metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(piperazine-1,4-diium) hexa­chlorido­bis­muthate(III) chloride monohydrate

aSchool of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: gaoyuhua8888@sina.com

(Received 25 October 2011; accepted 30 October 2011; online 5 November 2011)

The crystal structure of the title compound, (C4H12N2)2[BiCl6]Cl·H2O, consists of piperazinediium cations, [BiCl6]3− anions, Cl anions and uncoordinated water mol­ecules. The BiIII cation is coordinated by six Cl anions in a slightly distorted octa­hedral geometry. The diprotonated piperazine ring adopts a chair conformation. In the crystal, extensive inter­molecular N—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonds occur.

Related literature

For related structures, see: Wu et al. (2005[Wu, P.-F., Tan, X.-F., Meng, X.-G., Li, D.-S., Zhu, Y.-L. & Wei, Y.-G. (2005). Acta Cryst. E61, m1506-m1508.]); Fu et al. (2005[Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1719-m1720.])

[Scheme 1]

Experimental

Crystal data
  • (C4H12N2)2[BiCl6]Cl·H2O

  • Mr = 651.46

  • Monoclinic, P 21 /c

  • a = 11.085 (3) Å

  • b = 16.642 (4) Å

  • c = 11.862 (3) Å

  • β = 98.997 (3)°

  • V = 2161.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.03 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.266, Tmax = 0.266

  • 12000 measured reflections

  • 4108 independent reflections

  • 3341 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.061

  • S = 1.03

  • 4108 reflections

  • 197 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H9A⋯Cl2i 0.84 (4) 2.67 (6) 3.390 (7) 144 (6)
O1—H9B⋯Cl5ii 0.85 (6) 2.39 (6) 3.201 (6) 162 (5)
N1—H1A⋯Cl4iii 0.90 2.40 3.181 (5) 145
N1—H1D⋯Cl4 0.90 2.57 3.284 (5) 137
N1—H1D⋯Cl5 0.90 2.75 3.455 (5) 136
N2—H2A⋯O1 0.90 1.82 2.705 (7) 167
N2—H2D⋯Cl7iv 0.90 2.26 3.149 (5) 169
N3—H3C⋯Cl6 0.90 2.36 3.208 (5) 158
N3—H3D⋯Cl7v 0.90 2.21 3.069 (5) 159
N4—H4C⋯Cl1vi 0.90 2.37 3.228 (5) 158
N4—H4D⋯Cl4vii 0.90 2.43 3.155 (5) 138
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+2; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the crystal structure of compounds closely related to the title molecule, e.g., bis(piperazinium) bis(µ2-chloro)-octachloro-di-bismuth(iii) trihydrate (Wu et al., 2005) and bis(N-Methylpiperazinium) bis((µ2-chloro)-tetrachlorobismuthate(iii))- dihydrate (Fu et al., 2005) have been synthesized..We reported here thenew member of this family compounds.

The asymmetric unit of the title compound, 2C4H12N22+.BiCl63-.Cl-.H2O(Fig.1), consists of two piperazine cation, one [BiCl6]3-one Cl-anions and one water molecule. The Bi(III) ion exhibits a slightly distorted octahedral coordination environment. The diprotonated piperazine ring adopts a chair conformation. In the crystal structure, cations and anions are linked by intermolecular N—H···Cl, N—H···O and O—H···Cl hydrogen bonds into a three-dimensional network viewed along the a-axis (Fig.2).

Related literature top

For related structures, see: Wu et al. (2005); Fu et al. (2005)

Experimental top

piperazine (10 mmol, 0.86 g) BiCl3 (6.8 mmol, 2.15 g)and 35% aqueous HCl (3 ml) were mixed and dissolved in 30 ml water by heating to 353 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, block crystals of the title compound were formed after fifteen days.

Refinement top

Water H atoms were located in a difference Fourier map and refined with O—H distance restraint of 0.85±0.01 Å, Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.97 and N—H = 0.90 Å, and refined using a riding model with Uiso(H)=1.2Ueq(C,N).

Structure description top

Recently, the crystal structure of compounds closely related to the title molecule, e.g., bis(piperazinium) bis(µ2-chloro)-octachloro-di-bismuth(iii) trihydrate (Wu et al., 2005) and bis(N-Methylpiperazinium) bis((µ2-chloro)-tetrachlorobismuthate(iii))- dihydrate (Fu et al., 2005) have been synthesized..We reported here thenew member of this family compounds.

The asymmetric unit of the title compound, 2C4H12N22+.BiCl63-.Cl-.H2O(Fig.1), consists of two piperazine cation, one [BiCl6]3-one Cl-anions and one water molecule. The Bi(III) ion exhibits a slightly distorted octahedral coordination environment. The diprotonated piperazine ring adopts a chair conformation. In the crystal structure, cations and anions are linked by intermolecular N—H···Cl, N—H···O and O—H···Cl hydrogen bonds into a three-dimensional network viewed along the a-axis (Fig.2).

For related structures, see: Wu et al. (2005); Fu et al. (2005)

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level
[Figure 2] Fig. 2. The packing viewed along the a-axis. Hydrogen bonds are drawn as dashed lines
Bis(piperazine-1,4-diium) hexachloridobismuthate(III) chloride monohydrate top
Crystal data top
(C4H12N2)2[BiCl6]Cl·H2OF(000) = 1248
Mr = 651.46Dx = 2.002 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3341 reflections
a = 11.085 (3) Åθ = 1.9–26°
b = 16.642 (4) ŵ = 9.03 mm1
c = 11.862 (3) ÅT = 296 K
β = 98.997 (3)°Block, colorless
V = 2161.3 (10) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
4108 independent reflections
Radiation source: fine-focus sealed tube3341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1720
Tmin = 0.266, Tmax = 0.266l = 1314
12000 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0226P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
4108 reflectionsΔρmax = 0.66 e Å3
197 parametersΔρmin = 0.54 e Å3
3 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00472 (14)
Crystal data top
(C4H12N2)2[BiCl6]Cl·H2OV = 2161.3 (10) Å3
Mr = 651.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.085 (3) ŵ = 9.03 mm1
b = 16.642 (4) ÅT = 296 K
c = 11.862 (3) Å0.20 × 0.20 × 0.20 mm
β = 98.997 (3)°
Data collection top
Rigaku SCXmini
diffractometer
4108 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3341 reflections with I > 2σ(I)
Tmin = 0.266, Tmax = 0.266Rint = 0.041
12000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.66 e Å3
4108 reflectionsΔρmin = 0.54 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.740018 (15)0.092026 (11)0.807034 (15)0.02849 (9)
Cl20.79302 (15)0.11877 (12)0.60299 (13)0.0670 (5)
C60.9370 (5)0.3286 (3)0.6818 (4)0.0390 (13)
H6A0.85280.31120.67580.047*
H6B0.97070.30590.61810.047*
Cl30.97693 (11)0.09950 (7)0.90506 (12)0.0394 (3)
Cl40.68343 (11)0.05928 (8)1.02452 (11)0.0376 (3)
Cl60.70154 (12)0.24996 (8)0.83713 (12)0.0442 (3)
Cl50.49653 (12)0.07440 (9)0.74387 (13)0.0491 (4)
C40.4452 (5)0.1743 (3)1.0987 (5)0.0476 (15)
H4A0.50700.14541.15000.057*
H4B0.37830.18681.13970.057*
C30.4981 (5)0.2503 (3)1.0608 (5)0.0459 (14)
H3A0.52530.28411.12650.055*
H3B0.56820.23801.02410.055*
N10.4004 (4)0.1236 (3)0.9985 (4)0.0483 (12)
H1A0.36730.07841.02210.058*
H1D0.46380.10940.96380.058*
N20.4051 (4)0.2935 (3)0.9799 (4)0.0485 (12)
H2A0.43770.33910.95700.058*
H2D0.34170.30691.01510.058*
C10.3073 (5)0.1661 (3)0.9150 (5)0.0474 (15)
H1B0.23570.17770.94970.057*
H1C0.28270.13220.84890.057*
C20.3612 (5)0.2428 (3)0.8790 (5)0.0474 (15)
H2B0.42880.23060.83880.057*
H2C0.30000.27190.82730.057*
Cl10.76430 (12)0.06850 (9)0.77947 (15)0.0542 (4)
N40.9416 (4)0.4179 (2)0.6760 (4)0.0348 (10)
H4C1.01930.43380.67640.042*
H4D0.89700.43470.61030.042*
N30.9625 (4)0.3368 (3)0.8914 (4)0.0459 (12)
H3C0.88560.32030.89370.055*
H3D1.00960.32060.95610.055*
C80.9648 (5)0.4261 (3)0.8847 (5)0.0487 (15)
H8A1.04870.44430.89110.058*
H8B0.93010.44870.94790.058*
C70.8937 (5)0.4550 (3)0.7740 (5)0.0474 (14)
H7A0.80820.44110.77060.057*
H7B0.89980.51300.76950.057*
C51.0076 (5)0.2991 (3)0.7909 (5)0.0439 (14)
H5A1.09340.31180.79330.053*
H5B0.99980.24110.79500.053*
Cl70.16914 (12)0.31589 (10)0.09392 (12)0.0537 (4)
O10.5352 (5)0.4184 (3)0.9159 (6)0.099 (2)
H9A0.610 (3)0.425 (4)0.941 (6)0.119*
H9B0.519 (6)0.452 (4)0.862 (5)0.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.02867 (12)0.02880 (13)0.02927 (13)0.00082 (8)0.00847 (8)0.00086 (9)
Cl20.0689 (11)0.0968 (13)0.0406 (9)0.0061 (9)0.0256 (8)0.0120 (9)
C60.058 (4)0.030 (3)0.031 (3)0.008 (3)0.013 (3)0.001 (2)
Cl30.0340 (6)0.0433 (8)0.0412 (8)0.0000 (6)0.0062 (6)0.0025 (6)
Cl40.0387 (7)0.0423 (8)0.0326 (7)0.0034 (6)0.0080 (6)0.0011 (6)
Cl60.0412 (7)0.0353 (8)0.0590 (10)0.0036 (6)0.0167 (7)0.0065 (7)
Cl50.0344 (7)0.0585 (10)0.0538 (9)0.0017 (6)0.0044 (6)0.0146 (7)
C40.045 (3)0.060 (4)0.040 (4)0.001 (3)0.014 (3)0.002 (3)
C30.041 (3)0.054 (4)0.043 (4)0.009 (3)0.008 (3)0.011 (3)
N10.042 (3)0.032 (3)0.075 (4)0.007 (2)0.021 (3)0.005 (3)
N20.057 (3)0.035 (3)0.059 (3)0.003 (2)0.027 (3)0.002 (2)
C10.034 (3)0.056 (4)0.050 (4)0.005 (3)0.003 (3)0.017 (3)
C20.045 (3)0.055 (4)0.044 (4)0.006 (3)0.013 (3)0.007 (3)
Cl10.0409 (8)0.0343 (8)0.0903 (12)0.0001 (6)0.0192 (8)0.0105 (8)
N40.034 (2)0.040 (3)0.030 (3)0.0021 (19)0.0023 (19)0.008 (2)
N30.038 (3)0.067 (3)0.031 (3)0.014 (2)0.000 (2)0.019 (2)
C80.053 (4)0.065 (4)0.031 (3)0.018 (3)0.015 (3)0.009 (3)
C70.053 (4)0.044 (4)0.047 (4)0.001 (3)0.016 (3)0.008 (3)
C50.044 (3)0.040 (3)0.049 (4)0.000 (3)0.012 (3)0.012 (3)
Cl70.0389 (8)0.0854 (12)0.0366 (9)0.0057 (7)0.0050 (6)0.0004 (8)
O10.079 (4)0.073 (4)0.139 (6)0.016 (3)0.002 (4)0.062 (3)
Geometric parameters (Å, º) top
Bi1—Cl22.6164 (16)N2—H2D0.9000
Bi1—Cl62.6954 (14)C1—C21.499 (7)
Bi1—Cl52.7019 (14)C1—H1B0.9700
Bi1—Cl32.7036 (14)C1—H1C0.9700
Bi1—Cl12.7099 (15)C2—H2B0.9700
Bi1—Cl42.8021 (14)C2—H2C0.9700
C6—C51.488 (7)N4—C71.486 (6)
C6—N41.488 (6)N4—H4C0.9000
C6—H6A0.9700N4—H4D0.9000
C6—H6B0.9700N3—C81.488 (7)
C4—N11.479 (6)N3—C51.500 (7)
C4—C31.493 (7)N3—H3C0.9000
C4—H4A0.9700N3—H3D0.9000
C4—H4B0.9700C8—C71.502 (7)
C3—N21.480 (7)C8—H8A0.9700
C3—H3A0.9700C8—H8B0.9700
C3—H3B0.9700C7—H7A0.9700
N1—C11.492 (7)C7—H7B0.9700
N1—H1A0.9000C5—H5A0.9700
N1—H1D0.9000C5—H5B0.9700
N2—C21.483 (7)O1—H9A0.844 (19)
N2—H2A0.9000O1—H9B0.854 (19)
Cl2—Bi1—Cl691.13 (5)H2A—N2—H2D108.1
Cl2—Bi1—Cl596.95 (5)N1—C1—C2109.1 (4)
Cl6—Bi1—Cl588.32 (4)N1—C1—H1B109.9
Cl2—Bi1—Cl392.66 (5)C2—C1—H1B109.9
Cl6—Bi1—Cl393.52 (4)N1—C1—H1C109.9
Cl5—Bi1—Cl3170.17 (4)C2—C1—H1C109.9
Cl2—Bi1—Cl190.87 (6)H1B—C1—H1C108.3
Cl6—Bi1—Cl1176.40 (4)N2—C2—C1110.5 (4)
Cl5—Bi1—Cl188.47 (4)N2—C2—H2B109.6
Cl3—Bi1—Cl189.38 (4)C1—C2—H2B109.6
Cl2—Bi1—Cl4178.58 (5)N2—C2—H2C109.6
Cl6—Bi1—Cl490.28 (4)C1—C2—H2C109.6
Cl5—Bi1—Cl482.90 (4)H2B—C2—H2C108.1
Cl3—Bi1—Cl487.44 (4)C7—N4—C6111.1 (4)
Cl1—Bi1—Cl487.72 (5)C7—N4—H4C109.4
C5—C6—N4110.7 (4)C6—N4—H4C109.4
C5—C6—H6A109.5C7—N4—H4D109.4
N4—C6—H6A109.5C6—N4—H4D109.4
C5—C6—H6B109.5H4C—N4—H4D108.0
N4—C6—H6B109.5C8—N3—C5111.4 (4)
H6A—C6—H6B108.1C8—N3—H3C109.3
N1—C4—C3109.9 (4)C5—N3—H3C109.3
N1—C4—H4A109.7C8—N3—H3D109.3
C3—C4—H4A109.7C5—N3—H3D109.3
N1—C4—H4B109.7H3C—N3—H3D108.0
C3—C4—H4B109.7N3—C8—C7110.8 (4)
H4A—C4—H4B108.2N3—C8—H8A109.5
N2—C3—C4109.9 (4)C7—C8—H8A109.5
N2—C3—H3A109.7N3—C8—H8B109.5
C4—C3—H3A109.7C7—C8—H8B109.5
N2—C3—H3B109.7H8A—C8—H8B108.1
C4—C3—H3B109.7N4—C7—C8110.3 (4)
H3A—C3—H3B108.2N4—C7—H7A109.6
C4—N1—C1112.0 (4)C8—C7—H7A109.6
C4—N1—H1A109.2N4—C7—H7B109.6
C1—N1—H1A109.2C8—C7—H7B109.6
C4—N1—H1D109.2H7A—C7—H7B108.1
C1—N1—H1D109.2C6—C5—N3110.9 (4)
H1A—N1—H1D107.9C6—C5—H5A109.4
C3—N2—C2110.7 (4)N3—C5—H5A109.4
C3—N2—H2A109.5C6—C5—H5B109.4
C2—N2—H2A109.5N3—C5—H5B109.4
C3—N2—H2D109.5H5A—C5—H5B108.0
C2—N2—H2D109.5H9A—O1—H9B105 (3)
N1—C4—C3—N257.7 (6)C5—C6—N4—C757.7 (5)
C3—C4—N1—C157.7 (6)C5—N3—C8—C755.3 (6)
C4—C3—N2—C258.9 (6)C6—N4—C7—C857.6 (6)
C4—N1—C1—C256.9 (6)N3—C8—C7—N456.3 (6)
C3—N2—C2—C158.8 (6)N4—C6—C5—N355.9 (5)
N1—C1—C2—N256.7 (6)C8—N3—C5—C655.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H9A···Cl2i0.84 (4)2.67 (6)3.390 (7)144 (6)
O1—H9B···Cl5ii0.85 (6)2.39 (6)3.201 (6)162 (5)
N1—H1A···Cl4iii0.902.403.181 (5)145
N1—H1D···Cl40.902.573.284 (5)137
N1—H1D···Cl50.902.753.455 (5)136
N2—H2A···O10.901.822.705 (7)167
N2—H2D···Cl7iv0.902.263.149 (5)169
N3—H3C···Cl60.902.363.208 (5)158
N3—H3D···Cl7v0.902.213.069 (5)159
N4—H4C···Cl1vi0.902.373.228 (5)158
N4—H4D···Cl4vii0.902.433.155 (5)138
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y, z+2; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) x+2, y+1/2, z+3/2; (vii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C4H12N2)2[BiCl6]Cl·H2O
Mr651.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.085 (3), 16.642 (4), 11.862 (3)
β (°) 98.997 (3)
V3)2161.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)9.03
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.266, 0.266
No. of measured, independent and
observed [I > 2σ(I)] reflections
12000, 4108, 3341
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.061, 1.03
No. of reflections4108
No. of parameters197
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.54

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H9A···Cl2i0.84 (4)2.67 (6)3.390 (7)144 (6)
O1—H9B···Cl5ii0.85 (6)2.39 (6)3.201 (6)162 (5)
N1—H1A···Cl4iii0.902.403.181 (5)145
N1—H1D···Cl40.902.573.284 (5)137
N1—H1D···Cl50.902.753.455 (5)136
N2—H2A···O10.901.822.705 (7)167
N2—H2D···Cl7iv0.902.263.149 (5)169
N3—H3C···Cl60.902.363.208 (5)158
N3—H3D···Cl7v0.902.213.069 (5)159
N4—H4C···Cl1vi0.902.373.228 (5)158
N4—H4D···Cl4vii0.902.433.155 (5)138
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y, z+2; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) x+2, y+1/2, z+3/2; (vii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by Jiangsu University of Science and Technology, China

References

First citationFu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1719–m1720.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, P.-F., Tan, X.-F., Meng, X.-G., Li, D.-S., Zhu, Y.-L. & Wei, Y.-G. (2005). Acta Cryst. E61, m1506–m1508.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds