metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[(4,4′-bi­pyridine-κN)[μ3-(S)-2-hy­dr­oxy­butane­dioato-κ4O1,O2:O4:O4′]zinc] dihydrate]

aState Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao Shandong 266555, People's Republic of China, and bTingyi (Cayman Islands) Holding Corporation, Tianjin 300457, People's Republic of China
*Correspondence e-mail: lyk@upc.edu.cn

(Received 24 October 2011; accepted 31 October 2011; online 5 November 2011)

In the title compound, {[Zn(C4H4O5)(C10H8N2)]·2H2O}n, the ZnII ion displays a distorted tetra­gonal–pyramidal coordination environment with one hy­droxy O and three carboxyl­ate O atoms from three malate anions, and the one remaining position occupied by an N atom from a 4,4′-bipyridine ligand. The pyridine rings of the 4,4′-bipyridine ligand are twisted with respect to each other by a dihedral angle of 35.8 (2)°. The uncoordinated water mol­ecules are linked to the complex mol­ecules by O—H⋯O hydrogen bonds. Each malate anion forms four coordination bonds with three Zn atoms, establishing a layer structure parallel to the ac plane. Adjacent layers are further linked via O—H⋯N hydrogen bonding. ππ stacking between the pyridine rings [face-to-face distance = 3.651 (3) Å] occurs in the crystal structure.

Related literature

For applications of compounds with metal-organic framework structures (MOFs), see: Rowsell & Yaghi (2005[Rowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670-4679.]). For the malate ligand, see: Duan et al. (2006[Duan, L.-M., Xie, F.-T., Chen, X.-Y., Chen, Y., Lu, Y.-K., Cheng, P. & Xu, J.-Q. (2006). Cryst. Growth Des. 5, 1101-1106.]); Li et al. (2008[Li, J.-H., Nie, J.-J., Su, J.-R. & Xu, D.-J. (2008). Acta Cryst. E64, m538-m539.]); Lin & Xu (2005[Lin, D.-D. & Xu, D.-J. (2005). Acta Cryst. E61, m1215-m1217.]); Ou et al. (2009[Ou, G.-C., Zhou, Q. & Ng, S. W. (2009). Acta Cryst. E65, m728.]); Xie et al. (2004[Xie, F.-T., Duan, L.-M., Xu, J.-Q., Ye, L., Liu, Y.-B. & Hu, X.-X. (2004). Eur. J. Inorg. Chem. pp. 4375-4379.]). For related structures, see: Gadzikwa et al. (2008[Gadzikwa, T., Zeng, B. S., Hupp, J. T. & Nguyen, S. T. (2008). Chem. Commun. pp. 3672-3674.]); Ma et al. (2010[Ma, L.-F., Meng, Q.-L., Li, C.-P., Li, B., Wang, L.-Y., Du, M. & Liang, F.-P. (2010). Cryst. Growth Des. 10, 3036-3043.]); Nordell et al. (2003[Nordell, K. J., Higgins, K. A. & Smith, M. D. (2003). Acta Cryst. E59, m114-m115.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C4H4O5)(C10H8N2)]·2H2O

  • Mr = 389.66

  • Orthorhombic, F d d 2

  • a = 17.810 (5) Å

  • b = 47.447 (9) Å

  • c = 7.4063 (15) Å

  • V = 6259 (2) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 293 K

  • 0.25 × 0.12 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.689, Tmax = 0.843

  • 14679 measured reflections

  • 3380 independent reflections

  • 2817 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.087

  • S = 1.09

  • 3380 reflections

  • 217 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1438 Friedel pairs

  • Flack parameter: 0.006 (17)

Table 1
Selected bond lengths (Å)

Zn1—N1 2.066 (3)
Zn1—O1 1.985 (3)
Zn1—O3 2.188 (4)
Zn1—O4i 2.031 (4)
Zn1—O5ii 1.999 (3)
Symmetry codes: (i) x, y, z-1; (ii) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{3\over 4}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11⋯O2i 0.86 2.22 2.730 (6) 118
O2W—H14⋯O2 0.85 2.43 2.850 (6) 111
O3—H3⋯N2iii 0.84 2.13 2.721 (5) 127
Symmetry codes: (i) x, y, z-1; (iii) [-x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of MOFs with original architectures, which could offer great potential for chemical and structural diversity, is one of the major current challenges in inorganic chemistry (Rowsell & Yaghi, 2005). The malate ligand, besides two terminal carboxyl groups, contains a hydroxyl group in the α-position, which can potentially provide an additional coordination site and allows the formation of five- and six-membered rings to stabilize the solid networks (Duan et al., 2006; Xie et al., 2004). In recent years, the construction of MOFs based on malate ligand has been investigated owing to their fascinating coordination modes (Li et al., 2008; Lin et al., 2005; Ou et al., 2009). Herein we report the hydrothermal synthesis and crystal structure of the tile compound.

As shown in Fig. 1, the ZnII ion exhibits a distorted tetragonal pyramid coordination geometry, defined by one N atom from 4,4'-bipyridine molecule, one hydroxyl oxygen and three carboxylate oxygen atoms coming from three different malate ligands. The Zn1—O bond lengths fall in the range of 1.985 (3)–2.188 (4) Å, and the Zn1—N1 distance is 2.066 (3) Å, and the O—Zn—O(N) angles varying from 75.97 (12)–158.80 (11)°, thus falling in the expected region (Gadzikwa et al., 2008). The 4,4'-bipyridine ligand adopts the unidentate coordination mode and the unligated N2 atom acts as the H-bonding acceptor from the hydroxyl group [O3—H3···N2, 2.721 (5) ?] (Ma et al., 2010; Nordell et al., 2003). One carboxylate (O4—C14—O5) of malate dianion act as bidentate bridging and adopt a µ2-η1:η1 coordinated mode, while the carboxyl O1 and the hydroxyl group O3 atoms chelate a Zn ion. The remaining uncoordinated carboxyl O2 atom links with lattice water molecules via O—H···O hydrogen bonding (Table 1). As a result, each malate dianion forms four coordination bonds with three Zn centers, leading to a two-dimensional layer structure parallel to the ac plane (Fig. 2).

Partially overlapped arrangement is observed between parallel pyridine rings of adjacent layers, the face-to-face separation of 3.644 Å between N1-py and N2vii-py rings and 3.435 Å for N2-py and N1vii-py rings, indicates the existence of π-π stacking [symmetry code: (vii) -x, 1/2 - y, 1/2 + z]. The adjacent layers are further linked via O—H···N(O) hydrogen bonds and π···π interactions, leading to the formation of a three-dimensional supramolecular framework structure (Table 1 and Fig. 3).

Related literature top

For applications of compounds with metal-organic framework structures (MOFs), see: Rowsell & Yaghi (2005). For the malate ligand, see: Duan et al. (2006); Li et al. (2008); Lin & Xu (2005); Ou et al. (2009); Xie et al. (2004). For related structures, see: Gadzikwa et al. (2008); Ma et al. (2010); Nordell et al. (2003).

Experimental top

A mixture of Zn(OAc)2.2H2O (0.22 g, 1.0 mmol), D,L-malic acid (0.27 g, 2.0 mmol), 4,4'-bpy (0.2 g, 1.0 mmol) and 20 ml water was stirred for 2 h in air; it was adjusted to pH = 5.0 with KOH solution (1.0 mol.L-1) and was heated in a 30 ml stainless steel reactor with a Teflon-liner at 140°C for 3 days, and then cooled to room temperature. Colorless block crystals were isolated with 38% yield (based on Zn). Elemental analysis: Anal. Calcd: C, 43.15; H, 4.11; N, 7.19; Found: C, 42.05; H, 3.97; N, 7.22.

Refinement top

All H atoms were found in a difference Fourier Map and refined as riding with Uiso(H) = 1.5Ueq(O) or Uiso(H) = 1.2Ueq(C).

Structure description top

The design and synthesis of MOFs with original architectures, which could offer great potential for chemical and structural diversity, is one of the major current challenges in inorganic chemistry (Rowsell & Yaghi, 2005). The malate ligand, besides two terminal carboxyl groups, contains a hydroxyl group in the α-position, which can potentially provide an additional coordination site and allows the formation of five- and six-membered rings to stabilize the solid networks (Duan et al., 2006; Xie et al., 2004). In recent years, the construction of MOFs based on malate ligand has been investigated owing to their fascinating coordination modes (Li et al., 2008; Lin et al., 2005; Ou et al., 2009). Herein we report the hydrothermal synthesis and crystal structure of the tile compound.

As shown in Fig. 1, the ZnII ion exhibits a distorted tetragonal pyramid coordination geometry, defined by one N atom from 4,4'-bipyridine molecule, one hydroxyl oxygen and three carboxylate oxygen atoms coming from three different malate ligands. The Zn1—O bond lengths fall in the range of 1.985 (3)–2.188 (4) Å, and the Zn1—N1 distance is 2.066 (3) Å, and the O—Zn—O(N) angles varying from 75.97 (12)–158.80 (11)°, thus falling in the expected region (Gadzikwa et al., 2008). The 4,4'-bipyridine ligand adopts the unidentate coordination mode and the unligated N2 atom acts as the H-bonding acceptor from the hydroxyl group [O3—H3···N2, 2.721 (5) ?] (Ma et al., 2010; Nordell et al., 2003). One carboxylate (O4—C14—O5) of malate dianion act as bidentate bridging and adopt a µ2-η1:η1 coordinated mode, while the carboxyl O1 and the hydroxyl group O3 atoms chelate a Zn ion. The remaining uncoordinated carboxyl O2 atom links with lattice water molecules via O—H···O hydrogen bonding (Table 1). As a result, each malate dianion forms four coordination bonds with three Zn centers, leading to a two-dimensional layer structure parallel to the ac plane (Fig. 2).

Partially overlapped arrangement is observed between parallel pyridine rings of adjacent layers, the face-to-face separation of 3.644 Å between N1-py and N2vii-py rings and 3.435 Å for N2-py and N1vii-py rings, indicates the existence of π-π stacking [symmetry code: (vii) -x, 1/2 - y, 1/2 + z]. The adjacent layers are further linked via O—H···N(O) hydrogen bonds and π···π interactions, leading to the formation of a three-dimensional supramolecular framework structure (Table 1 and Fig. 3).

For applications of compounds with metal-organic framework structures (MOFs), see: Rowsell & Yaghi (2005). For the malate ligand, see: Duan et al. (2006); Li et al. (2008); Lin & Xu (2005); Ou et al. (2009); Xie et al. (2004). For related structures, see: Gadzikwa et al. (2008); Ma et al. (2010); Nordell et al. (2003).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of title compound with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) x, y, -1 + z; (ii) 1/4 + x, 1/4 - y, -3/4 + z.]
[Figure 2] Fig. 2. Ball-and-stick representation of the two-dimensional layer structure of title compound. 4,4'-bpy molecule have been omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of the title compound along the crystallographic a axis. Interlayer O—H···O(N) hydrogen bonds are shown as dashed lines.
Poly[[(4,4'-bipyridine-κN)[µ3-(S)-2-hydroxybutanedioato- κ4O1,O2:O4:O4']zinc] dihydrate] top
Crystal data top
[Zn(C4H4O5)(C10H8N2)]·2H2OF(000) = 3200
Mr = 389.66Dx = 1.654 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 14444 reflections
a = 17.810 (5) Åθ = 3.0–27.5°
b = 47.447 (9) ŵ = 1.61 mm1
c = 7.4063 (15) ÅT = 293 K
V = 6259 (2) Å3Block, colorless
Z = 160.25 × 0.12 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3380 independent reflections
Radiation source: fine-focus sealed tube2817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 2222
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 6061
Tmin = 0.689, Tmax = 0.843l = 89
14679 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0226P)2 + 22.1041P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3380 reflectionsΔρmax = 0.39 e Å3
217 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack (1983), 1438 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (17)
Crystal data top
[Zn(C4H4O5)(C10H8N2)]·2H2OV = 6259 (2) Å3
Mr = 389.66Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 17.810 (5) ŵ = 1.61 mm1
b = 47.447 (9) ÅT = 293 K
c = 7.4063 (15) Å0.25 × 0.12 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3380 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2817 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.843Rint = 0.077
14679 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0226P)2 + 22.1041P]
where P = (Fo2 + 2Fc2)/3
S = 1.09Δρmax = 0.39 e Å3
3380 reflectionsΔρmin = 0.37 e Å3
217 parametersAbsolute structure: Flack (1983), 1438 Friedel pairs
1 restraintAbsolute structure parameter: 0.006 (17)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.07684 (2)0.130827 (9)0.47984 (7)0.02744 (12)
O10.0495 (2)0.09140 (7)0.5405 (4)0.0404 (8)
O20.0317 (2)0.05848 (6)0.7462 (5)0.0527 (9)
O30.0542 (2)0.13206 (6)0.7701 (5)0.0485 (10)
H30.06870.14040.86420.073*
O40.06058 (15)0.12247 (7)1.2138 (5)0.0333 (7)
O50.06183 (15)0.12117 (6)1.2620 (4)0.0342 (8)
O1W0.0119 (3)0.02832 (12)0.0565 (8)0.107 (2)
H110.04260.02710.03360.160*
H120.02760.02210.02110.160*
O2W0.0295 (3)0.02594 (13)0.4228 (9)0.111 (2)
H140.00060.02430.51390.167*
H130.03050.04350.40200.167*
N10.05148 (18)0.17331 (6)0.4739 (6)0.0300 (8)
N20.0363 (3)0.31846 (8)0.4508 (6)0.0507 (12)
C10.0156 (2)0.18258 (9)0.4188 (6)0.0364 (11)
H10.05050.16950.37780.055*
C20.0353 (2)0.21050 (9)0.4200 (6)0.0344 (10)
H20.08300.21600.38280.052*
C30.0164 (2)0.23059 (8)0.4772 (7)0.0295 (8)
C40.0022 (2)0.26103 (8)0.4763 (7)0.0314 (9)
C50.0736 (3)0.27109 (9)0.5116 (7)0.0395 (12)
H50.11160.25870.54550.047*
C60.0880 (3)0.29946 (10)0.4965 (9)0.0501 (13)
H60.13650.30570.51930.060*
C70.0328 (3)0.30880 (10)0.4207 (7)0.0512 (14)
H70.07000.32170.38990.061*
C80.0521 (3)0.28080 (10)0.4329 (7)0.0433 (12)
H80.10130.27520.41200.052*
C90.0855 (2)0.22099 (9)0.5339 (6)0.0351 (11)
H90.12160.23370.57350.042*
C100.1010 (2)0.19244 (9)0.5320 (6)0.0340 (11)
H100.14760.18630.57270.041*
C110.0415 (2)0.08348 (9)0.7015 (7)0.0331 (10)
C120.0483 (3)0.10540 (10)0.8520 (6)0.0307 (10)
H40.09420.10170.92090.037*
C130.0179 (2)0.10388 (9)0.9781 (7)0.0347 (9)
H13A0.03170.08420.99350.042*
H13B0.06010.11340.92170.042*
C140.0056 (2)0.11663 (8)1.1619 (5)0.0271 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0306 (2)0.0257 (2)0.0260 (2)0.0010 (2)0.0027 (2)0.0005 (2)
O10.063 (2)0.0302 (18)0.0277 (17)0.0110 (15)0.0055 (15)0.0037 (13)
O20.087 (2)0.0255 (15)0.045 (2)0.0076 (16)0.024 (2)0.0019 (17)
O30.087 (3)0.0272 (18)0.032 (2)0.0112 (16)0.0227 (19)0.0076 (14)
O40.0286 (12)0.0465 (16)0.0248 (16)0.0048 (14)0.0006 (16)0.0045 (16)
O50.0312 (14)0.0401 (16)0.031 (2)0.0001 (13)0.0052 (14)0.0037 (14)
O1W0.108 (4)0.121 (5)0.091 (4)0.012 (4)0.006 (3)0.054 (3)
O2W0.092 (4)0.126 (5)0.115 (5)0.006 (3)0.004 (3)0.073 (4)
N10.0365 (18)0.0225 (17)0.0311 (19)0.0019 (13)0.006 (2)0.0032 (19)
N20.079 (3)0.029 (2)0.044 (3)0.012 (2)0.005 (3)0.0018 (19)
C10.036 (2)0.030 (2)0.043 (3)0.0017 (18)0.005 (2)0.0042 (19)
C20.027 (2)0.032 (2)0.045 (3)0.0046 (17)0.0037 (19)0.0008 (19)
C30.036 (2)0.0235 (19)0.029 (2)0.0020 (16)0.003 (2)0.004 (2)
C40.039 (2)0.030 (2)0.025 (2)0.0064 (18)0.005 (2)0.003 (2)
C50.042 (2)0.036 (2)0.041 (3)0.005 (2)0.000 (2)0.005 (2)
C60.056 (3)0.043 (3)0.051 (3)0.016 (2)0.001 (3)0.002 (3)
C70.071 (4)0.030 (2)0.053 (3)0.008 (2)0.002 (3)0.009 (2)
C80.045 (3)0.035 (2)0.050 (3)0.001 (2)0.004 (2)0.011 (2)
C90.034 (2)0.029 (2)0.042 (3)0.0037 (19)0.004 (2)0.0006 (18)
C100.030 (2)0.032 (2)0.040 (3)0.0032 (18)0.0009 (19)0.0013 (18)
C110.036 (2)0.027 (2)0.036 (3)0.0009 (17)0.008 (2)0.0012 (19)
C120.036 (2)0.028 (2)0.028 (2)0.0003 (18)0.0056 (19)0.0011 (17)
C130.033 (2)0.041 (2)0.029 (2)0.0020 (17)0.003 (2)0.010 (2)
C140.033 (2)0.025 (2)0.0231 (19)0.0028 (17)0.0004 (17)0.0015 (16)
Geometric parameters (Å, º) top
Zn1—N12.066 (3)C2—C31.392 (6)
Zn1—O11.985 (3)C2—H20.9300
Zn1—O32.188 (4)C3—C91.378 (6)
Zn1—O4i2.031 (4)C3—C41.482 (5)
Zn1—O5ii1.999 (3)C4—C51.383 (6)
O1—C111.257 (6)C4—C81.385 (6)
O2—C111.244 (5)C5—C61.375 (6)
O3—C121.407 (5)C5—H50.9300
O3—H30.8427C6—H60.9300
O4—C141.270 (5)C7—C81.375 (7)
O5—C141.265 (5)C7—H70.9300
O1W—H110.8645C8—H80.9300
O1W—H120.8063C9—C101.383 (6)
O2W—H140.8528C9—H90.9300
O2W—H130.8466C10—H100.9300
N1—C101.337 (5)C11—C121.529 (6)
N1—C11.337 (5)C12—C131.506 (6)
N2—C71.331 (7)C12—H40.9800
N2—C61.333 (6)C13—C141.506 (6)
C1—C21.371 (6)C13—H13A0.9700
C1—H10.9300C13—H13B0.9700
O1—Zn1—O5ii99.87 (13)C6—C5—H5120.2
O1—Zn1—O4i90.04 (13)C4—C5—H5120.2
O5ii—Zn1—O4i104.34 (12)N2—C6—C5123.7 (5)
O1—Zn1—N1150.56 (13)N2—C6—H6118.2
O5ii—Zn1—N1105.40 (12)C5—C6—H6118.2
O4i—Zn1—N197.97 (16)N2—C7—C8123.6 (5)
O1—Zn1—O375.97 (12)N2—C7—H7118.2
O5ii—Zn1—O393.84 (15)C8—C7—H7118.2
O4i—Zn1—O3158.80 (11)C7—C8—C4119.7 (5)
N1—Zn1—O387.40 (15)C7—C8—H8120.2
C11—O1—Zn1121.6 (3)C4—C8—H8120.2
C12—O3—Zn1114.4 (3)C3—C9—C10120.0 (4)
C12—O3—H395.2C3—C9—H9120.0
Zn1—O3—H3140.2C10—C9—H9120.0
C14—O4—Zn1iii117.9 (3)N1—C10—C9122.5 (4)
C14—O5—Zn1iv135.0 (3)N1—C10—H10118.8
H11—O1W—H12106.0C9—C10—H10118.8
H14—O2W—H13104.2O2—C11—O1123.6 (4)
C10—N1—C1117.7 (4)O2—C11—C12117.7 (4)
C10—N1—Zn1120.8 (3)O1—C11—C12118.6 (4)
C1—N1—Zn1121.5 (3)O3—C12—C13111.7 (4)
C7—N2—C6116.6 (4)O3—C12—C11107.6 (4)
N1—C1—C2123.0 (4)C13—C12—C11111.0 (4)
N1—C1—H1118.5O3—C12—H4108.8
C2—C1—H1118.5C13—C12—H4108.8
C1—C2—C3119.6 (4)C11—C12—H4108.8
C1—C2—H2120.2C12—C13—C14115.3 (3)
C3—C2—H2120.2C12—C13—H13A108.5
C9—C3—C2117.2 (4)C14—C13—H13A108.5
C9—C3—C4121.5 (4)C12—C13—H13B108.5
C2—C3—C4121.2 (4)C14—C13—H13B108.5
C5—C4—C8116.8 (4)H13A—C13—H13B107.5
C5—C4—C3122.7 (4)O5—C14—O4121.4 (4)
C8—C4—C3120.4 (4)O5—C14—C13118.8 (3)
C6—C5—C4119.6 (5)O4—C14—C13119.8 (4)
Symmetry codes: (i) x, y, z1; (ii) x+1/4, y+1/4, z3/4; (iii) x, y, z+1; (iv) x1/4, y+1/4, z+3/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O2i0.862.222.730 (6)118
O2W—H14···O20.852.432.850 (6)111
O3—H3···N2v0.842.132.721 (5)127
Symmetry codes: (i) x, y, z1; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C4H4O5)(C10H8N2)]·2H2O
Mr389.66
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)17.810 (5), 47.447 (9), 7.4063 (15)
V3)6259 (2)
Z16
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.25 × 0.12 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.689, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
14679, 3380, 2817
Rint0.077
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.087, 1.09
No. of reflections3380
No. of parameters217
No. of restraints1
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0226P)2 + 22.1041P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.39, 0.37
Absolute structureFlack (1983), 1438 Friedel pairs
Absolute structure parameter0.006 (17)

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Zn1—N12.066 (3)Zn1—O4i2.031 (4)
Zn1—O11.985 (3)Zn1—O5ii1.999 (3)
Zn1—O32.188 (4)
Symmetry codes: (i) x, y, z1; (ii) x+1/4, y+1/4, z3/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O2i0.862.222.730 (6)117.9
O2W—H14···O20.852.432.850 (6)111.2
O3—H3···N2iii0.842.132.721 (5)126.6
Symmetry codes: (i) x, y, z1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (ZR2011BQ004) and the Fundamental Research Funds for the Central Universities (09CX04045A).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDuan, L.-M., Xie, F.-T., Chen, X.-Y., Chen, Y., Lu, Y.-K., Cheng, P. & Xu, J.-Q. (2006). Cryst. Growth Des. 5, 1101–1106.  Web of Science CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGadzikwa, T., Zeng, B. S., Hupp, J. T. & Nguyen, S. T. (2008). Chem. Commun. pp. 3672–3674.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, J.-H., Nie, J.-J., Su, J.-R. & Xu, D.-J. (2008). Acta Cryst. E64, m538–m539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, D.-D. & Xu, D.-J. (2005). Acta Cryst. E61, m1215–m1217.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, L.-F., Meng, Q.-L., Li, C.-P., Li, B., Wang, L.-Y., Du, M. & Liang, F.-P. (2010). Cryst. Growth Des. 10, 3036–3043.  Web of Science CSD CrossRef CAS Google Scholar
First citationNordell, K. J., Higgins, K. A. & Smith, M. D. (2003). Acta Cryst. E59, m114–m115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOu, G.-C., Zhou, Q. & Ng, S. W. (2009). Acta Cryst. E65, m728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670–4679.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, F.-T., Duan, L.-M., Xu, J.-Q., Ye, L., Liu, Y.-B. & Hu, X.-X. (2004). Eur. J. Inorg. Chem. pp. 4375–4379.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds