metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[5-(pyrazin-2-yl-κN1)-3-(pyridin-3-yl)-1,2,4-triazolido-κN1]cadmium

aCollege of Mechanical & Material Engineering, China Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: junzhao08@126.com

(Received 24 October 2011; accepted 30 October 2011; online 5 November 2011)

In the title compound, [Cd(C11H7N6)2(H2O)2], the CdII cation is located on an inversion center and is coordinated by four N atoms from two 5-(pyrazin-2-yl)-3-(pyridin-3-yl)-1,2,4-triazol­ide anions and two water mol­ecules in a distorted octa­hedral geometry. The triazolide ligand is nearly planar: the central triazole ring is oriented at dihedral angles of 4.63 (13) and 8.41 (13)° with respect to the pyrazine and pyridine rings. Inter­molecular O—H⋯N hydrogen bonds link the mol­ecules into a two-dimensional supra­molecular network parallel to (001).

Related literature

For background to metal-organic frameworks, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). For 1,2,4-triazole derivatives, see: Chen et al. (2006[Chen, J.-C., Zhou, A.-J., Hu, S., Tong, M.-L. & Tong, Y.-X. (2006). J. Mol. Struct. 794, 225-229.]); Zhang et al. (2005[Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). Chem. Commun. pp. 1258-1260.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C11H7N6)2(H2O)2]

  • Mr = 594.88

  • Monoclinic, P 21 /c

  • a = 8.640 (5) Å

  • b = 5.684 (3) Å

  • c = 23.157 (13) Å

  • β = 99.102 (6)°

  • V = 1122.9 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 296 K

  • 0.24 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.782, Tmax = 0.815

  • 11387 measured reflections

  • 2571 independent reflections

  • 2251 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 1.09

  • 2571 reflections

  • 175 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.312 (2)
Cd1—N1 2.397 (2)
Cd1—N3 2.323 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N6i 0.85 (2) 1.95 (2) 2.751 (3) 157 (3)
O1—H1B⋯N4ii 0.86 (2) 1.91 (2) 2.763 (3) 173 (3)
Symmetry codes: (i) x-1, y+1, z; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much effort has been focused on the design and controlled synthesis of metal-organic frameworks or coordination polymers (Kitagawa et al., 2004). 1,2,4-triazole derivatives have received considerable attention, owing to the variety of their coordination modes, and structural features (Chen et al., 2006; Zhang et al., 2005). During the synthesis of polymeric complexes using 2-(5-(pyridin-3-yl)-4H-1,2,4-triazol-3-yl)pyrazine as bridging ligand and, to our surprise, the title monomeric Cd(II) complex was obtained. The title complex, is a crstallographically centrosymmetric mononuclear complex. The CdII cation, which is located on a centre of inversion, is six-coordinated by four N atoms from two chelating 2-(5-(pyridin-3-yl)-1,2,4-triazolido-3-yl)pyrazine ligands and two water O atoms, resulting into a distored octahedral geometry (Fig. 1). In the crystal, intermolecular O–H···N hydrogen bonding interactions (Table 2) link the title complex into a two-dimensional supramolecular network (Fig. 2).

Related literature top

For background to metal-organic frameworks, see: Kitagawa et al. (2004). For 1,2,4-triazole derivatives, see: Chen et al. (2006); Zhang et al. (2005).

Experimental top

A mixture of 2-(5-(pyridin-3-yl)-4H-1,2,4-triazol-3-yl)pyrazine (0.0224 g, 0.1 mmol), Cd(CH3COO)2.2H2O (0.0266 g, 0.1 mmol), water (10 mL) was stired vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 413 K for 3 d, and then cooled to room temperature at 5 K h-1 to obtain prism crystals suitable for X-ray analysis.

Refinement top

Water H atoms were located in a difference Fourier map and refined with O–H restraint of 0.85±0.01 Å, Uiso(H) = 1.5 Ueq(O). Other H-atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å, Uiso(H) = 1.2 Ueq(C).

Structure description top

Much effort has been focused on the design and controlled synthesis of metal-organic frameworks or coordination polymers (Kitagawa et al., 2004). 1,2,4-triazole derivatives have received considerable attention, owing to the variety of their coordination modes, and structural features (Chen et al., 2006; Zhang et al., 2005). During the synthesis of polymeric complexes using 2-(5-(pyridin-3-yl)-4H-1,2,4-triazol-3-yl)pyrazine as bridging ligand and, to our surprise, the title monomeric Cd(II) complex was obtained. The title complex, is a crstallographically centrosymmetric mononuclear complex. The CdII cation, which is located on a centre of inversion, is six-coordinated by four N atoms from two chelating 2-(5-(pyridin-3-yl)-1,2,4-triazolido-3-yl)pyrazine ligands and two water O atoms, resulting into a distored octahedral geometry (Fig. 1). In the crystal, intermolecular O–H···N hydrogen bonding interactions (Table 2) link the title complex into a two-dimensional supramolecular network (Fig. 2).

For background to metal-organic frameworks, see: Kitagawa et al. (2004). For 1,2,4-triazole derivatives, see: Chen et al. (2006); Zhang et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP representation of the structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: A: -x,-y + 2,-z].
[Figure 2] Fig. 2. The two-dimensional network structure formed by hydrogen bonding interactions (dashed lines). H atoms are omitted for clarity.
Diaquabis[5-(pyrazin-2-yl-κN1)-3-(pyridin-3-yl)-1,2,4- triazolido-κN1]cadmium top
Crystal data top
[Cd(C11H7N6)2(H2O)2]F(000) = 596
Mr = 594.88Dx = 1.759 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2671 reflections
a = 8.640 (5) Åθ = 2.4–27.5°
b = 5.684 (3) ŵ = 1.02 mm1
c = 23.157 (13) ÅT = 296 K
β = 99.102 (6)°Prism, colorless
V = 1122.9 (11) Å30.24 × 0.21 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2571 independent reflections
Radiation source: fine-focus sealed tube2251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.782, Tmax = 0.815k = 77
11387 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.5415P]
where P = (Fo2 + 2Fc2)/3
2571 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.38 e Å3
3 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Cd(C11H7N6)2(H2O)2]V = 1122.9 (11) Å3
Mr = 594.88Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.640 (5) ŵ = 1.02 mm1
b = 5.684 (3) ÅT = 296 K
c = 23.157 (13) Å0.24 × 0.21 × 0.20 mm
β = 99.102 (6)°
Data collection top
Bruker SMART CCD
diffractometer
2571 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2251 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.815Rint = 0.057
11387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0323 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.38 e Å3
2571 reflectionsΔρmin = 0.82 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00001.00000.00000.02997 (10)
N10.0416 (2)1.1638 (3)0.09658 (9)0.0272 (4)
N20.0947 (3)1.2756 (4)0.21582 (9)0.0365 (5)
N30.1919 (2)0.7738 (3)0.05584 (9)0.0295 (4)
N40.2884 (2)0.5850 (4)0.05077 (9)0.0306 (4)
N50.3260 (2)0.6991 (3)0.14563 (9)0.0290 (4)
N60.6292 (3)0.0309 (4)0.09166 (12)0.0395 (6)
O10.1880 (2)0.7608 (3)0.03044 (8)0.0343 (4)
H1A0.263 (3)0.840 (5)0.0406 (13)0.051*
H1B0.227 (3)0.657 (4)0.0055 (12)0.051*
C10.0256 (3)1.3500 (4)0.11794 (11)0.0321 (5)
H10.09321.44400.09250.039*
C20.0024 (3)1.4061 (5)0.17639 (12)0.0346 (6)
H20.04451.53990.18900.042*
C30.1625 (3)1.0904 (5)0.19467 (11)0.0340 (6)
H30.22810.99550.22060.041*
C40.1390 (3)1.0333 (4)0.13529 (11)0.0257 (5)
C50.2188 (3)0.8347 (4)0.11250 (10)0.0266 (5)
C60.3651 (3)0.5483 (4)0.10522 (12)0.0272 (5)
C70.4792 (3)0.3558 (4)0.12057 (11)0.0288 (5)
C80.5377 (3)0.3073 (5)0.17899 (12)0.0343 (6)
H80.50790.39960.20850.041*
C90.6405 (3)0.1208 (5)0.19295 (12)0.0379 (6)
H90.68100.08670.23170.045*
C100.6809 (3)0.0120 (4)0.14809 (15)0.0387 (7)
H100.74800.13900.15760.046*
C110.5315 (3)0.2144 (5)0.07830 (12)0.0361 (6)
H110.49720.24850.03910.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03525 (16)0.03198 (15)0.02068 (15)0.00690 (10)0.00171 (11)0.00100 (9)
N10.0299 (10)0.0262 (9)0.0249 (10)0.0034 (8)0.0026 (8)0.0011 (8)
N20.0473 (13)0.0357 (11)0.0264 (11)0.0039 (10)0.0051 (10)0.0055 (9)
N30.0328 (10)0.0286 (10)0.0265 (11)0.0071 (9)0.0029 (8)0.0022 (8)
N40.0332 (11)0.0292 (10)0.0290 (11)0.0085 (9)0.0034 (9)0.0033 (9)
N50.0289 (10)0.0302 (10)0.0264 (10)0.0061 (8)0.0001 (8)0.0010 (8)
N60.0334 (12)0.0420 (13)0.0434 (15)0.0122 (10)0.0067 (11)0.0048 (10)
O10.0345 (9)0.0326 (9)0.0357 (10)0.0041 (8)0.0055 (8)0.0061 (8)
C10.0355 (13)0.0287 (12)0.0318 (13)0.0068 (10)0.0044 (11)0.0012 (10)
C20.0423 (14)0.0292 (12)0.0342 (14)0.0054 (11)0.0119 (11)0.0028 (11)
C30.0411 (14)0.0338 (13)0.0251 (13)0.0057 (11)0.0005 (11)0.0005 (11)
C40.0249 (11)0.0282 (11)0.0237 (12)0.0012 (9)0.0029 (9)0.0017 (9)
C50.0262 (11)0.0264 (11)0.0269 (12)0.0027 (9)0.0036 (9)0.0001 (9)
C60.0237 (11)0.0295 (11)0.0281 (13)0.0035 (9)0.0033 (10)0.0002 (10)
C70.0256 (11)0.0282 (11)0.0316 (13)0.0043 (9)0.0018 (10)0.0007 (10)
C80.0331 (13)0.0359 (13)0.0330 (14)0.0057 (11)0.0030 (11)0.0010 (11)
C90.0355 (14)0.0410 (14)0.0357 (15)0.0077 (12)0.0011 (11)0.0070 (12)
C100.0323 (13)0.0335 (14)0.0497 (19)0.0104 (11)0.0045 (13)0.0053 (11)
C110.0330 (13)0.0431 (14)0.0315 (14)0.0084 (11)0.0031 (11)0.0025 (11)
Geometric parameters (Å, º) top
Cd1—O1i2.312 (2)O1—H1A0.850 (17)
Cd1—O12.312 (2)O1—H1B0.859 (17)
Cd1—N1i2.397 (2)C1—C21.374 (4)
Cd1—N12.397 (2)C1—H10.9300
Cd1—N32.323 (2)C2—H20.9300
Cd1—N3i2.323 (2)C3—C41.396 (4)
N1—C11.339 (3)C3—H30.9300
N1—C41.351 (3)C4—C51.464 (3)
N2—C31.334 (3)C6—C71.478 (3)
N2—C21.338 (3)C7—C111.396 (4)
N3—C51.341 (3)C7—C81.395 (4)
N3—N41.375 (3)C8—C91.388 (4)
N4—C61.345 (3)C8—H80.9300
N5—C51.347 (3)C9—C101.373 (4)
N5—C61.351 (3)C9—H90.9300
N6—C101.335 (4)C10—H100.9300
N6—C111.347 (3)C11—H110.9300
O1i—Cd1—O1180.00 (9)N2—C2—C1122.4 (2)
O1i—Cd1—N391.20 (8)N2—C2—H2118.8
O1—Cd1—N388.80 (8)C1—C2—H2118.8
O1i—Cd1—N3i88.80 (8)N2—C3—C4122.8 (2)
O1—Cd1—N3i91.20 (8)N2—C3—H3118.6
N3—Cd1—N3i180.00 (9)C4—C3—H3118.6
O1i—Cd1—N1i87.30 (7)N1—C4—C3120.3 (2)
O1—Cd1—N1i92.70 (7)N1—C4—C5117.6 (2)
N3—Cd1—N1i107.04 (7)C3—C4—C5122.1 (2)
N3i—Cd1—N1i72.96 (7)N3—C5—N5114.0 (2)
O1i—Cd1—N192.70 (7)N3—C5—C4122.2 (2)
O1—Cd1—N187.30 (7)N5—C5—C4123.8 (2)
N3—Cd1—N172.96 (7)N4—C6—N5114.3 (2)
N3i—Cd1—N1107.04 (7)N4—C6—C7123.5 (2)
N1i—Cd1—N1180.00 (4)N5—C6—C7122.2 (2)
C1—N1—C4116.8 (2)C11—C7—C8117.3 (2)
C1—N1—Cd1129.95 (16)C11—C7—C6122.3 (2)
C4—N1—Cd1113.06 (15)C8—C7—C6120.4 (2)
C3—N2—C2115.8 (2)C9—C8—C7119.8 (2)
C5—N3—N4105.73 (19)C9—C8—H8120.1
C5—N3—Cd1113.59 (15)C7—C8—H8120.1
N4—N3—Cd1140.64 (16)C10—C9—C8118.3 (3)
C6—N4—N3104.86 (19)C10—C9—H9120.9
C5—N5—C6101.1 (2)C8—C9—H9120.9
C10—N6—C11117.8 (2)N6—C10—C9123.7 (2)
Cd1—O1—H1A112 (2)N6—C10—H10118.2
Cd1—O1—H1B115 (2)C9—C10—H10118.2
H1A—O1—H1B108 (2)N6—C11—C7123.1 (3)
N1—C1—C2121.9 (2)N6—C11—H11118.5
N1—C1—H1119.1C7—C11—H11118.5
C2—C1—H1119.1
O1i—Cd1—N1—C188.8 (2)Cd1—N1—C4—C57.6 (3)
O1—Cd1—N1—C191.2 (2)N2—C3—C4—N11.6 (4)
N3—Cd1—N1—C1179.3 (2)N2—C3—C4—C5177.7 (2)
N3i—Cd1—N1—C10.7 (2)N4—N3—C5—N50.3 (3)
N1i—Cd1—N1—C149.9 (6)Cd1—N3—C5—N5177.79 (16)
O1i—Cd1—N1—C497.06 (17)N4—N3—C5—C4179.0 (2)
O1—Cd1—N1—C482.94 (17)Cd1—N3—C5—C42.9 (3)
N3—Cd1—N1—C46.62 (16)C6—N5—C5—N30.3 (3)
N3i—Cd1—N1—C4173.38 (16)C6—N5—C5—C4179.0 (2)
N1i—Cd1—N1—C4124.2 (4)N1—C4—C5—N33.4 (3)
O1i—Cd1—N3—C597.31 (17)C3—C4—C5—N3177.4 (2)
O1—Cd1—N3—C582.69 (17)N1—C4—C5—N5175.8 (2)
N3i—Cd1—N3—C554 (63)C3—C4—C5—N53.5 (4)
N1i—Cd1—N3—C5175.14 (16)N3—N4—C6—N50.0 (3)
N1—Cd1—N3—C54.86 (16)N3—N4—C6—C7178.2 (2)
O1i—Cd1—N3—N485.7 (3)C5—N5—C6—N40.2 (3)
O1—Cd1—N3—N494.3 (3)C5—N5—C6—C7178.4 (2)
N3i—Cd1—N3—N4123 (62)N4—C6—C7—C118.4 (4)
N1i—Cd1—N3—N41.9 (3)N5—C6—C7—C11173.5 (2)
N1—Cd1—N3—N4178.1 (3)N4—C6—C7—C8170.8 (2)
C5—N3—N4—C60.1 (3)N5—C6—C7—C87.2 (4)
Cd1—N3—N4—C6177.05 (19)C11—C7—C8—C91.5 (4)
C4—N1—C1—C20.1 (4)C6—C7—C8—C9177.7 (2)
Cd1—N1—C1—C2173.81 (19)C7—C8—C9—C100.4 (4)
C3—N2—C2—C12.1 (4)C11—N6—C10—C90.3 (4)
N1—C1—C2—N21.9 (4)C8—C9—C10—N61.3 (4)
C2—N2—C3—C40.4 (4)C10—N6—C11—C71.8 (4)
C1—N1—C4—C31.8 (3)C8—C7—C11—N62.7 (4)
Cd1—N1—C4—C3173.18 (19)C6—C7—C11—N6176.5 (2)
C1—N1—C4—C5177.5 (2)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N6ii0.85 (2)1.95 (2)2.751 (3)157 (3)
O1—H1B···N4iii0.86 (2)1.91 (2)2.763 (3)173 (3)
Symmetry codes: (ii) x1, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C11H7N6)2(H2O)2]
Mr594.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.640 (5), 5.684 (3), 23.157 (13)
β (°) 99.102 (6)
V3)1122.9 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.24 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.782, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
11387, 2571, 2251
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.09
No. of reflections2571
No. of parameters175
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.82

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O12.312 (2)Cd1—N32.323 (2)
Cd1—N12.397 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N6i0.850 (17)1.949 (18)2.751 (3)157 (3)
O1—H1B···N4ii0.859 (17)1.909 (17)2.763 (3)173 (3)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z.
 

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J.-C., Zhou, A.-J., Hu, S., Tong, M.-L. & Tong, Y.-X. (2006). J. Mol. Struct. 794, 225–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). Chem. Commun. pp. 1258–1260.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds