organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl-1H-imidazole

aDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: h-khavasi@sbu.ac.ir

(Received 26 October 2011; accepted 7 November 2011; online 9 November 2011)

In the title compound, C9H8N2, a mirror plane lies perpendicular to the phenyl and imidazole rings and passes through the bridging C—C bond, so that the imidazole ring is disordered over two sites about the mirror plane with the equal site occupancy; the asymmetric unit contains one half-mol­ecule. In the crystal, adjacent mol­ecules are linked via N—H⋯N hydrogen bonds.

Related literature

For structures of 2-phenyl-1H-imidazolium salts, see: Xia et al. (2009[Xia, D.-C., Li, W.-C. & Han, S. (2009). Acta Cryst. E65, o3283.]); Xia & Yao (2010[Xia, D.-C. & Yao, J.-H. (2010). Acta Cryst. E66, o649.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2

  • Mr = 144.17

  • Orthorhombic, A m a 2

  • a = 10.0740 (15) Å

  • b = 18.151 (4) Å

  • c = 4.1562 (10) Å

  • V = 760.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.17 × 0.12 × 0.10 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 1776 measured reflections

  • 609 independent reflections

  • 304 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.095

  • S = 0.98

  • 609 reflections

  • 56 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯N1i 0.86 2.05 2.891 (3) 165
Symmetry code: (i) -x+2, -y+1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2-Phenylimidazole, as an important compound with potential N donor atom that may contribute in classical hydrogen bonding in generation of supramolecular assemblies. There are some crystal structure reports that show 2-phenylimidazole can be protonated (Xia et al., 2009; Xia & Yao, 2010).

The asymmetric unit of the title compound contains one half-molecule, a mirror plane passes through the C—C connecting two rings (Fig. 1). In this molecule the bond lengths and angles are within normal ranges. The imidazole and phenyl rings are nearly co-planar. The intermolecular N—H···N hydrogen bonds (Table 1) occurs in the crystal structure (Table 1).

Related literature top

For structures of 2-phenyl-1H-imidazolium salts, see: Xia et al. (2009); Xia & Yao (2010).

Experimental top

The title compound has been obtained during the stirring of 2-phenyl-1H-imidazole and aniline in 1:1 molar ration in methanol for synthesis of co-crystal of reagents. The suitable crystals for X-ray analysis were obtained by slow evaporation from methanol solution after one week (yield; 86.5%).

Refinement top

All of the H atoms were positioned geometrically with C—H = 0.93 and N—H = 0.86 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). The molecule is disordered over two sites in the crystal structure and H1B atom is in 50% occupancy. Friedel pairs were merged as no significant anomalous scatterings.

Structure description top

2-Phenylimidazole, as an important compound with potential N donor atom that may contribute in classical hydrogen bonding in generation of supramolecular assemblies. There are some crystal structure reports that show 2-phenylimidazole can be protonated (Xia et al., 2009; Xia & Yao, 2010).

The asymmetric unit of the title compound contains one half-molecule, a mirror plane passes through the C—C connecting two rings (Fig. 1). In this molecule the bond lengths and angles are within normal ranges. The imidazole and phenyl rings are nearly co-planar. The intermolecular N—H···N hydrogen bonds (Table 1) occurs in the crystal structure (Table 1).

For structures of 2-phenyl-1H-imidazolium salts, see: Xia et al. (2009); Xia & Yao (2010).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. Packing diagram.
2-Phenyl-1H-imidazole top
Crystal data top
C9H8N2F(000) = 304
Mr = 144.17Dx = 1.26 Mg m3
Orthorhombic, Ama2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2aCell parameters from 1776 reflections
a = 10.0740 (15) Åθ = 3.0–29.1°
b = 18.151 (4) ŵ = 0.08 mm1
c = 4.1562 (10) ÅT = 298 K
V = 760.0 (3) Å3Prism, colorless
Z = 40.17 × 0.12 × 0.10 mm
Data collection top
Stoe IPDS 2T
diffractometer
Rint = 0.082
Graphite monochromatorθmax = 29.1°, θmin = 3.0°
rotation method scansh = 1311
1776 measured reflectionsk = 1924
609 independent reflectionsl = 54
304 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0288P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
609 reflectionsΔρmax = 0.14 e Å3
56 parametersΔρmin = 0.09 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (3)
Crystal data top
C9H8N2V = 760.0 (3) Å3
Mr = 144.17Z = 4
Orthorhombic, Ama2Mo Kα radiation
a = 10.0740 (15) ŵ = 0.08 mm1
b = 18.151 (4) ÅT = 298 K
c = 4.1562 (10) Å0.17 × 0.12 × 0.10 mm
Data collection top
Stoe IPDS 2T
diffractometer
304 reflections with I > 2σ(I)
1776 measured reflectionsRint = 0.082
609 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.095H-atom parameters constrained
S = 0.98Δρmax = 0.14 e Å3
609 reflectionsΔρmin = 0.09 e Å3
56 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8165 (3)0.57694 (18)0.2820 (10)0.0683 (10)
H10.87050.61290.19110.082*
C20.750.4784 (3)0.5302 (10)0.0489 (13)
C30.750.4087 (3)0.7033 (11)0.0484 (12)
C40.6328 (3)0.3743 (2)0.7893 (9)0.0650 (9)
H40.55230.39650.73870.078*
C50.6329 (4)0.3080 (2)0.9474 (10)0.0778 (12)
H50.55280.28581.00150.093*
C60.750.2743 (3)1.0264 (15)0.0799 (17)
H60.750.22921.13230.096*
N10.8591 (2)0.51510 (13)0.4384 (6)0.0592 (8)
H1B0.94020.50220.47160.071*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0563 (17)0.0625 (19)0.086 (3)0.0063 (15)0.0075 (18)0.007 (2)
C20.038 (3)0.054 (3)0.055 (4)000.010 (3)
C30.044 (3)0.047 (2)0.054 (3)000.014 (3)
C40.0494 (18)0.069 (2)0.077 (2)0.0027 (18)0.001 (2)0.000 (2)
C50.080 (2)0.071 (2)0.082 (3)0.018 (2)0.002 (2)0.003 (3)
C60.111 (5)0.053 (3)0.076 (4)000.001 (3)
N10.0398 (15)0.0607 (16)0.0771 (18)0.0022 (14)0.0056 (15)0.0011 (19)
Geometric parameters (Å, º) top
C1—C1i1.339 (6)C4—C51.370 (5)
C1—N11.367 (4)C4—H40.93
C1—H10.93C5—C61.369 (4)
C2—N1i1.341 (3)C5—H50.93
C2—N11.341 (3)C6—C5i1.369 (4)
C2—C31.456 (6)C6—H60.93
C3—C4i1.383 (4)N1—H1B0.86
C3—C41.383 (4)
C1i—C1—N1108.34 (16)C3—C4—H4119.4
C1i—C1—H1125.8C6—C5—C4120.6 (4)
N1—C1—H1125.8C6—C5—H5119.7
N1i—C2—N1110.2 (4)C4—C5—H5119.7
N1i—C2—C3124.9 (2)C5—C6—C5i119.0 (5)
N1—C2—C3124.9 (2)C5—C6—H6120.5
C4i—C3—C4117.3 (4)C5i—C6—H6120.5
C4i—C3—C2121.4 (2)C2—N1—C1106.6 (3)
C4—C3—C2121.4 (2)C2—N1—H1B126.7
C5—C4—C3121.3 (4)C1—N1—H1B126.7
C5—C4—H4119.4
N1i—C2—C3—C4i180.0 (4)C3—C4—C5—C60.4 (6)
N1—C2—C3—C4i0.2 (6)C4—C5—C6—C5i0.5 (8)
N1i—C2—C3—C40.2 (6)N1i—C2—N1—C10.3 (5)
N1—C2—C3—C4180.0 (4)C3—C2—N1—C1179.5 (4)
C4i—C3—C4—C51.3 (6)C1i—C1—N1—C20.2 (3)
C2—C3—C4—C5178.9 (4)
Symmetry code: (i) x+3/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N1ii0.862.052.891 (3)165
Symmetry code: (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H8N2
Mr144.17
Crystal system, space groupOrthorhombic, Ama2
Temperature (K)298
a, b, c (Å)10.0740 (15), 18.151 (4), 4.1562 (10)
V3)760.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.17 × 0.12 × 0.10
Data collection
DiffractometerStoe IPDS 2T
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1776, 609, 304
Rint0.082
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.095, 0.98
No. of reflections609
No. of parameters56
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.09

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N1i0.862.052.891 (3)165
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

The authors wish to acknowledge Shahid Beheshti University, G·C, for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationXia, D.-C., Li, W.-C. & Han, S. (2009). Acta Cryst. E65, o3283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, D.-C. & Yao, J.-H. (2010). Acta Cryst. E66, o649.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds