organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-1,2,3,4-Tetra­hydro-1,4-methano­anthracene-6,7-dicarbo­nitrile

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 26 October 2011; accepted 10 November 2011; online 16 November 2011)

The title compound, C17H12N2, comprises a norbornane unit having a dicyanona­phthalene ring fused on one side. Both cyano groups are twisted slightly out of the plane of the naphthalene ring system [C—C—C—C torsion angle = 1.9 (2)°]. In the crystal, inversion-related mol­ecules are linked by pairs of weak C—H⋯N hydrogen bonds, forming dimers.

Related literature

For the spectroscopy of the title compound and its prepartion, see: Chen et al. (2006[Chen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136-12144.]). For the spectroscopy and electronic device applications of rigid oligo-norbornyl compounds, see: Chen et al. (2002[Chen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115-8119.]); Chow et al. (2005[Chow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967-6975.]); Foitzik et al. (2009[Foitzik, R. C., Lowe, A. J. & Pfeffer, F. M. (2009). Tetrahedron Lett. 50, 2583-2584.]); Jansen et al. (2010[Jansen, G., Kahlert, B., Klärner, F.-G., Boese, R. & Bläser, D. (2010). J. Am. Chem. Soc. 132, 8581-8592.]); Tang et al. (2009[Tang, H., Dong, Z., Merican, Z., Margetić, D., Marinić, Z., Gunter, M. J., Officer, D., Butler, D. N. & Warrener, R. N. (2009). Tetrahedron Lett. 50, 667-670.]). For related structures, see: Çelik et al. (2006[Çelik, Í., Ersanlı, C. C., Akkurt, M., Daştan, A. & García-Granda, S. (2006). Acta Cryst. E62, o3483-o3485.]); Chen et al. (2011[Chen, K.-Y., Chang, M.-J. & Fang, T.-C. (2011). Acta Cryst. E67, o1147.]); Lough et al. (2006[Lough, A. J., Villeneuve, K. & Tam, W. (2006). Acta Cryst. E62, o2846-o2847.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N2

  • Mr = 244.29

  • Triclinic, [P \overline 1]

  • a = 6.1019 (4) Å

  • b = 10.7078 (6) Å

  • c = 11.3928 (7) Å

  • α = 65.173 (5)°

  • β = 84.768 (5)°

  • γ = 73.900 (5)°

  • V = 648.82 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 297 K

  • 0.64 × 0.52 × 0.48 mm

Data collection
  • Bruker SMART 1000 CCD detector diffractometer

  • 5692 measured reflections

  • 2997 independent reflections

  • 1707 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.102

  • S = 1.00

  • 2997 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N1i 0.93 2.61 3.505 (2) 162
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Donor-acceptor chromophores linked by the rigid norbornane have been synthesized (Foitzik et al., 2009; Jansen et al., 2010; Tang et al., 2009). The highly symmetrical structures reduce the complexity due to the constraint of geometrical and conformational variations. The rates of photoinduced electron transfer reactions across linearly fused oligo-norbornyl spacer groups have been estimated (Chen et al., 2002; Chow et al., 2005). The ET rates were found to correlate well with both D—A distance and solvent polarities. Atoms C11 and C14 of the title compound are chiral centers, but their relative configurations are opposite. The racemate was prepared as a model compound for investigations of the intramolecular electron transfer reactions (Chen et al., 2006).

The structure of the title compound comprises a norbornane unit having a dicyanonaphthalene ring fused on one side (Figure 1). The naphthalene is essentially planar with a maximum deviation of 0.039 (2)° for atom C5. Whereas both cyano groups are slightly twisted out of the plane of the naphthalene ring (1.9 (2)° of C17–C6–C5–C16). The puckering parameters (Cremer & Pople, 1975) of the five-membered rings A (C1/C10/C11/C15/C14) and B (C11–C15) are Q2 = 0.5621 (17)Å and φ2 = 287.97 (16)°, and Q2 = 0.6013 (17)Å and φ2 = 144.60 (16)°, respectively. These results are slightly different from those of previous studies on other norbornane derivatives (Çelik, et al., 2006; Chen, et al., 2011; Lough, et al., 2006). In the crystal structure (Figure 2), inversion-related molecules are linked by a pair of C—H···N hydrogen bonds (Table 1), forming a cyclic dimers with R22(10) graph-set motif (Bernstein et al., 1995). The C—H···π interactions are also observed (2.81 Å of C13—H13B···Cg3 distance, symmetry code: -x, -y, -z + 1, where Cg3 is the centroid of the C1–C3/C8–C10 ring), and further stabilize the crystal structure.

Related literature top

For the spectroscopy of the title compound and its prepartion, see: Chen et al. (2006). For the spectroscopy and electronic device applications of rigid oligo-norbornyl compounds, see: Chen et al. (2002); Chow et al. (2005); Foitzik et al. (2009); Jansen et al. (2010); Tang et al. (2009). For related structures, see: Çelik et al. (2006); Chen et al. (2011); Lough et al. (2006). For puckering parameters, see: Cremer & Pople (1975). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to the literature (Chen et al., 2006). Colorless needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of six weeks by slow evaporation from the chloroform solution.

Refinement top

The C bound H atoms positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Donor-acceptor chromophores linked by the rigid norbornane have been synthesized (Foitzik et al., 2009; Jansen et al., 2010; Tang et al., 2009). The highly symmetrical structures reduce the complexity due to the constraint of geometrical and conformational variations. The rates of photoinduced electron transfer reactions across linearly fused oligo-norbornyl spacer groups have been estimated (Chen et al., 2002; Chow et al., 2005). The ET rates were found to correlate well with both D—A distance and solvent polarities. Atoms C11 and C14 of the title compound are chiral centers, but their relative configurations are opposite. The racemate was prepared as a model compound for investigations of the intramolecular electron transfer reactions (Chen et al., 2006).

The structure of the title compound comprises a norbornane unit having a dicyanonaphthalene ring fused on one side (Figure 1). The naphthalene is essentially planar with a maximum deviation of 0.039 (2)° for atom C5. Whereas both cyano groups are slightly twisted out of the plane of the naphthalene ring (1.9 (2)° of C17–C6–C5–C16). The puckering parameters (Cremer & Pople, 1975) of the five-membered rings A (C1/C10/C11/C15/C14) and B (C11–C15) are Q2 = 0.5621 (17)Å and φ2 = 287.97 (16)°, and Q2 = 0.6013 (17)Å and φ2 = 144.60 (16)°, respectively. These results are slightly different from those of previous studies on other norbornane derivatives (Çelik, et al., 2006; Chen, et al., 2011; Lough, et al., 2006). In the crystal structure (Figure 2), inversion-related molecules are linked by a pair of C—H···N hydrogen bonds (Table 1), forming a cyclic dimers with R22(10) graph-set motif (Bernstein et al., 1995). The C—H···π interactions are also observed (2.81 Å of C13—H13B···Cg3 distance, symmetry code: -x, -y, -z + 1, where Cg3 is the centroid of the C1–C3/C8–C10 ring), and further stabilize the crystal structure.

For the spectroscopy of the title compound and its prepartion, see: Chen et al. (2006). For the spectroscopy and electronic device applications of rigid oligo-norbornyl compounds, see: Chen et al. (2002); Chow et al. (2005); Foitzik et al. (2009); Jansen et al. (2010); Tang et al. (2009). For related structures, see: Çelik et al. (2006); Chen et al. (2011); Lough et al. (2006). For puckering parameters, see: Cremer & Pople (1975). For graph-set theory, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed down the b axis. Green dashed lines denote the intermolecular C—H···N hydrogen bonds.
1,2,3,4-Tetrahydro-1,4-methanoanthracene-6,7-dicarbonitrile top
Crystal data top
C17H12N2Z = 2
Mr = 244.29F(000) = 256
Triclinic, P1Dx = 1.250 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1019 (4) ÅCell parameters from 2453 reflections
b = 10.7078 (6) Åθ = 3.5–29.1°
c = 11.3928 (7) ŵ = 0.08 mm1
α = 65.173 (5)°T = 297 K
β = 84.768 (5)°Parallelepiped, colorless
γ = 73.900 (5)°0.64 × 0.52 × 0.48 mm
V = 648.82 (7) Å3
Data collection top
Bruker SMART 1000 CCD detector
diffractometer
1707 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 29.2°, θmin = 3.5°
ω scansh = 88
5692 measured reflectionsk = 1414
2997 independent reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
2997 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C17H12N2γ = 73.900 (5)°
Mr = 244.29V = 648.82 (7) Å3
Triclinic, P1Z = 2
a = 6.1019 (4) ÅMo Kα radiation
b = 10.7078 (6) ŵ = 0.08 mm1
c = 11.3928 (7) ÅT = 297 K
α = 65.173 (5)°0.64 × 0.52 × 0.48 mm
β = 84.768 (5)°
Data collection top
Bruker SMART 1000 CCD detector
diffractometer
1707 reflections with I > 2σ(I)
5692 measured reflectionsRint = 0.020
2997 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.102H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
2997 reflectionsΔρmin = 0.12 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2097 (3)0.55552 (16)0.34283 (14)0.1097 (6)
N20.1343 (2)0.29042 (13)0.33818 (12)0.0842 (4)
C10.78769 (19)0.08604 (13)0.86297 (11)0.0499 (3)
C20.74313 (19)0.04981 (12)0.77112 (11)0.0502 (3)
H2A0.82890.11010.76920.060*
C30.56549 (19)0.09894 (12)0.67840 (11)0.0455 (3)
C40.5038 (2)0.24135 (12)0.58626 (11)0.0538 (3)
H4A0.58620.30340.58410.065*
C50.3264 (2)0.29073 (13)0.50013 (11)0.0534 (3)
C60.2009 (2)0.19691 (13)0.50028 (11)0.0502 (3)
C70.2591 (2)0.05771 (13)0.58871 (11)0.0516 (3)
H7A0.17800.00380.58790.062*
C80.43752 (19)0.00511 (12)0.68053 (10)0.0459 (3)
C90.4902 (2)0.13666 (12)0.77692 (11)0.0537 (3)
H9A0.40950.19960.77900.064*
C100.6589 (2)0.17993 (12)0.86607 (11)0.0521 (3)
C110.7439 (2)0.31536 (13)0.98405 (12)0.0652 (4)
H11A0.71360.40080.98450.078*
C120.6585 (2)0.28095 (14)1.10178 (12)0.0680 (4)
H12A0.49600.23531.09340.082*
H12B0.69000.36661.18180.082*
C130.7968 (2)0.17846 (14)1.09723 (12)0.0628 (4)
H13A0.88940.21721.17570.075*
H13B0.69680.08611.08610.075*
C140.9474 (2)0.16675 (13)0.97878 (12)0.0596 (3)
H14A1.08120.13170.97520.071*
C150.9970 (3)0.31873 (14)0.98683 (14)0.0739 (4)
H15A1.07790.32940.91280.089*
H15B1.07680.39061.06660.089*
C160.2613 (2)0.43837 (17)0.41097 (14)0.0729 (4)
C170.0154 (2)0.24891 (14)0.40941 (13)0.0598 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.1226 (13)0.0715 (9)0.1080 (11)0.0383 (8)0.0460 (10)0.0062 (8)
N20.0804 (9)0.1061 (10)0.0719 (8)0.0326 (8)0.0084 (7)0.0352 (8)
C10.0473 (7)0.0524 (7)0.0519 (7)0.0076 (6)0.0070 (6)0.0279 (6)
C20.0455 (7)0.0567 (8)0.0545 (7)0.0178 (6)0.0066 (6)0.0271 (6)
C30.0461 (7)0.0493 (7)0.0457 (7)0.0166 (5)0.0097 (5)0.0232 (6)
C40.0584 (8)0.0549 (8)0.0534 (7)0.0280 (6)0.0069 (6)0.0202 (6)
C50.0573 (8)0.0543 (8)0.0482 (7)0.0205 (6)0.0036 (6)0.0174 (6)
C60.0545 (7)0.0589 (8)0.0437 (7)0.0201 (6)0.0072 (5)0.0250 (6)
C70.0593 (8)0.0613 (8)0.0492 (7)0.0277 (6)0.0091 (6)0.0313 (7)
C80.0522 (7)0.0497 (7)0.0446 (7)0.0177 (5)0.0104 (6)0.0270 (6)
C90.0672 (9)0.0491 (7)0.0563 (8)0.0232 (6)0.0096 (7)0.0292 (6)
C100.0610 (8)0.0454 (7)0.0526 (7)0.0091 (6)0.0064 (6)0.0267 (6)
C110.0831 (11)0.0438 (7)0.0639 (9)0.0080 (6)0.0018 (7)0.0222 (6)
C120.0800 (10)0.0589 (8)0.0550 (8)0.0135 (7)0.0037 (7)0.0173 (7)
C130.0669 (9)0.0625 (8)0.0546 (8)0.0064 (7)0.0032 (6)0.0256 (7)
C140.0512 (8)0.0602 (8)0.0626 (8)0.0024 (6)0.0016 (6)0.0280 (7)
C150.0777 (11)0.0603 (9)0.0685 (9)0.0089 (7)0.0018 (7)0.0284 (7)
C160.0760 (11)0.0660 (10)0.0707 (10)0.0296 (8)0.0158 (8)0.0122 (8)
C170.0626 (8)0.0724 (9)0.0521 (8)0.0266 (7)0.0038 (6)0.0279 (7)
Geometric parameters (Å, º) top
N1—C161.1327 (16)C8—C91.4169 (15)
N2—C171.1390 (14)C9—C101.3557 (15)
C1—C21.3562 (15)C9—H9A0.9300
C1—C101.4256 (16)C10—C111.5006 (16)
C1—C141.4990 (16)C11—C151.5380 (19)
C2—C31.4119 (15)C11—C121.5450 (17)
C2—H2A0.9300C11—H11A0.9800
C3—C41.4065 (15)C12—C131.5414 (19)
C3—C81.4252 (15)C12—H12A0.9700
C4—C51.3616 (16)C12—H12B0.9700
C4—H4A0.9300C13—C141.5419 (18)
C5—C61.4213 (16)C13—H13A0.9700
C5—C161.4373 (19)C13—H13B0.9700
C6—C71.3687 (16)C14—C151.5346 (18)
C6—C171.4296 (18)C14—H14A0.9800
C7—C81.4035 (15)C15—H15A0.9700
C7—H7A0.9300C15—H15B0.9700
C2—C1—C10120.79 (10)C10—C11—C12106.33 (9)
C2—C1—C14132.93 (11)C15—C11—C12100.68 (11)
C10—C1—C14106.15 (11)C10—C11—H11A115.7
C1—C2—C3119.46 (11)C15—C11—H11A115.7
C1—C2—H2A120.3C12—C11—H11A115.7
C3—C2—H2A120.3C13—C12—C11103.09 (11)
C2—C3—C4121.51 (10)C13—C12—H12A111.1
C2—C3—C8119.94 (11)C11—C12—H12A111.1
C4—C3—C8118.49 (10)C13—C12—H12B111.1
C5—C4—C3121.73 (11)C11—C12—H12B111.1
C5—C4—H4A119.1H12A—C12—H12B109.1
C3—C4—H4A119.1C12—C13—C14103.60 (10)
C4—C5—C6119.99 (11)C12—C13—H13A111.0
C4—C5—C16120.35 (11)C14—C13—H13A111.0
C6—C5—C16119.63 (11)C12—C13—H13B111.0
C7—C6—C17120.93 (11)C14—C13—H13B111.0
C7—C6—C5119.19 (10)H13A—C13—H13B109.0
C17—C6—C5119.87 (11)C1—C14—C13105.82 (10)
C6—C7—C8121.89 (10)C1—C14—C15100.52 (10)
C6—C7—H7A119.1C13—C14—C15100.81 (11)
C8—C7—H7A119.1C1—C14—H14A115.8
C7—C8—C9122.15 (10)C13—C14—H14A115.8
C7—C8—C3118.67 (10)C15—C14—H14A115.8
C9—C8—C3119.17 (10)C11—C15—C1494.37 (10)
C10—C9—C8119.52 (11)C11—C15—H15A112.9
C10—C9—H9A120.2C14—C15—H15A112.9
C8—C9—H9A120.2C11—C15—H15B112.9
C9—C10—C1121.11 (11)C14—C15—H15B112.9
C9—C10—C11132.89 (12)H15A—C15—H15B110.3
C1—C10—C11105.90 (10)N1—C16—C5178.55 (15)
C10—C11—C15100.49 (11)N2—C17—C6179.15 (14)
C10—C1—C2—C30.63 (16)C8—C9—C10—C11174.59 (11)
C14—C1—C2—C3174.57 (11)C2—C1—C10—C90.59 (17)
C1—C2—C3—C4176.05 (10)C14—C1—C10—C9176.93 (10)
C1—C2—C3—C81.11 (16)C2—C1—C10—C11176.27 (10)
C2—C3—C4—C5177.21 (11)C14—C1—C10—C110.07 (12)
C8—C3—C4—C50.00 (16)C9—C10—C11—C15149.70 (13)
C3—C4—C5—C61.17 (18)C1—C10—C11—C1533.97 (12)
C3—C4—C5—C16177.24 (11)C9—C10—C11—C12105.79 (15)
C4—C5—C6—C70.78 (17)C1—C10—C11—C1270.54 (13)
C16—C5—C6—C7177.64 (11)C10—C11—C12—C1368.26 (13)
C4—C5—C6—C17179.75 (11)C15—C11—C12—C1336.12 (12)
C16—C5—C6—C171.83 (18)C11—C12—C13—C140.59 (12)
C17—C6—C7—C8178.66 (11)C2—C1—C14—C13105.11 (14)
C5—C6—C7—C80.80 (17)C10—C1—C14—C1370.59 (11)
C6—C7—C8—C9176.37 (10)C2—C1—C14—C15150.36 (13)
C6—C7—C8—C31.95 (16)C10—C1—C14—C1533.94 (13)
C2—C3—C8—C7178.78 (10)C12—C13—C14—C169.09 (12)
C4—C3—C8—C71.53 (15)C12—C13—C14—C1535.23 (12)
C2—C3—C8—C90.42 (15)C10—C11—C15—C1452.20 (11)
C4—C3—C8—C9176.84 (10)C12—C11—C15—C1456.81 (11)
C7—C8—C9—C10177.53 (11)C1—C14—C15—C1152.13 (12)
C3—C8—C9—C100.78 (16)C13—C14—C15—C1156.39 (11)
C8—C9—C10—C11.29 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N1i0.932.613.505 (2)162
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H12N2
Mr244.29
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)6.1019 (4), 10.7078 (6), 11.3928 (7)
α, β, γ (°)65.173 (5), 84.768 (5), 73.900 (5)
V3)648.82 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.64 × 0.52 × 0.48
Data collection
DiffractometerBruker SMART 1000 CCD detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5692, 2997, 1707
Rint0.020
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.00
No. of reflections2997
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N1i0.932.613.505 (2)162
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the National Science Council (NSC 99–2113-M-035–001-MY2) and Feng Chia University in Taiwan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, Í., Ersanlı, C. C., Akkurt, M., Daştan, A. & García-Granda, S. (2006). Acta Cryst. E62, o3483–o3485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, K.-Y., Chang, M.-J. & Fang, T.-C. (2011). Acta Cryst. E67, o1147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115–8119.  Web of Science CrossRef CAS Google Scholar
First citationChen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136–12144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967–6975.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFoitzik, R. C., Lowe, A. J. & Pfeffer, F. M. (2009). Tetrahedron Lett. 50, 2583–2584.  Web of Science CrossRef CAS Google Scholar
First citationJansen, G., Kahlert, B., Klärner, F.-G., Boese, R. & Bläser, D. (2010). J. Am. Chem. Soc. 132, 8581–8592.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLough, A. J., Villeneuve, K. & Tam, W. (2006). Acta Cryst. E62, o2846–o2847.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, H., Dong, Z., Merican, Z., Margetić, D., Marinić, Z., Gunter, M. J., Officer, D., Butler, D. N. & Warrener, R. N. (2009). Tetrahedron Lett. 50, 667–670.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds