metal-organic compounds
Poly[[(4,4′-bipyridine-κN)[μ3-(S)-2-hydroxybutanedioato-κ4O1,O2:O4:O4′]zinc] dihydrate]
aState Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao Shandong 266555, People's Republic of China, and bTingyi (Cayman Islands) Holding Corporation, Tianjin 300457, People's Republic of China
*Correspondence e-mail: lyk@upc.edu.cn
In the title compound, {[Zn(C4H4O5)(C10H8N2)]·2H2O}n, the ZnII ion displays a distorted tetragonal–pyramidal coordination environment with one hydroxy O and three carboxylate O atoms from three malate anions, and the one remaining position occupied by an N atom from a 4,4′-bipyridine ligand. The pyridine rings of the 4,4′-bipyridine ligand are twisted with respect to each other by a dihedral angle of 35.8 (2)°. The uncoordinated water molecules are linked to the complex molecules by O—H⋯O hydrogen bonds. Each malate anion forms four coordination bonds with three Zn atoms, establishing a layer structure parallel to the ac plane. Adjacent layers are further linked via O—H⋯N hydrogen bonding. π–π stacking between the pyridine rings [face-to-face distance = 3.651 (3) Å] occurs in the
Related literature
For applications of compounds with metal-organic framework structures (MOFs), see: Rowsell & Yaghi (2005). For the malate ligand, see: Duan et al. (2006); Li et al. (2008); Lin & Xu (2005); Ou et al. (2009); Xie et al. (2004). For related structures, see: Gadzikwa et al. (2008); Ma et al. (2010); Nordell et al. (2003).
Experimental
Crystal data
|
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536811045788/xu5364sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811045788/xu5364Isup2.hkl
A mixture of Zn(OAc)2.2H2O (0.22 g, 1.0 mmol), D,L-malic acid (0.27 g, 2.0 mmol), 4,4'-bpy (0.2 g, 1.0 mmol) and 20 ml water was stirred for 2 h in air; it was adjusted to pH = 5.0 with KOH solution (1.0 mol.L-1) and was heated in a 30 ml stainless steel reactor with a Teflon-liner at 140°C for 3 days, and then cooled to room temperature. Colorless block crystals were isolated with 38% yield (based on Zn). Elemental analysis: Anal. Calcd: C, 43.15; H, 4.11; N, 7.19; Found: C, 42.05; H, 3.97; N, 7.22.
All H atoms were found in a difference Fourier Map and refined as riding with Uiso(H) = 1.5Ueq(O) or Uiso(H) = 1.2Ueq(C).
The design and synthesis of MOFs with original architectures, which could offer great potential for chemical and structural diversity, is one of the major current challenges in inorganic chemistry (Rowsell & Yaghi, 2005). The malate ligand, besides two terminal carboxyl groups, contains a hydroxyl group in the α-position, which can potentially provide an additional coordination site and allows the formation of five- and six-membered rings to stabilize the solid networks (Duan et al., 2006; Xie et al., 2004). In recent years, the construction of MOFs based on malate ligand has been investigated owing to their fascinating coordination modes (Li et al., 2008; Lin et al., 2005; Ou et al., 2009). Herein we report the hydrothermal synthesis and of the tile compound.
As shown in Fig. 1, the ZnII ion exhibits a distorted tetragonal pyramid coordination geometry, defined by one N atom from 4,4'-bipyridine molecule, one hydroxyl oxygen and three carboxylate oxygen atoms coming from three different malate ligands. The Zn1—O bond lengths fall in the range of 1.985 (3)–2.188 (4) Å, and the Zn1—N1 distance is 2.066 (3) Å, and the O—Zn—O(N) angles varying from 75.97 (12)–158.80 (11)°, thus falling in the expected region (Gadzikwa et al., 2008). The 4,4'-bipyridine ligand adopts the unidentate coordination mode and the unligated N2 atom acts as the H-bonding acceptor from the hydroxyl group [O3—H3···N2, 2.721 (5) ?] (Ma et al., 2010; Nordell et al., 2003). One carboxylate (O4—C14—O5) of malate dianion act as bidentate bridging and adopt a µ2-η1:η1 coordinated mode, while the carboxyl O1 and the hydroxyl group O3 atoms chelate a Zn ion. The remaining uncoordinated carboxyl O2 atom links with lattice water molecules via O—H···O hydrogen bonding (Table 1). As a result, each malate dianion forms four coordination bonds with three Zn centers, leading to a two-dimensional layer structure parallel to the ac plane (Fig. 2).
Partially overlapped arrangement is observed between parallel pyridine rings of adjacent layers, the face-to-face separation of 3.644 Å between N1-py and N2vii-py rings and 3.435 Å for N2-py and N1vii-py rings, indicates the existence of π-π stacking [symmetry code: (vii) -x, 1/2 - y, 1/2 + z]. The adjacent layers are further linked via O—H···N(O) hydrogen bonds and π···π interactions, leading to the formation of a three-dimensional supramolecular framework structure (Table 1 and Fig. 3).
For applications of compounds with metal-organic framework structures (MOFs), see: Rowsell & Yaghi (2005). For the malate ligand, see: Duan et al. (2006); Li et al. (2008); Lin & Xu (2005); Ou et al. (2009); Xie et al. (2004). For related structures, see: Gadzikwa et al. (2008); Ma et al. (2010); Nordell et al. (2003).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Zn(C4H4O5)(C10H8N2)]·2H2O | F(000) = 3200 |
Mr = 389.66 | Dx = 1.654 Mg m−3 |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 14444 reflections |
a = 17.810 (5) Å | θ = 3.0–27.5° |
b = 47.447 (9) Å | µ = 1.61 mm−1 |
c = 7.4063 (15) Å | T = 293 K |
V = 6259 (2) Å3 | Block, colorless |
Z = 16 | 0.25 × 0.12 × 0.11 mm |
Rigaku R-AXIS RAPID diffractometer | 3380 independent reflections |
Radiation source: fine-focus sealed tube | 2817 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.077 |
Detector resolution: 10 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −22→22 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −60→61 |
Tmin = 0.689, Tmax = 0.843 | l = −8→9 |
14679 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0226P)2 + 22.1041P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
3380 reflections | Δρmax = 0.39 e Å−3 |
217 parameters | Δρmin = −0.37 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1438 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.006 (17) |
[Zn(C4H4O5)(C10H8N2)]·2H2O | V = 6259 (2) Å3 |
Mr = 389.66 | Z = 16 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 17.810 (5) Å | µ = 1.61 mm−1 |
b = 47.447 (9) Å | T = 293 K |
c = 7.4063 (15) Å | 0.25 × 0.12 × 0.11 mm |
Rigaku R-AXIS RAPID diffractometer | 3380 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2817 reflections with I > 2σ(I) |
Tmin = 0.689, Tmax = 0.843 | Rint = 0.077 |
14679 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0226P)2 + 22.1041P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | Δρmax = 0.39 e Å−3 |
3380 reflections | Δρmin = −0.37 e Å−3 |
217 parameters | Absolute structure: Flack (1983), 1438 Friedel pairs |
1 restraint | Absolute structure parameter: 0.006 (17) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.07684 (2) | 0.130827 (9) | 0.47984 (7) | 0.02744 (12) | |
O1 | 0.0495 (2) | 0.09140 (7) | 0.5405 (4) | 0.0404 (8) | |
O2 | 0.0317 (2) | 0.05848 (6) | 0.7462 (5) | 0.0527 (9) | |
O3 | 0.0542 (2) | 0.13206 (6) | 0.7701 (5) | 0.0485 (10) | |
H3 | 0.0687 | 0.1404 | 0.8642 | 0.073* | |
O4 | 0.06058 (15) | 0.12247 (7) | 1.2138 (5) | 0.0333 (7) | |
O5 | −0.06183 (15) | 0.12117 (6) | 1.2620 (4) | 0.0342 (8) | |
O1W | 0.0119 (3) | 0.02832 (12) | 0.0565 (8) | 0.107 (2) | |
H11 | 0.0426 | 0.0271 | −0.0336 | 0.160* | |
H12 | −0.0276 | 0.0221 | 0.0211 | 0.160* | |
O2W | 0.0295 (3) | 0.02594 (13) | 0.4228 (9) | 0.111 (2) | |
H14 | 0.0006 | 0.0243 | 0.5139 | 0.167* | |
H13 | 0.0305 | 0.0435 | 0.4020 | 0.167* | |
N1 | 0.05148 (18) | 0.17331 (6) | 0.4739 (6) | 0.0300 (8) | |
N2 | −0.0363 (3) | 0.31846 (8) | 0.4508 (6) | 0.0507 (12) | |
C1 | −0.0156 (2) | 0.18258 (9) | 0.4188 (6) | 0.0364 (11) | |
H1 | −0.0505 | 0.1695 | 0.3778 | 0.055* | |
C2 | −0.0353 (2) | 0.21050 (9) | 0.4200 (6) | 0.0344 (10) | |
H2 | −0.0830 | 0.2160 | 0.3828 | 0.052* | |
C3 | 0.0164 (2) | 0.23059 (8) | 0.4772 (7) | 0.0295 (8) | |
C4 | −0.0022 (2) | 0.26103 (8) | 0.4763 (7) | 0.0314 (9) | |
C5 | −0.0736 (3) | 0.27109 (9) | 0.5116 (7) | 0.0395 (12) | |
H5 | −0.1116 | 0.2587 | 0.5455 | 0.047* | |
C6 | −0.0880 (3) | 0.29946 (10) | 0.4965 (9) | 0.0501 (13) | |
H6 | −0.1365 | 0.3057 | 0.5193 | 0.060* | |
C7 | 0.0328 (3) | 0.30880 (10) | 0.4207 (7) | 0.0512 (14) | |
H7 | 0.0700 | 0.3217 | 0.3899 | 0.061* | |
C8 | 0.0521 (3) | 0.28080 (10) | 0.4329 (7) | 0.0433 (12) | |
H8 | 0.1013 | 0.2752 | 0.4120 | 0.052* | |
C9 | 0.0855 (2) | 0.22099 (9) | 0.5339 (6) | 0.0351 (11) | |
H9 | 0.1216 | 0.2337 | 0.5735 | 0.042* | |
C10 | 0.1010 (2) | 0.19244 (9) | 0.5320 (6) | 0.0340 (11) | |
H10 | 0.1476 | 0.1863 | 0.5727 | 0.041* | |
C11 | 0.0415 (2) | 0.08348 (9) | 0.7015 (7) | 0.0331 (10) | |
C12 | 0.0483 (3) | 0.10540 (10) | 0.8520 (6) | 0.0307 (10) | |
H4 | 0.0942 | 0.1017 | 0.9209 | 0.037* | |
C13 | −0.0179 (2) | 0.10388 (9) | 0.9781 (7) | 0.0347 (9) | |
H13A | −0.0317 | 0.0842 | 0.9935 | 0.042* | |
H13B | −0.0601 | 0.1134 | 0.9217 | 0.042* | |
C14 | −0.0056 (2) | 0.11663 (8) | 1.1619 (5) | 0.0271 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0306 (2) | 0.0257 (2) | 0.0260 (2) | 0.0010 (2) | 0.0027 (2) | 0.0005 (2) |
O1 | 0.063 (2) | 0.0302 (18) | 0.0277 (17) | −0.0110 (15) | 0.0055 (15) | −0.0037 (13) |
O2 | 0.087 (2) | 0.0255 (15) | 0.045 (2) | −0.0076 (16) | 0.024 (2) | −0.0019 (17) |
O3 | 0.087 (3) | 0.0272 (18) | 0.032 (2) | −0.0112 (16) | 0.0227 (19) | −0.0076 (14) |
O4 | 0.0286 (12) | 0.0465 (16) | 0.0248 (16) | −0.0048 (14) | 0.0006 (16) | 0.0045 (16) |
O5 | 0.0312 (14) | 0.0401 (16) | 0.031 (2) | 0.0001 (13) | 0.0052 (14) | −0.0037 (14) |
O1W | 0.108 (4) | 0.121 (5) | 0.091 (4) | −0.012 (4) | −0.006 (3) | 0.054 (3) |
O2W | 0.092 (4) | 0.126 (5) | 0.115 (5) | −0.006 (3) | 0.004 (3) | −0.073 (4) |
N1 | 0.0365 (18) | 0.0225 (17) | 0.0311 (19) | −0.0019 (13) | 0.006 (2) | −0.0032 (19) |
N2 | 0.079 (3) | 0.029 (2) | 0.044 (3) | 0.012 (2) | −0.005 (3) | 0.0018 (19) |
C1 | 0.036 (2) | 0.030 (2) | 0.043 (3) | −0.0017 (18) | −0.005 (2) | −0.0042 (19) |
C2 | 0.027 (2) | 0.032 (2) | 0.045 (3) | 0.0046 (17) | −0.0037 (19) | −0.0008 (19) |
C3 | 0.036 (2) | 0.0235 (19) | 0.029 (2) | 0.0020 (16) | 0.003 (2) | 0.004 (2) |
C4 | 0.039 (2) | 0.030 (2) | 0.025 (2) | 0.0064 (18) | −0.005 (2) | 0.003 (2) |
C5 | 0.042 (2) | 0.036 (2) | 0.041 (3) | 0.005 (2) | 0.000 (2) | 0.005 (2) |
C6 | 0.056 (3) | 0.043 (3) | 0.051 (3) | 0.016 (2) | −0.001 (3) | 0.002 (3) |
C7 | 0.071 (4) | 0.030 (2) | 0.053 (3) | −0.008 (2) | 0.002 (3) | 0.009 (2) |
C8 | 0.045 (3) | 0.035 (2) | 0.050 (3) | −0.001 (2) | 0.004 (2) | 0.011 (2) |
C9 | 0.034 (2) | 0.029 (2) | 0.042 (3) | −0.0037 (19) | −0.004 (2) | −0.0006 (18) |
C10 | 0.030 (2) | 0.032 (2) | 0.040 (3) | 0.0032 (18) | 0.0009 (19) | 0.0013 (18) |
C11 | 0.036 (2) | 0.027 (2) | 0.036 (3) | −0.0009 (17) | 0.008 (2) | −0.0012 (19) |
C12 | 0.036 (2) | 0.028 (2) | 0.028 (2) | −0.0003 (18) | 0.0056 (19) | −0.0011 (17) |
C13 | 0.033 (2) | 0.041 (2) | 0.029 (2) | −0.0020 (17) | 0.003 (2) | −0.010 (2) |
C14 | 0.033 (2) | 0.025 (2) | 0.0231 (19) | −0.0028 (17) | −0.0004 (17) | 0.0015 (16) |
Zn1—N1 | 2.066 (3) | C2—C3 | 1.392 (6) |
Zn1—O1 | 1.985 (3) | C2—H2 | 0.9300 |
Zn1—O3 | 2.188 (4) | C3—C9 | 1.378 (6) |
Zn1—O4i | 2.031 (4) | C3—C4 | 1.482 (5) |
Zn1—O5ii | 1.999 (3) | C4—C5 | 1.383 (6) |
O1—C11 | 1.257 (6) | C4—C8 | 1.385 (6) |
O2—C11 | 1.244 (5) | C5—C6 | 1.375 (6) |
O3—C12 | 1.407 (5) | C5—H5 | 0.9300 |
O3—H3 | 0.8427 | C6—H6 | 0.9300 |
O4—C14 | 1.270 (5) | C7—C8 | 1.375 (7) |
O5—C14 | 1.265 (5) | C7—H7 | 0.9300 |
O1W—H11 | 0.8645 | C8—H8 | 0.9300 |
O1W—H12 | 0.8063 | C9—C10 | 1.383 (6) |
O2W—H14 | 0.8528 | C9—H9 | 0.9300 |
O2W—H13 | 0.8466 | C10—H10 | 0.9300 |
N1—C10 | 1.337 (5) | C11—C12 | 1.529 (6) |
N1—C1 | 1.337 (5) | C12—C13 | 1.506 (6) |
N2—C7 | 1.331 (7) | C12—H4 | 0.9800 |
N2—C6 | 1.333 (6) | C13—C14 | 1.506 (6) |
C1—C2 | 1.371 (6) | C13—H13A | 0.9700 |
C1—H1 | 0.9300 | C13—H13B | 0.9700 |
O1—Zn1—O5ii | 99.87 (13) | C6—C5—H5 | 120.2 |
O1—Zn1—O4i | 90.04 (13) | C4—C5—H5 | 120.2 |
O5ii—Zn1—O4i | 104.34 (12) | N2—C6—C5 | 123.7 (5) |
O1—Zn1—N1 | 150.56 (13) | N2—C6—H6 | 118.2 |
O5ii—Zn1—N1 | 105.40 (12) | C5—C6—H6 | 118.2 |
O4i—Zn1—N1 | 97.97 (16) | N2—C7—C8 | 123.6 (5) |
O1—Zn1—O3 | 75.97 (12) | N2—C7—H7 | 118.2 |
O5ii—Zn1—O3 | 93.84 (15) | C8—C7—H7 | 118.2 |
O4i—Zn1—O3 | 158.80 (11) | C7—C8—C4 | 119.7 (5) |
N1—Zn1—O3 | 87.40 (15) | C7—C8—H8 | 120.2 |
C11—O1—Zn1 | 121.6 (3) | C4—C8—H8 | 120.2 |
C12—O3—Zn1 | 114.4 (3) | C3—C9—C10 | 120.0 (4) |
C12—O3—H3 | 95.2 | C3—C9—H9 | 120.0 |
Zn1—O3—H3 | 140.2 | C10—C9—H9 | 120.0 |
C14—O4—Zn1iii | 117.9 (3) | N1—C10—C9 | 122.5 (4) |
C14—O5—Zn1iv | 135.0 (3) | N1—C10—H10 | 118.8 |
H11—O1W—H12 | 106.0 | C9—C10—H10 | 118.8 |
H14—O2W—H13 | 104.2 | O2—C11—O1 | 123.6 (4) |
C10—N1—C1 | 117.7 (4) | O2—C11—C12 | 117.7 (4) |
C10—N1—Zn1 | 120.8 (3) | O1—C11—C12 | 118.6 (4) |
C1—N1—Zn1 | 121.5 (3) | O3—C12—C13 | 111.7 (4) |
C7—N2—C6 | 116.6 (4) | O3—C12—C11 | 107.6 (4) |
N1—C1—C2 | 123.0 (4) | C13—C12—C11 | 111.0 (4) |
N1—C1—H1 | 118.5 | O3—C12—H4 | 108.8 |
C2—C1—H1 | 118.5 | C13—C12—H4 | 108.8 |
C1—C2—C3 | 119.6 (4) | C11—C12—H4 | 108.8 |
C1—C2—H2 | 120.2 | C12—C13—C14 | 115.3 (3) |
C3—C2—H2 | 120.2 | C12—C13—H13A | 108.5 |
C9—C3—C2 | 117.2 (4) | C14—C13—H13A | 108.5 |
C9—C3—C4 | 121.5 (4) | C12—C13—H13B | 108.5 |
C2—C3—C4 | 121.2 (4) | C14—C13—H13B | 108.5 |
C5—C4—C8 | 116.8 (4) | H13A—C13—H13B | 107.5 |
C5—C4—C3 | 122.7 (4) | O5—C14—O4 | 121.4 (4) |
C8—C4—C3 | 120.4 (4) | O5—C14—C13 | 118.8 (3) |
C6—C5—C4 | 119.6 (5) | O4—C14—C13 | 119.8 (4) |
Symmetry codes: (i) x, y, z−1; (ii) x+1/4, −y+1/4, z−3/4; (iii) x, y, z+1; (iv) x−1/4, −y+1/4, z+3/4. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11···O2i | 0.86 | 2.22 | 2.730 (6) | 118 |
O2W—H14···O2 | 0.85 | 2.43 | 2.850 (6) | 111 |
O3—H3···N2v | 0.84 | 2.13 | 2.721 (5) | 127 |
Symmetry codes: (i) x, y, z−1; (v) −x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C4H4O5)(C10H8N2)]·2H2O |
Mr | 389.66 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 293 |
a, b, c (Å) | 17.810 (5), 47.447 (9), 7.4063 (15) |
V (Å3) | 6259 (2) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 1.61 |
Crystal size (mm) | 0.25 × 0.12 × 0.11 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.689, 0.843 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14679, 3380, 2817 |
Rint | 0.077 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.087, 1.09 |
No. of reflections | 3380 |
No. of parameters | 217 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0226P)2 + 22.1041P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.39, −0.37 |
Absolute structure | Flack (1983), 1438 Friedel pairs |
Absolute structure parameter | 0.006 (17) |
Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
Zn1—N1 | 2.066 (3) | Zn1—O4i | 2.031 (4) |
Zn1—O1 | 1.985 (3) | Zn1—O5ii | 1.999 (3) |
Zn1—O3 | 2.188 (4) |
Symmetry codes: (i) x, y, z−1; (ii) x+1/4, −y+1/4, z−3/4. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11···O2i | 0.86 | 2.22 | 2.730 (6) | 117.9 |
O2W—H14···O2 | 0.85 | 2.43 | 2.850 (6) | 111.2 |
O3—H3···N2iii | 0.84 | 2.13 | 2.721 (5) | 126.6 |
Symmetry codes: (i) x, y, z−1; (iii) −x, −y+1/2, z+1/2. |
Acknowledgements
This work was supported by the Natural Science Foundation of Shandong Province (ZR2011BQ004) and the Fundamental Research Funds for the Central Universities (09CX04045A).
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Duan, L.-M., Xie, F.-T., Chen, X.-Y., Chen, Y., Lu, Y.-K., Cheng, P. & Xu, J.-Q. (2006). Cryst. Growth Des. 5, 1101–1106. Web of Science CrossRef Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gadzikwa, T., Zeng, B. S., Hupp, J. T. & Nguyen, S. T. (2008). Chem. Commun. pp. 3672–3674. Web of Science CSD CrossRef Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, J.-H., Nie, J.-J., Su, J.-R. & Xu, D.-J. (2008). Acta Cryst. E64, m538–m539. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lin, D.-D. & Xu, D.-J. (2005). Acta Cryst. E61, m1215–m1217. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ma, L.-F., Meng, Q.-L., Li, C.-P., Li, B., Wang, L.-Y., Du, M. & Liang, F.-P. (2010). Cryst. Growth Des. 10, 3036–3043. Web of Science CSD CrossRef CAS Google Scholar
Nordell, K. J., Higgins, K. A. & Smith, M. D. (2003). Acta Cryst. E59, m114–m115. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ou, G.-C., Zhou, Q. & Ng, S. W. (2009). Acta Cryst. E65, m728. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670–4679. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, F.-T., Duan, L.-M., Xu, J.-Q., Ye, L., Liu, Y.-B. & Hu, X.-X. (2004). Eur. J. Inorg. Chem. pp. 4375–4379. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and synthesis of MOFs with original architectures, which could offer great potential for chemical and structural diversity, is one of the major current challenges in inorganic chemistry (Rowsell & Yaghi, 2005). The malate ligand, besides two terminal carboxyl groups, contains a hydroxyl group in the α-position, which can potentially provide an additional coordination site and allows the formation of five- and six-membered rings to stabilize the solid networks (Duan et al., 2006; Xie et al., 2004). In recent years, the construction of MOFs based on malate ligand has been investigated owing to their fascinating coordination modes (Li et al., 2008; Lin et al., 2005; Ou et al., 2009). Herein we report the hydrothermal synthesis and crystal structure of the tile compound.
As shown in Fig. 1, the ZnII ion exhibits a distorted tetragonal pyramid coordination geometry, defined by one N atom from 4,4'-bipyridine molecule, one hydroxyl oxygen and three carboxylate oxygen atoms coming from three different malate ligands. The Zn1—O bond lengths fall in the range of 1.985 (3)–2.188 (4) Å, and the Zn1—N1 distance is 2.066 (3) Å, and the O—Zn—O(N) angles varying from 75.97 (12)–158.80 (11)°, thus falling in the expected region (Gadzikwa et al., 2008). The 4,4'-bipyridine ligand adopts the unidentate coordination mode and the unligated N2 atom acts as the H-bonding acceptor from the hydroxyl group [O3—H3···N2, 2.721 (5) ?] (Ma et al., 2010; Nordell et al., 2003). One carboxylate (O4—C14—O5) of malate dianion act as bidentate bridging and adopt a µ2-η1:η1 coordinated mode, while the carboxyl O1 and the hydroxyl group O3 atoms chelate a Zn ion. The remaining uncoordinated carboxyl O2 atom links with lattice water molecules via O—H···O hydrogen bonding (Table 1). As a result, each malate dianion forms four coordination bonds with three Zn centers, leading to a two-dimensional layer structure parallel to the ac plane (Fig. 2).
Partially overlapped arrangement is observed between parallel pyridine rings of adjacent layers, the face-to-face separation of 3.644 Å between N1-py and N2vii-py rings and 3.435 Å for N2-py and N1vii-py rings, indicates the existence of π-π stacking [symmetry code: (vii) -x, 1/2 - y, 1/2 + z]. The adjacent layers are further linked via O—H···N(O) hydrogen bonds and π···π interactions, leading to the formation of a three-dimensional supramolecular framework structure (Table 1 and Fig. 3).