | 0.058 (3) | −0.0028 (14) | 0.0055 (17) | 0.0033 (18) |
N10 | 0.0522 (16) | 0.0377 (15) | 0.061 (2) | −0.0010 (12) | 0.0015 (15) | −0.0024 (16) |
C11 | 0.057 (2) | 0.045 (2) | 0.049 (2) | −0.0060 (16) | 0.0012 (18) | 0.0022 (19) |
C12 | 0.0508 (19) | 0.049 (2) | 0.051 (3) | −0.0053 (16) | 0.0118 (17) | −0.005 (2) |
C13 | 0.0497 (19) | 0.0353 (18) | 0.051 (2) | −0.0035 (14) | 0.0058 (16) | 0.0035 (18) |
C14 | 0.052 (2) | 0.0384 (18) | 0.057 (3) | −0.0064 (15) | 0.0017 (18) | 0.0023 (19) |
C15 | 0.054 (2) | 0.0421 (19) | 0.056 (3) | 0.0008 (17) | 0.0040 (18) | 0.0039 (17) |
O16 | 0.0504 (14) | 0.0342 (12) | 0.088 (2) | 0.0021 (10) | 0.0011 (13) | 0.0011 (13) |
O17 | 0.0518 (16) | 0.0522 (15) | 0.123 (3) | 0.0057 (12) | 0.0045 (16) | −0.0069 (16) |
C18 | 0.0467 (19) | 0.0346 (18) | 0.064 (3) | 0.0009 (14) | −0.0008 (18) | 0.0045 (19) |
C19 | 0.0448 (19) | 0.048 (2) | 0.062 (3) | −0.0001 (15) | −0.0006 (18) | 0.005 (2) |
C20 | 0.050 (2) | 0.047 (2) | 0.072 (3) | −0.0021 (16) | −0.0019 (19) | 0.023 (2) |
C21 | 0.051 (2) | 0.0379 (19) | 0.076 (3) | −0.0014 (15) | −0.0022 (19) | 0.005 (2) |
C22 | 0.058 (2) | 0.044 (2) | 0.061 (3) | 0.0023 (16) | −0.0029 (19) | 0.003 (2) |
C23 | 0.061 (2) | 0.042 (2) | 0.062 (3) | 0.0027 (16) | −0.0010 (19) | 0.014 (2) |
C24 | 0.075 (3) | 0.071 (3) | 0.064 (3) | −0.001 (2) | 0.001 (2) | 0.003 (2) |
C25 | 0.117 (4) | 0.064 (3) | 0.073 (3) | 0.004 (2) | −0.008 (3) | −0.004 (2) |
C26 | 0.087 (3) | 0.040 (2) | 0.092 (3) | 0.0105 (19) | 0.001 (2) | −0.013 (2) |
S27 | 0.1049 (9) | 0.0443 (6) | 0.0728 (9) | 0.0084 (5) | −0.0034 (6) | −0.0028 (6) |
O28 | 0.172 (4) | 0.080 (2) | 0.141 (4) | 0.003 (2) | −0.026 (3) | −0.040 (2) |
O29 | 0.140 (3) | 0.080 (2) | 0.152 (4) | 0.027 (2) | −0.003 (3) | 0.034 (2) |
O30 | 0.166 (4) | 0.112 (3) | 0.071 (2) | 0.007 (2) | 0.020 (2) | 0.007 (2) |
C31 | 0.130 (5) | 0.102 (4) | 0.108 (5) | −0.007 (4) | 0.007 (4) | 0.029 (4) |
F32 | 0.187 (4) | 0.143 (4) | 0.323 (8) | −0.075 (3) | −0.048 (4) | 0.026 (4) |
F33 | 0.110 (3) | 0.186 (4) | 0.227 (5) | 0.038 (2) | 0.005 (2) | 0.091 (3) |
F34 | 0.167 (4) | 0.357 (7) | 0.139 (4) | 0.025 (4) | 0.059 (3) | 0.111 (5) |
C1—C2 | 1.354 (6) | O16—C18 | 1.421 (4) |
C1—C11 | 1.413 (5) | C18—C23 | 1.364 (5) |
C1—H1 | 0.9300 | C18—C19 | 1.388 (5) |
C2—C3 | 1.415 (6) | C19—C20 | 1.397 (5) |
C2—H2 | 0.9300 | C19—C24 | 1.495 (5) |
C3—C4 | 1.352 (6) | C20—C21 | 1.367 (5) |
C3—H3 | 0.9300 | C20—H20 | 0.9300 |
C4—C12 | 1.394 (5) | C21—C22 | 1.378 (5) |
C4—H4 | 0.9300 | C21—H21 | 0.9300 |
C5—C6 | 1.349 (6) | C22—C23 | 1.396 (5) |
C5—C14 | 1.411 (5) | C22—C25 | 1.503 (6) |
C5—H5 | 0.9300 | C23—H23 | 0.9300 |
C6—C7 | 1.397 (6) | C24—H24A | 0.9600 |
C6—H6 | 0.9300 | C24—H24B | 0.9600 |
C7—C8 | 1.340 (5) | C24—H24C | 0.9600 |
C7—H7 | 0.9300 | C25—H25A | 0.9600 |
C8—C13 | 1.421 (5) | C25—H25B | 0.9600 |
C8—H8 | 0.9300 | C25—H25C | 0.9600 |
C9—C13 | 1.386 (5) | C26—H26A | 0.9600 |
C9—C11 | 1.389 (5) | C26—H26B | 0.9600 |
C9—C15 | 1.514 (5) | C26—H26C | 0.9600 |
N10—C14 | 1.363 (4) | S27—O28 | 1.394 (3) |
N10—C12 | 1.366 (4) | S27—O29 | 1.404 (3) |
N10—C26 | 1.496 (4) | S27—O30 | 1.441 (4) |
C11—C12 | 1.439 (5) | S27—C31 | 1.784 (7) |
C13—C14 | 1.436 (4) | C31—F34 | 1.264 (6) |
C15—O17 | 1.188 (4) | C31—F33 | 1.276 (6) |
C15—O16 | 1.331 (4) | C31—F32 | 1.343 (7) |
C2—C1—C11 | 120.4 (4) | C23—C18—O16 | 117.9 (3) |
C2—C1—H1 | 119.8 | C19—C18—O16 | 117.8 (3) |
C11—C1—H1 | 119.8 | C18—C19—C20 | 114.7 (4) |
C1—C2—C3 | 120.0 (4) | C18—C19—C24 | 122.9 (3) |
C1—C2—H2 | 120.0 | C20—C19—C24 | 122.4 (4) |
C3—C2—H2 | 120.0 | C21—C20—C19 | 122.3 (4) |
C4—C3—C2 | 121.4 (4) | C21—C20—H20 | 118.8 |
C4—C3—H3 | 119.3 | C19—C20—H20 | 118.8 |
C2—C3—H3 | 119.3 | C20—C21—C22 | 121.7 (3) |
C3—C4—C12 | 120.4 (4) | C20—C21—H21 | 119.2 |
C3—C4—H4 | 119.8 | C22—C21—H21 | 119.2 |
C12—C4—H4 | 119.8 | C21—C22—C23 | 117.3 (4) |
C6—C5—C14 | 120.3 (4) | C21—C22—C25 | 121.4 (3) |
C6—C5—H5 | 119.8 | C23—C22—C25 | 121.2 (4) |
C14—C5—H5 | 119.8 | C18—C23—C22 | 120.0 (3) |
C5—C6—C7 | 121.7 (4) | C18—C23—H23 | 120.0 |
C5—C6—H6 | 119.1 | C22—C23—H23 | 120.0 |
C7—C6—H6 | 119.1 | C19—C24—H24A | 109.5 |
C8—C7—C6 | 120.1 (4) | C19—C24—H24B | 109.5 |
C8—C7—H7 | 120.0 | H24A—C24—H24B | 109.5 |
C6—C7—H7 | 120.0 | C19—C24—H24C | 109.5 |
C7—C8—C13 | 121.3 (3) | H24A—C24—H24C | 109.5 |
C7—C8—H8 | 119.3 | H24B—C24—H24C | 109.5 |
C13—C8—H8 | 119.3 | C22—C25—H25A | 109.5 |
C13—C9—C11 | 121.8 (3) | C22—C25—H25B | 109.5 |
C13—C9—C15 | 119.5 (3) | H25A—C25—H25B | 109.5 |
C11—C9—C15 | 118.7 (3) | C22—C25—H25C | 109.5 |
C14—N10—C12 | 122.2 (3) | H25A—C25—H25C | 109.5 |
C14—N10—C26 | 118.0 (3) | H25B—C25—H25C | 109.5 |
C12—N10—C26 | 119.8 (3) | N10—C26—H26A | 109.5 |
C9—C11—C1 | 122.7 (3) | N10—C26—H26B | 109.5 |
C9—C11—C12 | 118.4 (3) | H26A—C26—H26B | 109.5 |
C1—C11—C12 | 118.9 (3) | N10—C26—H26C | 109.5 |
N10—C12—C4 | 121.6 (3) | H26A—C26—H26C | 109.5 |
N10—C12—C11 | 119.4 (3) | H26B—C26—H26C | 109.5 |
C4—C12—C11 | 118.9 (4) | O28—S27—O29 | 118.4 (3) |
C9—C13—C8 | 123.5 (3) | O28—S27—O30 | 110.5 (2) |
C9—C13—C14 | 118.4 (3) | O29—S27—O30 | 113.4 (2) |
C8—C13—C14 | 118.1 (3) | O28—S27—C31 | 103.9 (3) |
N10—C14—C5 | 121.7 (3) | O29—S27—C31 | 105.1 (3) |
N10—C14—C13 | 119.8 (3) | O30—S27—C31 | 103.8 (3) |
C5—C14—C13 | 118.5 (3) | F34—C31—F33 | 109.8 (6) |
O17—C15—O16 | 125.6 (3) | F34—C31—F32 | 102.9 (6) |
O17—C15—C9 | 124.7 (3) | F33—C31—F32 | 105.2 (6) |
O16—C15—C9 | 109.7 (3) | F34—C31—S27 | 114.0 (5) |
C15—O16—C18 | 119.9 (2) | F33—C31—S27 | 114.6 (5) |
C23—C18—C19 | 124.0 (3) | F32—C31—S27 | 109.3 (5) |
C11—C1—C2—C3 | 0.1 (6) | C9—C13—C14—N10 | −0.3 (4) |
C1—C2—C3—C4 | 0.2 (7) | C8—C13—C14—N10 | 179.7 (3) |
C2—C3—C4—C12 | −1.5 (7) | C9—C13—C14—C5 | −179.6 (3) |
C14—C5—C6—C7 | 0.1 (6) | C8—C13—C14—C5 | 0.4 (5) |
C5—C6—C7—C8 | −1.0 (7) | C13—C9—C15—O17 | 105.8 (4) |
C6—C7—C8—C13 | 1.6 (6) | C11—C9—C15—O17 | −73.8 (5) |
C13—C9—C11—C1 | −176.8 (3) | C13—C9—C15—O16 | −74.9 (4) |
C15—C9—C11—C1 | 2.8 (5) | C11—C9—C15—O16 | 105.5 (3) |
C13—C9—C11—C12 | 1.7 (5) | O17—C15—O16—C18 | 1.2 (6) |
C15—C9—C11—C12 | −178.7 (3) | C9—C15—O16—C18 | −178.1 (3) |
C2—C1—C11—C9 | 179.2 (4) | C15—O16—C18—C23 | −95.3 (4) |
C2—C1—C11—C12 | 0.7 (5) | C15—O16—C18—C19 | 91.0 (4) |
C14—N10—C12—C4 | 179.4 (3) | C23—C18—C19—C20 | −1.3 (5) |
C26—N10—C12—C4 | −0.3 (5) | O16—C18—C19—C20 | 172.0 (3) |
C14—N10—C12—C11 | 0.4 (5) | C23—C18—C19—C24 | 178.8 (3) |
C26—N10—C12—C11 | −179.2 (3) | O16—C18—C19—C24 | −7.9 (5) |
C3—C4—C12—N10 | −176.6 (4) | C18—C19—C20—C21 | 1.1 (5) |
C3—C4—C12—C11 | 2.3 (5) | C24—C19—C20—C21 | −178.9 (3) |
C9—C11—C12—N10 | −1.5 (5) | C19—C20—C21—C22 | 0.2 (5) |
C1—C11—C12—N10 | 177.0 (3) | C20—C21—C22—C23 | −1.4 (5) |
C9—C11—C12—C4 | 179.5 (3) | C20—C21—C22—C25 | 179.1 (3) |
C1—C11—C12—C4 | −1.9 (5) | C19—C18—C23—C22 | 0.1 (5) |
C11—C9—C13—C8 | 179.1 (3) | O16—C18—C23—C22 | −173.1 (3) |
C15—C9—C13—C8 | −0.4 (5) | C21—C22—C23—C18 | 1.2 (5) |
C11—C9—C13—C14 | −0.8 (5) | C25—C22—C23—C18 | −179.3 (3) |
C15—C9—C13—C14 | 179.6 (3) | O28—S27—C31—F34 | 67.3 (6) |
C7—C8—C13—C9 | 178.7 (3) | O29—S27—C31—F34 | −57.8 (6) |
C7—C8—C13—C14 | −1.3 (5) | O30—S27—C31—F34 | −177.1 (6) |
C12—N10—C14—C5 | 179.8 (3) | O28—S27—C31—F33 | −60.5 (6) |
C26—N10—C14—C5 | −0.5 (5) | O29—S27—C31—F33 | 174.5 (5) |
C12—N10—C14—C13 | 0.5 (4) | O30—S27—C31—F33 | 55.1 (6) |
C26—N10—C14—C13 | −179.8 (3) | O28—S27—C31—F32 | −178.2 (5) |
C6—C5—C14—N10 | −179.2 (4) | O29—S27—C31—F32 | 56.7 (5) |
C6—C5—C14—C13 | 0.2 (5) | O30—S27—C31—F32 | −62.6 (5) |
Cg2 is the centroid of the C1–C4/C11/C12 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O29i | 0.93 | 2.59 | 3.257 (5) | 129 |
C5—H5···O30 | 0.93 | 2.58 | 3.466 (5) | 160 |
C6—H6···O28 | 0.93 | 2.52 | 3.303 (5) | 142 |
C7—H7···O29ii | 0.93 | 2.39 | 3.188 (5) | 144 |
C20—H20···Cg2iii | 0.93 | 2.81 | 3.439 (4) | 126 |
C25—H25B···O28ii | 0.96 | 2.49 | 3.289 (5) | 141 |
C26—H26A···O30i | 0.96 | 2.47 | 3.314 (5) | 146 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+3/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C23H20NO2+·CF3SO3− |
Mr | 491.48 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 295 |
a, b, c (Å) | 12.3604 (17), 17.341 (3), 21.101 (3) |
V (Å3) | 4522.8 (12) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.60 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.960, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32535, 4000, 2050 |
Rint | 0.106 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.185, 1.01 |
No. of reflections | 4000 |
No. of parameters | 310 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.23 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) PLATON (Spek, 2009).
Cg2 is the centroid of the C1–C4/C11/C12 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O29i | 0.93 | 2.59 | 3.257 (5) | 129 |
C5—H5···O30 | 0.93 | 2.58 | 3.466 (5) | 160 |
C6—H6···O28 | 0.93 | 2.52 | 3.303 (5) | 142 |
C7—H7···O29ii | 0.93 | 2.39 | 3.188 (5) | 144 |
C20—H20···Cg2iii | 0.93 | 2.81 | 3.439 (4) | 126 |
C25—H25B···O28ii | 0.96 | 2.49 | 3.289 (5) | 141 |
C26—H26A···O30i | 0.96 | 2.47 | 3.314 (5) | 146 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+3/2, y−1/2, z. |
Acknowledgements
This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 375 740 (contract No. 3757/B/H03/2011/40). DT acknowledges financial support from the European Social Fund within the project "Educators for the elite – integrated training program for PhD students, post-docs and professors as academic teachers at the University of Gdansk" and the Human Capital Operational Program Action 4.1.1, Improving the quality on offer at tertiary educational institutions. This publication reflects the views only of the author: the sponsor cannot be held responsible for any use which may be made of the information contained therein.
References
Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176. Web of Science CrossRef PubMed CAS Google Scholar
Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072–1085. Web of Science PubMed Google Scholar
Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o789–o790. Web of Science CSD CrossRef IUCr Journals Google Scholar
Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470. Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chemiluminescing 9-(phenoxycarbonyl)-10-methylacridinium cations are widely applied as indicators or fragments of labels in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized by H2O2 in alkaline media, a reaction that is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Krzymiński et al., 2011). The efficiency of chemiluminescence – crucial to analytical applications – is affected by the constitution of the phenyl fragment. Here we present the crystal structure of 9-(2,5-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, whose chemiluminogenic features we have thoroughly investigated (Krzymiński et al., 2011).
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Krzymiński et al., 2009). With respective average deviations from planarity of 0.022 (3) Å and 0.006 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 23.1 (1)°. The carboxyl group is twisted at an angle of 74.1 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (at an angle 0.0 (1)°) or inclined at angles of 15.0 (1), 26.9 (1) and 48.1 (1)° in the crystal lattice.
In the crystal structure, the adjacent cations are linked by C–H···π (Table 1, Fig. 2) contacts and the neighboring cations and anions via C–H···O (Table 1, Figs. 1 and 2) interactions. The C–H···O interactions are of the hydrogen bond type (Novoa et al. 2006), while the C–H···π (Takahashi et al., 2001) contacts should be of an attractive nature. The crystal structure is stabilized by a network of these specific short-range interactions and by long-range electrostatic interactions between ions.