organic compounds
rac-1,2,3,4-Tetrahydro-1,4-methanoanthracene-6,7-dicarbonitrile
aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw
The title compound, C17H12N2, comprises a norbornane unit having a dicyanonaphthalene ring fused on one side. Both cyano groups are twisted slightly out of the plane of the naphthalene ring system [C—C—C—C torsion angle = 1.9 (2)°]. In the crystal, inversion-related molecules are linked by pairs of weak C—H⋯N hydrogen bonds, forming dimers.
Related literature
For the spectroscopy of the title compound and its prepartion, see: Chen et al. (2006). For the spectroscopy and electronic device applications of rigid oligo-norbornyl compounds, see: Chen et al. (2002); Chow et al. (2005); Foitzik et al. (2009); Jansen et al. (2010); Tang et al. (2009). For related structures, see: Çelik et al. (2006); Chen et al. (2011); Lough et al. (2006). For puckering parameters, see: Cremer & Pople (1975). For graph-set theory, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811047611/xu5368sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811047611/xu5368Isup2.hkl
The title compound was synthesized according to the literature (Chen et al., 2006). Colorless needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of six weeks by slow evaporation from the chloroform solution.
The C bound H atoms positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Donor-acceptor chromophores linked by the rigid norbornane have been synthesized (Foitzik et al., 2009; Jansen et al., 2010; Tang et al., 2009). The highly symmetrical structures reduce the complexity due to the constraint of geometrical and conformational variations. The rates of
reactions across linearly fused oligo-norbornyl spacer groups have been estimated (Chen et al., 2002; Chow et al., 2005). The ET rates were found to correlate well with both D—A distance and solvent polarities. Atoms C11 and C14 of the title compound are chiral centers, but their relative configurations are opposite. The racemate was prepared as a model compound for investigations of the intramolecular reactions (Chen et al., 2006).The structure of the title compound comprises a norbornane unit having a dicyanonaphthalene ring fused on one side (Figure 1). The naphthalene is essentially planar with a maximum deviation of 0.039 (2)° for atom C5. Whereas both cyano groups are slightly twisted out of the plane of the naphthalene ring (1.9 (2)° of C17–C6–C5–C16). The puckering parameters (Cremer & Pople, 1975) of the five-membered rings A (C1/C10/C11/C15/C14) and B (C11–C15) are Q2 = 0.5621 (17)Å and φ2 = 287.97 (16)°, and Q2 = 0.6013 (17)Å and φ2 = 144.60 (16)°, respectively. These results are slightly different from those of previous studies on other norbornane derivatives (Çelik, et al., 2006; Chen, et al., 2011; Lough, et al., 2006). In the (Figure 2), inversion-related molecules are linked by a pair of C—H···N hydrogen bonds (Table 1), forming a cyclic dimers with R22(10) graph-set motif (Bernstein et al., 1995). The C—H···π interactions are also observed (2.81 Å of C13—H13B···Cg3 distance, symmetry code: -x, -y, -z + 1, where Cg3 is the centroid of the C1–C3/C8–C10 ring), and further stabilize the crystal structure.
For the spectroscopy of the title compound and its prepartion, see: Chen et al. (2006). For the spectroscopy and electronic device applications of rigid oligo-norbornyl compounds, see: Chen et al. (2002); Chow et al. (2005); Foitzik et al. (2009); Jansen et al. (2010); Tang et al. (2009). For related structures, see: Çelik et al. (2006); Chen et al. (2011); Lough et al. (2006). For puckering parameters, see: Cremer & Pople (1975). For graph-set theory, see: Bernstein et al. (1995).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C17H12N2 | Z = 2 |
Mr = 244.29 | F(000) = 256 |
Triclinic, P1 | Dx = 1.250 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.1019 (4) Å | Cell parameters from 2453 reflections |
b = 10.7078 (6) Å | θ = 3.5–29.1° |
c = 11.3928 (7) Å | µ = 0.08 mm−1 |
α = 65.173 (5)° | T = 297 K |
β = 84.768 (5)° | Parallelepiped, colorless |
γ = 73.900 (5)° | 0.64 × 0.52 × 0.48 mm |
V = 648.82 (7) Å3 |
Bruker SMART 1000 CCD detector diffractometer | 1707 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.020 |
Graphite monochromator | θmax = 29.2°, θmin = 3.5° |
ω scans | h = −8→8 |
5692 measured reflections | k = −14→14 |
2997 independent reflections | l = −14→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.050P)2] where P = (Fo2 + 2Fc2)/3 |
2997 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.14 e Å−3 |
1 restraint | Δρmin = −0.12 e Å−3 |
C17H12N2 | γ = 73.900 (5)° |
Mr = 244.29 | V = 648.82 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.1019 (4) Å | Mo Kα radiation |
b = 10.7078 (6) Å | µ = 0.08 mm−1 |
c = 11.3928 (7) Å | T = 297 K |
α = 65.173 (5)° | 0.64 × 0.52 × 0.48 mm |
β = 84.768 (5)° |
Bruker SMART 1000 CCD detector diffractometer | 1707 reflections with I > 2σ(I) |
5692 measured reflections | Rint = 0.020 |
2997 independent reflections |
R[F2 > 2σ(F2)] = 0.041 | 1 restraint |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.14 e Å−3 |
2997 reflections | Δρmin = −0.12 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.2097 (3) | 0.55552 (16) | 0.34283 (14) | 0.1097 (6) | |
N2 | −0.1343 (2) | 0.29042 (13) | 0.33818 (12) | 0.0842 (4) | |
C1 | 0.78769 (19) | −0.08604 (13) | 0.86297 (11) | 0.0499 (3) | |
C2 | 0.74313 (19) | 0.04981 (12) | 0.77112 (11) | 0.0502 (3) | |
H2A | 0.8289 | 0.1101 | 0.7692 | 0.060* | |
C3 | 0.56549 (19) | 0.09894 (12) | 0.67840 (11) | 0.0455 (3) | |
C4 | 0.5038 (2) | 0.24135 (12) | 0.58626 (11) | 0.0538 (3) | |
H4A | 0.5862 | 0.3034 | 0.5841 | 0.065* | |
C5 | 0.3264 (2) | 0.29073 (13) | 0.50013 (11) | 0.0534 (3) | |
C6 | 0.2009 (2) | 0.19691 (13) | 0.50028 (11) | 0.0502 (3) | |
C7 | 0.2591 (2) | 0.05771 (13) | 0.58871 (11) | 0.0516 (3) | |
H7A | 0.1780 | −0.0038 | 0.5879 | 0.062* | |
C8 | 0.43752 (19) | 0.00511 (12) | 0.68053 (10) | 0.0459 (3) | |
C9 | 0.4902 (2) | −0.13666 (12) | 0.77692 (11) | 0.0537 (3) | |
H9A | 0.4095 | −0.1996 | 0.7790 | 0.064* | |
C10 | 0.6589 (2) | −0.17993 (12) | 0.86607 (11) | 0.0521 (3) | |
C11 | 0.7439 (2) | −0.31536 (13) | 0.98405 (12) | 0.0652 (4) | |
H11A | 0.7136 | −0.4008 | 0.9845 | 0.078* | |
C12 | 0.6585 (2) | −0.28095 (14) | 1.10178 (12) | 0.0680 (4) | |
H12A | 0.4960 | −0.2353 | 1.0934 | 0.082* | |
H12B | 0.6900 | −0.3666 | 1.1818 | 0.082* | |
C13 | 0.7968 (2) | −0.17846 (14) | 1.09723 (12) | 0.0628 (4) | |
H13A | 0.8894 | −0.2172 | 1.1757 | 0.075* | |
H13B | 0.6968 | −0.0861 | 1.0861 | 0.075* | |
C14 | 0.9474 (2) | −0.16675 (13) | 0.97878 (12) | 0.0596 (3) | |
H14A | 1.0812 | −0.1317 | 0.9752 | 0.071* | |
C15 | 0.9970 (3) | −0.31873 (14) | 0.98683 (14) | 0.0739 (4) | |
H15A | 1.0779 | −0.3294 | 0.9128 | 0.089* | |
H15B | 1.0768 | −0.3906 | 1.0666 | 0.089* | |
C16 | 0.2613 (2) | 0.43837 (17) | 0.41097 (14) | 0.0729 (4) | |
C17 | 0.0154 (2) | 0.24891 (14) | 0.40941 (13) | 0.0598 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.1226 (13) | 0.0715 (9) | 0.1080 (11) | −0.0383 (8) | −0.0460 (10) | 0.0062 (8) |
N2 | 0.0804 (9) | 0.1061 (10) | 0.0719 (8) | −0.0326 (8) | −0.0084 (7) | −0.0352 (8) |
C1 | 0.0473 (7) | 0.0524 (7) | 0.0519 (7) | −0.0076 (6) | 0.0070 (6) | −0.0279 (6) |
C2 | 0.0455 (7) | 0.0567 (8) | 0.0545 (7) | −0.0178 (6) | 0.0066 (6) | −0.0271 (6) |
C3 | 0.0461 (7) | 0.0493 (7) | 0.0457 (7) | −0.0166 (5) | 0.0097 (5) | −0.0232 (6) |
C4 | 0.0584 (8) | 0.0549 (8) | 0.0534 (7) | −0.0280 (6) | 0.0069 (6) | −0.0202 (6) |
C5 | 0.0573 (8) | 0.0543 (8) | 0.0482 (7) | −0.0205 (6) | 0.0036 (6) | −0.0174 (6) |
C6 | 0.0545 (7) | 0.0589 (8) | 0.0437 (7) | −0.0201 (6) | 0.0072 (5) | −0.0250 (6) |
C7 | 0.0593 (8) | 0.0613 (8) | 0.0492 (7) | −0.0277 (6) | 0.0091 (6) | −0.0313 (7) |
C8 | 0.0522 (7) | 0.0497 (7) | 0.0446 (7) | −0.0177 (5) | 0.0104 (6) | −0.0270 (6) |
C9 | 0.0672 (9) | 0.0491 (7) | 0.0563 (8) | −0.0232 (6) | 0.0096 (7) | −0.0292 (6) |
C10 | 0.0610 (8) | 0.0454 (7) | 0.0526 (7) | −0.0091 (6) | 0.0064 (6) | −0.0267 (6) |
C11 | 0.0831 (11) | 0.0438 (7) | 0.0639 (9) | −0.0080 (6) | −0.0018 (7) | −0.0222 (6) |
C12 | 0.0800 (10) | 0.0589 (8) | 0.0550 (8) | −0.0135 (7) | 0.0037 (7) | −0.0173 (7) |
C13 | 0.0669 (9) | 0.0625 (8) | 0.0546 (8) | −0.0064 (7) | −0.0032 (6) | −0.0256 (7) |
C14 | 0.0512 (8) | 0.0602 (8) | 0.0626 (8) | −0.0024 (6) | −0.0016 (6) | −0.0280 (7) |
C15 | 0.0777 (11) | 0.0603 (9) | 0.0685 (9) | 0.0089 (7) | −0.0018 (7) | −0.0284 (7) |
C16 | 0.0760 (11) | 0.0660 (10) | 0.0707 (10) | −0.0296 (8) | −0.0158 (8) | −0.0122 (8) |
C17 | 0.0626 (8) | 0.0724 (9) | 0.0521 (8) | −0.0266 (7) | 0.0038 (6) | −0.0279 (7) |
N1—C16 | 1.1327 (16) | C8—C9 | 1.4169 (15) |
N2—C17 | 1.1390 (14) | C9—C10 | 1.3557 (15) |
C1—C2 | 1.3562 (15) | C9—H9A | 0.9300 |
C1—C10 | 1.4256 (16) | C10—C11 | 1.5006 (16) |
C1—C14 | 1.4990 (16) | C11—C15 | 1.5380 (19) |
C2—C3 | 1.4119 (15) | C11—C12 | 1.5450 (17) |
C2—H2A | 0.9300 | C11—H11A | 0.9800 |
C3—C4 | 1.4065 (15) | C12—C13 | 1.5414 (19) |
C3—C8 | 1.4252 (15) | C12—H12A | 0.9700 |
C4—C5 | 1.3616 (16) | C12—H12B | 0.9700 |
C4—H4A | 0.9300 | C13—C14 | 1.5419 (18) |
C5—C6 | 1.4213 (16) | C13—H13A | 0.9700 |
C5—C16 | 1.4373 (19) | C13—H13B | 0.9700 |
C6—C7 | 1.3687 (16) | C14—C15 | 1.5346 (18) |
C6—C17 | 1.4296 (18) | C14—H14A | 0.9800 |
C7—C8 | 1.4035 (15) | C15—H15A | 0.9700 |
C7—H7A | 0.9300 | C15—H15B | 0.9700 |
C2—C1—C10 | 120.79 (10) | C10—C11—C12 | 106.33 (9) |
C2—C1—C14 | 132.93 (11) | C15—C11—C12 | 100.68 (11) |
C10—C1—C14 | 106.15 (11) | C10—C11—H11A | 115.7 |
C1—C2—C3 | 119.46 (11) | C15—C11—H11A | 115.7 |
C1—C2—H2A | 120.3 | C12—C11—H11A | 115.7 |
C3—C2—H2A | 120.3 | C13—C12—C11 | 103.09 (11) |
C2—C3—C4 | 121.51 (10) | C13—C12—H12A | 111.1 |
C2—C3—C8 | 119.94 (11) | C11—C12—H12A | 111.1 |
C4—C3—C8 | 118.49 (10) | C13—C12—H12B | 111.1 |
C5—C4—C3 | 121.73 (11) | C11—C12—H12B | 111.1 |
C5—C4—H4A | 119.1 | H12A—C12—H12B | 109.1 |
C3—C4—H4A | 119.1 | C12—C13—C14 | 103.60 (10) |
C4—C5—C6 | 119.99 (11) | C12—C13—H13A | 111.0 |
C4—C5—C16 | 120.35 (11) | C14—C13—H13A | 111.0 |
C6—C5—C16 | 119.63 (11) | C12—C13—H13B | 111.0 |
C7—C6—C17 | 120.93 (11) | C14—C13—H13B | 111.0 |
C7—C6—C5 | 119.19 (10) | H13A—C13—H13B | 109.0 |
C17—C6—C5 | 119.87 (11) | C1—C14—C13 | 105.82 (10) |
C6—C7—C8 | 121.89 (10) | C1—C14—C15 | 100.52 (10) |
C6—C7—H7A | 119.1 | C13—C14—C15 | 100.81 (11) |
C8—C7—H7A | 119.1 | C1—C14—H14A | 115.8 |
C7—C8—C9 | 122.15 (10) | C13—C14—H14A | 115.8 |
C7—C8—C3 | 118.67 (10) | C15—C14—H14A | 115.8 |
C9—C8—C3 | 119.17 (10) | C11—C15—C14 | 94.37 (10) |
C10—C9—C8 | 119.52 (11) | C11—C15—H15A | 112.9 |
C10—C9—H9A | 120.2 | C14—C15—H15A | 112.9 |
C8—C9—H9A | 120.2 | C11—C15—H15B | 112.9 |
C9—C10—C1 | 121.11 (11) | C14—C15—H15B | 112.9 |
C9—C10—C11 | 132.89 (12) | H15A—C15—H15B | 110.3 |
C1—C10—C11 | 105.90 (10) | N1—C16—C5 | 178.55 (15) |
C10—C11—C15 | 100.49 (11) | N2—C17—C6 | 179.15 (14) |
C10—C1—C2—C3 | 0.63 (16) | C8—C9—C10—C11 | 174.59 (11) |
C14—C1—C2—C3 | −174.57 (11) | C2—C1—C10—C9 | 0.59 (17) |
C1—C2—C3—C4 | 176.05 (10) | C14—C1—C10—C9 | 176.93 (10) |
C1—C2—C3—C8 | −1.11 (16) | C2—C1—C10—C11 | −176.27 (10) |
C2—C3—C4—C5 | −177.21 (11) | C14—C1—C10—C11 | 0.07 (12) |
C8—C3—C4—C5 | 0.00 (16) | C9—C10—C11—C15 | 149.70 (13) |
C3—C4—C5—C6 | −1.17 (18) | C1—C10—C11—C15 | −33.97 (12) |
C3—C4—C5—C16 | 177.24 (11) | C9—C10—C11—C12 | −105.79 (15) |
C4—C5—C6—C7 | 0.78 (17) | C1—C10—C11—C12 | 70.54 (13) |
C16—C5—C6—C7 | −177.64 (11) | C10—C11—C12—C13 | −68.26 (13) |
C4—C5—C6—C17 | −179.75 (11) | C15—C11—C12—C13 | 36.12 (12) |
C16—C5—C6—C17 | 1.83 (18) | C11—C12—C13—C14 | −0.59 (12) |
C17—C6—C7—C8 | −178.66 (11) | C2—C1—C14—C13 | 105.11 (14) |
C5—C6—C7—C8 | 0.80 (17) | C10—C1—C14—C13 | −70.59 (11) |
C6—C7—C8—C9 | 176.37 (10) | C2—C1—C14—C15 | −150.36 (13) |
C6—C7—C8—C3 | −1.95 (16) | C10—C1—C14—C15 | 33.94 (13) |
C2—C3—C8—C7 | 178.78 (10) | C12—C13—C14—C1 | 69.09 (12) |
C4—C3—C8—C7 | 1.53 (15) | C12—C13—C14—C15 | −35.23 (12) |
C2—C3—C8—C9 | 0.42 (15) | C10—C11—C15—C14 | 52.20 (11) |
C4—C3—C8—C9 | −176.84 (10) | C12—C11—C15—C14 | −56.81 (11) |
C7—C8—C9—C10 | −177.53 (11) | C1—C14—C15—C11 | −52.13 (12) |
C3—C8—C9—C10 | 0.78 (16) | C13—C14—C15—C11 | 56.39 (11) |
C8—C9—C10—C1 | −1.29 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···N1i | 0.93 | 2.61 | 3.505 (2) | 162 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C17H12N2 |
Mr | 244.29 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 297 |
a, b, c (Å) | 6.1019 (4), 10.7078 (6), 11.3928 (7) |
α, β, γ (°) | 65.173 (5), 84.768 (5), 73.900 (5) |
V (Å3) | 648.82 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.64 × 0.52 × 0.48 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5692, 2997, 1707 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.102, 1.00 |
No. of reflections | 2997 |
No. of parameters | 172 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.12 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···N1i | 0.93 | 2.61 | 3.505 (2) | 162 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported by the National Science Council (NSC 99–2113-M-035–001-MY2) and Feng Chia University in Taiwan.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Çelik, Í., Ersanlı, C. C., Akkurt, M., Daştan, A. & García-Granda, S. (2006). Acta Cryst. E62, o3483–o3485. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chen, K.-Y., Chang, M.-J. & Fang, T.-C. (2011). Acta Cryst. E67, o1147. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115–8119. Web of Science CrossRef CAS Google Scholar
Chen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136–12144. Web of Science CrossRef PubMed CAS Google Scholar
Chow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967–6975. Web of Science CSD CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Foitzik, R. C., Lowe, A. J. & Pfeffer, F. M. (2009). Tetrahedron Lett. 50, 2583–2584. Web of Science CrossRef CAS Google Scholar
Jansen, G., Kahlert, B., Klärner, F.-G., Boese, R. & Bläser, D. (2010). J. Am. Chem. Soc. 132, 8581–8592. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lough, A. J., Villeneuve, K. & Tam, W. (2006). Acta Cryst. E62, o2846–o2847. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tang, H., Dong, Z., Merican, Z., Margetić, D., Marinić, Z., Gunter, M. J., Officer, D., Butler, D. N. & Warrener, R. N. (2009). Tetrahedron Lett. 50, 667–670. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Donor-acceptor chromophores linked by the rigid norbornane have been synthesized (Foitzik et al., 2009; Jansen et al., 2010; Tang et al., 2009). The highly symmetrical structures reduce the complexity due to the constraint of geometrical and conformational variations. The rates of photoinduced electron transfer reactions across linearly fused oligo-norbornyl spacer groups have been estimated (Chen et al., 2002; Chow et al., 2005). The ET rates were found to correlate well with both D—A distance and solvent polarities. Atoms C11 and C14 of the title compound are chiral centers, but their relative configurations are opposite. The racemate was prepared as a model compound for investigations of the intramolecular electron transfer reactions (Chen et al., 2006).
The structure of the title compound comprises a norbornane unit having a dicyanonaphthalene ring fused on one side (Figure 1). The naphthalene is essentially planar with a maximum deviation of 0.039 (2)° for atom C5. Whereas both cyano groups are slightly twisted out of the plane of the naphthalene ring (1.9 (2)° of C17–C6–C5–C16). The puckering parameters (Cremer & Pople, 1975) of the five-membered rings A (C1/C10/C11/C15/C14) and B (C11–C15) are Q2 = 0.5621 (17)Å and φ2 = 287.97 (16)°, and Q2 = 0.6013 (17)Å and φ2 = 144.60 (16)°, respectively. These results are slightly different from those of previous studies on other norbornane derivatives (Çelik, et al., 2006; Chen, et al., 2011; Lough, et al., 2006). In the crystal structure (Figure 2), inversion-related molecules are linked by a pair of C—H···N hydrogen bonds (Table 1), forming a cyclic dimers with R22(10) graph-set motif (Bernstein et al., 1995). The C—H···π interactions are also observed (2.81 Å of C13—H13B···Cg3 distance, symmetry code: -x, -y, -z + 1, where Cg3 is the centroid of the C1–C3/C8–C10 ring), and further stabilize the crystal structure.