organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(2,5-Di­methyl­phen­­oxy­carbon­yl)-10-methyl­acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 19 October 2011; accepted 27 October 2011; online 5 November 2011)

In the title compound, C23H20NO2+·CF3SO3, the acridine ring system is oriented at a dihedral angle of 23.1 (1)° with respect to the benzene ring and the carboxyl group is twisted at an angle of 74.1 (1)° relative to the acridine skeleton. In the crystal, adjacent cations are linked through C—H⋯π inter­actions and neighboring cations and anions via weak C—H⋯O hydrogen bonds. The mean planes of adjacent acridine units are either parallel or inclined at angles of 15.0 (1), 26.9 (1) and 48.1 (1)° in the crystal structure.

Related literature

For general background to the chemiluminogenic properties of 9-phen­oxy­carbonyl-10-methyl­acridinium trifluoro­meth­ane­­sulfonates, see: Brown et al. (2009[Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386-394.]); King et al. (2007[King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169-4176.]); Krzymiński et al. (2011[Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072-1085.]); Roda et al. (2003[Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462-470.]). For related structures, see: Krzymiński et al. (2009[Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o789-o790.]). For inter­molecular inter­actions, see: Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Krzymiński et al. (2011[Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072-1085.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20NO2+·CF3SO3

  • Mr = 491.48

  • Orthorhombic, P b c a

  • a = 12.3604 (17) Å

  • b = 17.341 (3) Å

  • c = 21.101 (3) Å

  • V = 4522.8 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.60 × 0.15 × 0.10 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.960, Tmax = 0.985

  • 32535 measured reflections

  • 4000 independent reflections

  • 2050 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.185

  • S = 1.01

  • 4000 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C4/C11/C12 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O29i 0.93 2.59 3.257 (5) 129
C5—H5⋯O30 0.93 2.58 3.466 (5) 160
C6—H6⋯O28 0.93 2.52 3.303 (5) 142
C7—H7⋯O29ii 0.93 2.39 3.188 (5) 144
C20—H20⋯Cg2iii 0.93 2.81 3.439 (4) 126
C25—H25B⋯O28ii 0.96 2.49 3.289 (5) 141
C26—H26A⋯O30i 0.96 2.47 3.314 (5) 146
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chemiluminescing 9-(phenoxycarbonyl)-10-methylacridinium cations are widely applied as indicators or fragments of labels in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized by H2O2 in alkaline media, a reaction that is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Krzymiński et al., 2011). The efficiency of chemiluminescence – crucial to analytical applications – is affected by the constitution of the phenyl fragment. Here we present the crystal structure of 9-(2,5-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, whose chemiluminogenic features we have thoroughly investigated (Krzymiński et al., 2011).

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Krzymiński et al., 2009). With respective average deviations from planarity of 0.022 (3) Å and 0.006 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 23.1 (1)°. The carboxyl group is twisted at an angle of 74.1 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (at an angle 0.0 (1)°) or inclined at angles of 15.0 (1), 26.9 (1) and 48.1 (1)° in the crystal lattice.

In the crystal structure, the adjacent cations are linked by C–H···π (Table 1, Fig. 2) contacts and the neighboring cations and anions via C–H···O (Table 1, Figs. 1 and 2) interactions. The C–H···O interactions are of the hydrogen bond type (Novoa et al. 2006), while the C–H···π (Takahashi et al., 2001) contacts should be of an attractive nature. The crystal structure is stabilized by a network of these specific short-range interactions and by long-range electrostatic interactions between ions.

Related literature top

For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); King et al. (2007); Krzymiński et al. (2011); Roda et al. (2003). For related structures, see: Krzymiński et al. (2009). For intermolecular interactions, see: Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Krzymiński et al. (2011).

Experimental top

2,5-Dimethylphenylacridine-9-carboxylate was synthesized by esterification of 9-(chlorocarbonyl)acridine (obtained in the reaction of acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 2,5-dimethylphenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 h) (Sato, 1996; Krzymiński et al., 2011). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v) and subsequently quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(2,5-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from ethanol/water solution (1:1 v/v) (m.p. 509–511 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Structure description top

Chemiluminescing 9-(phenoxycarbonyl)-10-methylacridinium cations are widely applied as indicators or fragments of labels in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized by H2O2 in alkaline media, a reaction that is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Krzymiński et al., 2011). The efficiency of chemiluminescence – crucial to analytical applications – is affected by the constitution of the phenyl fragment. Here we present the crystal structure of 9-(2,5-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, whose chemiluminogenic features we have thoroughly investigated (Krzymiński et al., 2011).

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Krzymiński et al., 2009). With respective average deviations from planarity of 0.022 (3) Å and 0.006 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 23.1 (1)°. The carboxyl group is twisted at an angle of 74.1 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (at an angle 0.0 (1)°) or inclined at angles of 15.0 (1), 26.9 (1) and 48.1 (1)° in the crystal lattice.

In the crystal structure, the adjacent cations are linked by C–H···π (Table 1, Fig. 2) contacts and the neighboring cations and anions via C–H···O (Table 1, Figs. 1 and 2) interactions. The C–H···O interactions are of the hydrogen bond type (Novoa et al. 2006), while the C–H···π (Takahashi et al., 2001) contacts should be of an attractive nature. The crystal structure is stabilized by a network of these specific short-range interactions and by long-range electrostatic interactions between ions.

For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); King et al. (2007); Krzymiński et al. (2011); Roda et al. (2003). For related structures, see: Krzymiński et al. (2009). For intermolecular interactions, see: Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Krzymiński et al. (2011).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg2 denotes the ring centroid. The C–H···O interactions are represented by dashed lines.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, –y + 1, –z + 1; (ii) –x + 1, y – 1/2, –z + 1/2; (iii) –x + 3/2, y – 1/2, z.]
9-(2,5-Dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C23H20NO2+·CF3SO3F(000) = 2032
Mr = 491.48Dx = 1.444 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4734 reflections
a = 12.3604 (17) Åθ = 3.4–26.0°
b = 17.341 (3) ŵ = 0.21 mm1
c = 21.101 (3) ÅT = 295 K
V = 4522.8 (12) Å3Needle, yellow
Z = 80.60 × 0.15 × 0.10 mm
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
4000 independent reflections
Radiation source: enhanced (Mo) X-ray source2050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.5°
ω scansh = 1412
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 2020
Tmin = 0.960, Tmax = 0.985l = 2325
32535 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0901P)2 + 0.2728P]
where P = (Fo2 + 2Fc2)/3
4000 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H20NO2+·CF3SO3V = 4522.8 (12) Å3
Mr = 491.48Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.3604 (17) ŵ = 0.21 mm1
b = 17.341 (3) ÅT = 295 K
c = 21.101 (3) Å0.60 × 0.15 × 0.10 mm
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
4000 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2050 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.985Rint = 0.106
32535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
4000 reflectionsΔρmin = 0.23 e Å3
310 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7203 (3)0.1485 (2)0.5953 (2)0.0692 (11)
H10.74520.09810.59060.083*
C20.7290 (4)0.1843 (3)0.6520 (2)0.0872 (14)
H20.75990.15870.68630.105*
C30.6911 (4)0.2608 (3)0.6593 (2)0.0858 (14)
H30.69770.28490.69840.103*
C40.6455 (3)0.2995 (2)0.6105 (2)0.0713 (12)
H40.61970.34930.61670.086*
C50.5462 (3)0.3125 (2)0.3893 (2)0.0667 (11)
H50.52350.36330.39430.080*
C60.5383 (4)0.2782 (2)0.3321 (2)0.0815 (13)
H60.51020.30610.29810.098*
C70.5711 (4)0.2021 (2)0.3224 (2)0.0720 (12)
H70.56370.17960.28260.086*
C80.6132 (3)0.1613 (2)0.3704 (2)0.0600 (10)
H80.63650.11110.36330.072*
C90.6641 (3)0.15331 (18)0.48358 (18)0.0474 (9)
N100.5964 (2)0.30431 (15)0.50005 (16)0.0503 (7)
C110.6738 (3)0.18708 (19)0.54298 (17)0.0502 (9)
C120.6370 (3)0.26519 (19)0.55098 (19)0.0503 (9)
C130.6231 (2)0.19343 (17)0.43212 (17)0.0452 (9)
C140.5886 (3)0.27166 (18)0.44149 (19)0.0493 (9)
C150.7004 (3)0.07054 (19)0.47513 (17)0.0504 (9)
O160.61431 (18)0.02474 (12)0.47079 (13)0.0576 (7)
O170.7921 (2)0.05008 (14)0.47341 (14)0.0755 (9)
C180.6283 (3)0.05622 (18)0.46459 (19)0.0483 (9)
C190.6315 (3)0.09995 (19)0.51964 (19)0.0518 (9)
C200.6311 (2)0.1796 (2)0.5100 (2)0.0563 (10)
H200.63180.21210.54510.068*
C210.6297 (3)0.2116 (2)0.4508 (2)0.0552 (10)
H210.62940.26500.44680.066*
C220.6289 (3)0.16674 (19)0.39689 (19)0.0542 (10)
C230.6272 (3)0.08684 (19)0.4050 (2)0.0553 (10)
H230.62520.05450.36990.066*
C240.6348 (3)0.0649 (2)0.5843 (2)0.0699 (11)
H24A0.58410.02310.58650.105*
H24B0.70630.04590.59270.105*
H24C0.61610.10320.61530.105*
C250.6290 (4)0.2022 (2)0.3319 (2)0.0846 (13)
H25A0.70060.19950.31430.127*
H25B0.57960.17460.30510.127*
H25C0.60700.25520.33480.127*
C260.5592 (3)0.38590 (18)0.5077 (2)0.0727 (12)
H26A0.56230.40000.55170.109*
H26B0.48620.39060.49270.109*
H26C0.60540.41940.48360.109*
S270.44245 (10)0.50390 (5)0.30301 (6)0.0740 (4)
O280.4254 (3)0.43431 (19)0.2715 (2)0.1310 (14)
O290.3900 (3)0.57019 (19)0.2803 (2)0.1239 (13)
O300.4320 (3)0.4936 (2)0.37051 (17)0.1162 (12)
C310.5832 (5)0.5223 (4)0.2920 (3)0.1130 (19)
F320.6101 (4)0.5876 (3)0.3223 (3)0.218 (3)
F330.6458 (3)0.4707 (3)0.3148 (2)0.1741 (18)
F340.6094 (4)0.5364 (4)0.2353 (3)0.221 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.084 (3)0.060 (2)0.064 (3)0.000 (2)0.005 (2)0.006 (2)
C20.113 (4)0.092 (4)0.056 (3)0.000 (3)0.015 (3)0.008 (3)
C30.103 (3)0.097 (4)0.058 (3)0.004 (3)0.010 (3)0.017 (3)
C40.074 (3)0.072 (3)0.068 (3)0.001 (2)0.009 (2)0.011 (3)
C50.085 (3)0.039 (2)0.076 (3)0.0017 (18)0.002 (2)0.014 (2)
C60.115 (4)0.061 (3)0.069 (3)0.000 (2)0.019 (3)0.016 (3)
C70.107 (3)0.059 (3)0.050 (3)0.010 (2)0.005 (2)0.002 (2)
C80.076 (3)0.044 (2)0.061 (3)0.0047 (17)0.006 (2)0.002 (2)
C90.0457 (18)0.0386 (18)0.058 (3)0.0028 (14)0.0055 (17)0.0033 (18)
N100.0522 (16)0.0377 (15)0.061 (2)0.0010 (12)0.0015 (15)0.0024 (16)
C110.057 (2)0.045 (2)0.049 (2)0.0060 (16)0.0012 (18)0.0022 (19)
C120.0508 (19)0.049 (2)0.051 (3)0.0053 (16)0.0118 (17)0.005 (2)
C130.0497 (19)0.0353 (18)0.051 (2)0.0035 (14)0.0058 (16)0.0035 (18)
C140.052 (2)0.0384 (18)0.057 (3)0.0064 (15)0.0017 (18)0.0023 (19)
C150.054 (2)0.0421 (19)0.056 (3)0.0008 (17)0.0040 (18)0.0039 (17)
O160.0504 (14)0.0342 (12)0.088 (2)0.0021 (10)0.0011 (13)0.0011 (13)
O170.0518 (16)0.0522 (15)0.123 (3)0.0057 (12)0.0045 (16)0.0069 (16)
C180.0467 (19)0.0346 (18)0.064 (3)0.0009 (14)0.0008 (18)0.0045 (19)
C190.0448 (19)0.048 (2)0.062 (3)0.0001 (15)0.0006 (18)0.005 (2)
C200.050 (2)0.047 (2)0.072 (3)0.0021 (16)0.0019 (19)0.023 (2)
C210.051 (2)0.0379 (19)0.076 (3)0.0014 (15)0.0022 (19)0.005 (2)
C220.058 (2)0.044 (2)0.061 (3)0.0023 (16)0.0029 (19)0.003 (2)
C230.061 (2)0.042 (2)0.062 (3)0.0027 (16)0.0010 (19)0.014 (2)
C240.075 (3)0.071 (3)0.064 (3)0.001 (2)0.001 (2)0.003 (2)
C250.117 (4)0.064 (3)0.073 (3)0.004 (2)0.008 (3)0.004 (2)
C260.087 (3)0.040 (2)0.092 (3)0.0105 (19)0.001 (2)0.013 (2)
S270.1049 (9)0.0443 (6)0.0728 (9)0.0084 (5)0.0034 (6)0.0028 (6)
O280.172 (4)0.080 (2)0.141 (4)0.003 (2)0.026 (3)0.040 (2)
O290.140 (3)0.080 (2)0.152 (4)0.027 (2)0.003 (3)0.034 (2)
O300.166 (4)0.112 (3)0.071 (2)0.007 (2)0.020 (2)0.007 (2)
C310.130 (5)0.102 (4)0.108 (5)0.007 (4)0.007 (4)0.029 (4)
F320.187 (4)0.143 (4)0.323 (8)0.075 (3)0.048 (4)0.026 (4)
F330.110 (3)0.186 (4)0.227 (5)0.038 (2)0.005 (2)0.091 (3)
F340.167 (4)0.357 (7)0.139 (4)0.025 (4)0.059 (3)0.111 (5)
Geometric parameters (Å, º) top
C1—C21.354 (6)O16—C181.421 (4)
C1—C111.413 (5)C18—C231.364 (5)
C1—H10.9300C18—C191.388 (5)
C2—C31.415 (6)C19—C201.397 (5)
C2—H20.9300C19—C241.495 (5)
C3—C41.352 (6)C20—C211.367 (5)
C3—H30.9300C20—H200.9300
C4—C121.394 (5)C21—C221.378 (5)
C4—H40.9300C21—H210.9300
C5—C61.349 (6)C22—C231.396 (5)
C5—C141.411 (5)C22—C251.503 (6)
C5—H50.9300C23—H230.9300
C6—C71.397 (6)C24—H24A0.9600
C6—H60.9300C24—H24B0.9600
C7—C81.340 (5)C24—H24C0.9600
C7—H70.9300C25—H25A0.9600
C8—C131.421 (5)C25—H25B0.9600
C8—H80.9300C25—H25C0.9600
C9—C131.386 (5)C26—H26A0.9600
C9—C111.389 (5)C26—H26B0.9600
C9—C151.514 (5)C26—H26C0.9600
N10—C141.363 (4)S27—O281.394 (3)
N10—C121.366 (4)S27—O291.404 (3)
N10—C261.496 (4)S27—O301.441 (4)
C11—C121.439 (5)S27—C311.784 (7)
C13—C141.436 (4)C31—F341.264 (6)
C15—O171.188 (4)C31—F331.276 (6)
C15—O161.331 (4)C31—F321.343 (7)
C2—C1—C11120.4 (4)C23—C18—O16117.9 (3)
C2—C1—H1119.8C19—C18—O16117.8 (3)
C11—C1—H1119.8C18—C19—C20114.7 (4)
C1—C2—C3120.0 (4)C18—C19—C24122.9 (3)
C1—C2—H2120.0C20—C19—C24122.4 (4)
C3—C2—H2120.0C21—C20—C19122.3 (4)
C4—C3—C2121.4 (4)C21—C20—H20118.8
C4—C3—H3119.3C19—C20—H20118.8
C2—C3—H3119.3C20—C21—C22121.7 (3)
C3—C4—C12120.4 (4)C20—C21—H21119.2
C3—C4—H4119.8C22—C21—H21119.2
C12—C4—H4119.8C21—C22—C23117.3 (4)
C6—C5—C14120.3 (4)C21—C22—C25121.4 (3)
C6—C5—H5119.8C23—C22—C25121.2 (4)
C14—C5—H5119.8C18—C23—C22120.0 (3)
C5—C6—C7121.7 (4)C18—C23—H23120.0
C5—C6—H6119.1C22—C23—H23120.0
C7—C6—H6119.1C19—C24—H24A109.5
C8—C7—C6120.1 (4)C19—C24—H24B109.5
C8—C7—H7120.0H24A—C24—H24B109.5
C6—C7—H7120.0C19—C24—H24C109.5
C7—C8—C13121.3 (3)H24A—C24—H24C109.5
C7—C8—H8119.3H24B—C24—H24C109.5
C13—C8—H8119.3C22—C25—H25A109.5
C13—C9—C11121.8 (3)C22—C25—H25B109.5
C13—C9—C15119.5 (3)H25A—C25—H25B109.5
C11—C9—C15118.7 (3)C22—C25—H25C109.5
C14—N10—C12122.2 (3)H25A—C25—H25C109.5
C14—N10—C26118.0 (3)H25B—C25—H25C109.5
C12—N10—C26119.8 (3)N10—C26—H26A109.5
C9—C11—C1122.7 (3)N10—C26—H26B109.5
C9—C11—C12118.4 (3)H26A—C26—H26B109.5
C1—C11—C12118.9 (3)N10—C26—H26C109.5
N10—C12—C4121.6 (3)H26A—C26—H26C109.5
N10—C12—C11119.4 (3)H26B—C26—H26C109.5
C4—C12—C11118.9 (4)O28—S27—O29118.4 (3)
C9—C13—C8123.5 (3)O28—S27—O30110.5 (2)
C9—C13—C14118.4 (3)O29—S27—O30113.4 (2)
C8—C13—C14118.1 (3)O28—S27—C31103.9 (3)
N10—C14—C5121.7 (3)O29—S27—C31105.1 (3)
N10—C14—C13119.8 (3)O30—S27—C31103.8 (3)
C5—C14—C13118.5 (3)F34—C31—F33109.8 (6)
O17—C15—O16125.6 (3)F34—C31—F32102.9 (6)
O17—C15—C9124.7 (3)F33—C31—F32105.2 (6)
O16—C15—C9109.7 (3)F34—C31—S27114.0 (5)
C15—O16—C18119.9 (2)F33—C31—S27114.6 (5)
C23—C18—C19124.0 (3)F32—C31—S27109.3 (5)
C11—C1—C2—C30.1 (6)C9—C13—C14—N100.3 (4)
C1—C2—C3—C40.2 (7)C8—C13—C14—N10179.7 (3)
C2—C3—C4—C121.5 (7)C9—C13—C14—C5179.6 (3)
C14—C5—C6—C70.1 (6)C8—C13—C14—C50.4 (5)
C5—C6—C7—C81.0 (7)C13—C9—C15—O17105.8 (4)
C6—C7—C8—C131.6 (6)C11—C9—C15—O1773.8 (5)
C13—C9—C11—C1176.8 (3)C13—C9—C15—O1674.9 (4)
C15—C9—C11—C12.8 (5)C11—C9—C15—O16105.5 (3)
C13—C9—C11—C121.7 (5)O17—C15—O16—C181.2 (6)
C15—C9—C11—C12178.7 (3)C9—C15—O16—C18178.1 (3)
C2—C1—C11—C9179.2 (4)C15—O16—C18—C2395.3 (4)
C2—C1—C11—C120.7 (5)C15—O16—C18—C1991.0 (4)
C14—N10—C12—C4179.4 (3)C23—C18—C19—C201.3 (5)
C26—N10—C12—C40.3 (5)O16—C18—C19—C20172.0 (3)
C14—N10—C12—C110.4 (5)C23—C18—C19—C24178.8 (3)
C26—N10—C12—C11179.2 (3)O16—C18—C19—C247.9 (5)
C3—C4—C12—N10176.6 (4)C18—C19—C20—C211.1 (5)
C3—C4—C12—C112.3 (5)C24—C19—C20—C21178.9 (3)
C9—C11—C12—N101.5 (5)C19—C20—C21—C220.2 (5)
C1—C11—C12—N10177.0 (3)C20—C21—C22—C231.4 (5)
C9—C11—C12—C4179.5 (3)C20—C21—C22—C25179.1 (3)
C1—C11—C12—C41.9 (5)C19—C18—C23—C220.1 (5)
C11—C9—C13—C8179.1 (3)O16—C18—C23—C22173.1 (3)
C15—C9—C13—C80.4 (5)C21—C22—C23—C181.2 (5)
C11—C9—C13—C140.8 (5)C25—C22—C23—C18179.3 (3)
C15—C9—C13—C14179.6 (3)O28—S27—C31—F3467.3 (6)
C7—C8—C13—C9178.7 (3)O29—S27—C31—F3457.8 (6)
C7—C8—C13—C141.3 (5)O30—S27—C31—F34177.1 (6)
C12—N10—C14—C5179.8 (3)O28—S27—C31—F3360.5 (6)
C26—N10—C14—C50.5 (5)O29—S27—C31—F33174.5 (5)
C12—N10—C14—C130.5 (4)O30—S27—C31—F3355.1 (6)
C26—N10—C14—C13179.8 (3)O28—S27—C31—F32178.2 (5)
C6—C5—C14—N10179.2 (4)O29—S27—C31—F3256.7 (5)
C6—C5—C14—C130.2 (5)O30—S27—C31—F3262.6 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C4/C11/C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O29i0.932.593.257 (5)129
C5—H5···O300.932.583.466 (5)160
C6—H6···O280.932.523.303 (5)142
C7—H7···O29ii0.932.393.188 (5)144
C20—H20···Cg2iii0.932.813.439 (4)126
C25—H25B···O28ii0.962.493.289 (5)141
C26—H26A···O30i0.962.473.314 (5)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC23H20NO2+·CF3SO3
Mr491.48
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)12.3604 (17), 17.341 (3), 21.101 (3)
V3)4522.8 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.60 × 0.15 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.960, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
32535, 4000, 2050
Rint0.106
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.185, 1.01
No. of reflections4000
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C4/C11/C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O29i0.932.593.257 (5)129
C5—H5···O300.932.583.466 (5)160
C6—H6···O280.932.523.303 (5)142
C7—H7···O29ii0.932.393.188 (5)144
C20—H20···Cg2iii0.932.813.439 (4)126
C25—H25B···O28ii0.962.493.289 (5)141
C26—H26A···O30i0.962.473.314 (5)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+3/2, y1/2, z.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 375 740 (contract No. 3757/B/H03/2011/40). DT acknowledges financial support from the European Social Fund within the project "Educators for the elite – integrated training program for PhD students, post-docs and professors as academic teachers at the University of Gdansk" and the Human Capital Operational Program Action 4.1.1, Improving the quality on offer at tertiary educational institutions. This publication reflects the views only of the author: the sponsor cannot be held responsible for any use which may be made of the information contained therein.

References

First citationBrown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKing, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072–1085.  Web of Science PubMed Google Scholar
First citationKrzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o789–o790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470.  Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds