organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Hy­dr­oxy-4-methyl-8-(3-methyl­benzo­yl)-2H-chromen-2-one ethanol monosolvate

aCollege of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and bCollege of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China
*Correspondence e-mail: spyang69320@yahoo.cn

(Received 28 October 2011; accepted 5 November 2011; online 9 November 2011)

In the title compound, C18H14O4·C2H6O, the coumarin ring system is approximately planar with a maximum deviation of 0.037 (3) Å and is nearly perpendicular to the benzene ring, making a dihedral angle of 86.55 (9)°. In the crystal, mol­ecules are linked by classical O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions.

Related literature

For the biological activity of coumarins, see: Sharma et al. (2005[Sharma, S. D., Rajor, H. K., Chopra, S. & Sharma, R. K. (2005). Biometals, 18, 143-154.]); Xiao et al. (2010[Xiao, C.-F., Tao, L.-Y., Sun, H.-Y., Wei, W., Chen, Y., Fu, L.-W. & Zou, Y. (2010). Chin. Chem. Lett. 21, 1295-1298.]); Iqbal et al. (2009[Iqbal, P. F., Bhat, A. R. & Azam, A. (2009). Eur. J. Med. Chem. 44, 2252-2259.]); Siddiqui et al. (2009[Siddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161-167.]); Rollinger et al. (2004[Rollinger, J. M., Hornick, A., Langer, T., Stuppner, H. & Prast, H. (2004). J. Med. Chem. 47, 6248-6254.]); Brühlmann et al. (2001[Brühlmann, C., Ooms, F., Carrupt, P.-A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001). J. Med. Chem. 44, 3195-3198.]). For a related structure, see: Yang et al. (2010[Yang, S.-P., Han, L.-J., Wang, D.-Q. & Chen, X.-Y. (2010). Acta Cryst. E66, o3183.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14O4·C2H6O

  • Mr = 340.36

  • Monoclinic, P 21 /c

  • a = 12.4562 (6) Å

  • b = 10.0341 (5) Å

  • c = 14.8999 (7) Å

  • β = 111.980 (3)°

  • V = 1726.93 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.982

  • 12216 measured reflections

  • 3021 independent reflections

  • 1762 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.188

  • S = 1.05

  • 3021 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.82 1.82 2.629 (3) 166
O5—H5A⋯O2 0.82 1.95 2.764 (3) 169
C17—H17⋯O2ii 0.93 2.54 3.398 (4) 154
C20—H20B⋯O4iii 0.96 2.53 3.489 (5) 177
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coumarins are very well known for their biological activity, such as antioxidants (Sharma et al., 2005), anticancer activity (Xiao et al., 2010), antiamoebic (Iqbal et al., 2009), anticonvulsant activity (Siddiqui et al., 2009) and inhibitions of acetylcholinesterase and monoamine oxidase (Rollinger et al., 2004; Brühlmann et al., 2001). Previous we have decribed the crystal structure of 8-benzoyl-7-hydroxy-4-methyl coumarin (Yang et al., 2010). As part of our study of the crystal structures of coumarin derivatives with 7-hydroxy, we report here the crystal structure of 8-(3-methylbenzoyl)-7-hydroxy-4-methyl-2H-1-benzopyran-2-one, (I).

In the molecule (I), the asymmetric unit contains one coumarin molecule and one ethanol molecule, and which are linked together by one O—H···O hydrogen bond (Table 1 and Fig. 1). The coumarin moiety (r.m.s deviations 0.0214 Å) and phenyl ring are perpendicular to each other with a dihedral angle of 86.55 (9)° between the plane of the atoms O1—O3/C1—C9 and the plane of C12—C17.

In crystal structure of (I), atom O3 in the molecule at (x, y, z) acts as hydrogen bond donor to atom O5 in the molecule at (x, y - 1, z), forming a C(10) chain running parallel to the [010] direction and generated by translation. Inversionally related molecular chains are linked together by a weak ππ interaction, the ring centroid Cg1[O1/C1—C4/C9] in the molecule at (x, y, z) connects Cg1 in the molecule at (1 - x, 1 - y, 1 - z) [centroid–centroid distance = 3.57278 (17) Å], so forming a doubled chain of R44(22) ring parallel to the [010] direction (Fig. 2). Neighboring doubled chains are linked into three-dimensional crystal structure by weak C—H···O hydrogen bonds (Table.1).

Related literature top

For the biological activity of coumarins, see: Sharma et al. (2005); Xiao et al. (2010); Iqbal et al. (2009); Siddiqui et al. (2009); Rollinger et al. (2004); Brühlmann et al. (2001). For a related structure, see: Yang et al. (2010).

Experimental top

The mixture containing 1.47 g (5 mmol) of dry powdered 7-(3-methylbenzoxy)-4-methylcoumarin and 2.0 g (15 mmol) of anhydrous aluminium chloride was heated for about 2 h at 463 K in an oil bath, then 30 ml of dilute (1:7) hydrochloric acid is added and the mixture is heated on a steam bath for 60 min, the crude products were filtered off, washed with water. Single crystals of (I) suitable for X-ray structure analysis were obtained by recrystallizing the crude product from a 95% ethanol solution, m.p. 503–504 K.

Refinement top

H atoms were placed in calculated positions with O—H = 0.82 Å (hydroxyl), C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C) (aromatic and methylene) and Uiso(H) = 1.5Ueq(C,O) (methyl and hydroxyl).

Structure description top

Coumarins are very well known for their biological activity, such as antioxidants (Sharma et al., 2005), anticancer activity (Xiao et al., 2010), antiamoebic (Iqbal et al., 2009), anticonvulsant activity (Siddiqui et al., 2009) and inhibitions of acetylcholinesterase and monoamine oxidase (Rollinger et al., 2004; Brühlmann et al., 2001). Previous we have decribed the crystal structure of 8-benzoyl-7-hydroxy-4-methyl coumarin (Yang et al., 2010). As part of our study of the crystal structures of coumarin derivatives with 7-hydroxy, we report here the crystal structure of 8-(3-methylbenzoyl)-7-hydroxy-4-methyl-2H-1-benzopyran-2-one, (I).

In the molecule (I), the asymmetric unit contains one coumarin molecule and one ethanol molecule, and which are linked together by one O—H···O hydrogen bond (Table 1 and Fig. 1). The coumarin moiety (r.m.s deviations 0.0214 Å) and phenyl ring are perpendicular to each other with a dihedral angle of 86.55 (9)° between the plane of the atoms O1—O3/C1—C9 and the plane of C12—C17.

In crystal structure of (I), atom O3 in the molecule at (x, y, z) acts as hydrogen bond donor to atom O5 in the molecule at (x, y - 1, z), forming a C(10) chain running parallel to the [010] direction and generated by translation. Inversionally related molecular chains are linked together by a weak ππ interaction, the ring centroid Cg1[O1/C1—C4/C9] in the molecule at (x, y, z) connects Cg1 in the molecule at (1 - x, 1 - y, 1 - z) [centroid–centroid distance = 3.57278 (17) Å], so forming a doubled chain of R44(22) ring parallel to the [010] direction (Fig. 2). Neighboring doubled chains are linked into three-dimensional crystal structure by weak C—H···O hydrogen bonds (Table.1).

For the biological activity of coumarins, see: Sharma et al. (2005); Xiao et al. (2010); Iqbal et al. (2009); Siddiqui et al. (2009); Rollinger et al. (2004); Brühlmann et al. (2001). For a related structure, see: Yang et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title structure, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme, intramolecular O—H···O contact is shown.
[Figure 2] Fig. 2. The molecular doubled chain of R44(22) ring parallel to the [010] direction. [Symmetry codes: (*) x, -1 + y, z; (#) x, 1 + y, 1 - z;(&)1 - x, 1 - y, 1 - z].
7-Hydroxy-4-methyl-8-(3-methylbenzoyl)-2H-chromen-2-one ethanol monosolvate top
Crystal data top
C18H14O4·C2H6OF(000) = 720
Mr = 340.36Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1087 reflections
a = 12.4562 (6) Åθ = 2.5–27.8°
b = 10.0341 (5) ŵ = 0.09 mm1
c = 14.8999 (7) ÅT = 298 K
β = 111.980 (3)°Prism, colourless
V = 1726.93 (14) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3021 independent reflections
Radiation source: fine-focus sealed tube1762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 148
Tmin = 0.972, Tmax = 0.982k = 118
12216 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0767P)2 + 0.8164P]
where P = (Fo2 + 2Fc2)/3
3021 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H14O4·C2H6OV = 1726.93 (14) Å3
Mr = 340.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4562 (6) ŵ = 0.09 mm1
b = 10.0341 (5) ÅT = 298 K
c = 14.8999 (7) Å0.30 × 0.25 × 0.20 mm
β = 111.980 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3021 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1762 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.982Rint = 0.119
12216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
3021 reflectionsΔρmin = 0.25 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5042 (3)0.6046 (3)0.3838 (2)0.0487 (8)
C20.3975 (3)0.5458 (3)0.3794 (2)0.0547 (9)
H20.33860.60160.38090.066*
C30.3789 (3)0.4140 (3)0.3734 (2)0.0498 (8)
C40.4702 (2)0.3271 (3)0.3715 (2)0.0439 (7)
C50.4632 (3)0.1883 (3)0.3652 (2)0.0538 (8)
H50.39430.14670.35950.065*
C60.5548 (3)0.1119 (3)0.3673 (2)0.0523 (8)
H60.54740.01970.36260.063*
C70.6596 (3)0.1722 (3)0.3765 (2)0.0460 (8)
C80.6708 (2)0.3099 (3)0.38248 (19)0.0395 (7)
C90.5751 (2)0.3841 (3)0.37894 (18)0.0400 (7)
C100.2669 (3)0.3553 (4)0.3712 (3)0.0717 (11)
H10A0.22020.42420.38280.108*
H10B0.28280.28820.42050.108*
H10C0.22610.31590.30900.108*
C110.7839 (2)0.3780 (3)0.3970 (2)0.0409 (7)
C120.8089 (2)0.4124 (3)0.31036 (19)0.0389 (7)
C130.9089 (2)0.4854 (3)0.3207 (2)0.0445 (7)
H130.96140.50620.38230.053*
C140.9305 (3)0.5269 (3)0.2408 (2)0.0524 (8)
C150.8528 (3)0.4895 (4)0.1505 (3)0.0639 (10)
H150.86680.51490.09590.077*
C160.7554 (3)0.4160 (4)0.1391 (2)0.0637 (10)
H160.70500.39170.07750.076*
C170.7327 (3)0.3784 (3)0.2191 (2)0.0489 (8)
H170.66610.33010.21150.059*
C181.0332 (3)0.6147 (4)0.2514 (3)0.0744 (11)
H18A1.00660.70240.22780.112*
H18B1.07510.57760.21470.112*
H18C1.08330.61970.31840.112*
O10.59052 (16)0.51973 (19)0.38378 (14)0.0455 (5)
O20.52656 (19)0.7229 (2)0.38776 (17)0.0622 (7)
O30.75312 (19)0.1018 (2)0.37973 (17)0.0611 (6)
H30.73780.02200.37590.092*
O40.84811 (18)0.4066 (2)0.47834 (15)0.0611 (7)
C190.8207 (4)0.7597 (4)0.4184 (4)0.0976 (15)
H19A0.80360.69260.36800.117*
H19B0.83070.71440.47850.117*
C200.9288 (4)0.8253 (4)0.4285 (4)0.0938 (14)
H20A0.92390.85840.36670.141*
H20B0.99140.76260.45230.141*
H20C0.94250.89810.47320.141*
O50.7296 (2)0.8436 (2)0.3963 (3)0.1013 (11)
H5A0.67430.80400.40080.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0388 (18)0.049 (2)0.0555 (19)0.0084 (15)0.0140 (14)0.0061 (15)
C20.0376 (18)0.060 (2)0.065 (2)0.0087 (16)0.0180 (15)0.0060 (17)
C30.0358 (17)0.062 (2)0.0499 (18)0.0011 (16)0.0140 (13)0.0072 (15)
C40.0359 (16)0.049 (2)0.0452 (17)0.0037 (14)0.0129 (13)0.0039 (14)
C50.0417 (18)0.058 (2)0.061 (2)0.0136 (16)0.0182 (15)0.0034 (16)
C60.052 (2)0.0435 (19)0.062 (2)0.0063 (16)0.0216 (16)0.0020 (15)
C70.0421 (18)0.0450 (19)0.0511 (18)0.0015 (15)0.0177 (14)0.0041 (14)
C80.0384 (16)0.0392 (17)0.0408 (16)0.0007 (13)0.0148 (12)0.0016 (13)
C90.0401 (17)0.0388 (17)0.0398 (15)0.0019 (14)0.0135 (13)0.0038 (13)
C100.041 (2)0.085 (3)0.092 (3)0.0007 (19)0.0287 (18)0.011 (2)
C110.0358 (16)0.0378 (17)0.0459 (17)0.0044 (13)0.0117 (14)0.0010 (13)
C120.0319 (15)0.0361 (16)0.0486 (16)0.0030 (13)0.0149 (13)0.0006 (13)
C130.0358 (16)0.0409 (18)0.0566 (18)0.0009 (13)0.0170 (14)0.0052 (14)
C140.050 (2)0.0468 (19)0.069 (2)0.0021 (15)0.0332 (17)0.0032 (16)
C150.067 (2)0.075 (3)0.060 (2)0.004 (2)0.0343 (19)0.0069 (18)
C160.058 (2)0.083 (3)0.0475 (19)0.005 (2)0.0169 (16)0.0057 (17)
C170.0451 (18)0.0514 (19)0.0493 (18)0.0030 (15)0.0167 (14)0.0027 (14)
C180.063 (2)0.071 (3)0.103 (3)0.010 (2)0.048 (2)0.005 (2)
O10.0357 (11)0.0407 (12)0.0602 (13)0.0028 (9)0.0179 (10)0.0051 (9)
O20.0485 (14)0.0451 (14)0.0929 (18)0.0074 (11)0.0262 (12)0.0043 (12)
O30.0509 (14)0.0423 (13)0.0938 (17)0.0020 (11)0.0314 (12)0.0004 (12)
O40.0472 (14)0.0809 (17)0.0482 (13)0.0111 (12)0.0098 (11)0.0003 (11)
C190.097 (3)0.059 (3)0.171 (5)0.012 (3)0.088 (3)0.017 (3)
C200.071 (3)0.081 (3)0.131 (4)0.006 (2)0.040 (3)0.009 (3)
O50.0615 (17)0.0419 (15)0.203 (3)0.0025 (13)0.052 (2)0.0129 (17)
Geometric parameters (Å, º) top
C1—O21.216 (4)C12—C171.379 (4)
C1—O11.372 (4)C12—C131.403 (4)
C1—C21.433 (4)C13—C141.379 (4)
C2—C31.340 (4)C13—H130.9300
C2—H20.9300C14—C151.384 (5)
C3—C41.441 (4)C14—C181.512 (4)
C3—C101.503 (4)C15—C161.375 (5)
C4—C91.393 (4)C15—H150.9300
C4—C51.397 (4)C16—C171.376 (4)
C5—C61.364 (4)C16—H160.9300
C5—H50.9300C17—H170.9300
C6—C71.399 (4)C18—H18A0.9600
C6—H60.9300C18—H18B0.9600
C7—O31.348 (3)C18—H18C0.9600
C7—C81.387 (4)O3—H30.8200
C8—C91.390 (4)C19—O51.352 (5)
C8—C111.507 (4)C19—C201.454 (6)
C9—O11.372 (3)C19—H19A0.9700
C10—H10A0.9600C19—H19B0.9700
C10—H10B0.9600C20—H20A0.9600
C10—H10C0.9600C20—H20B0.9600
C11—O41.211 (3)C20—H20C0.9600
C11—C121.478 (4)O5—H5A0.8200
O2—C1—O1116.1 (3)C13—C12—C11119.7 (2)
O2—C1—C2126.6 (3)C14—C13—C12121.0 (3)
O1—C1—C2117.3 (3)C14—C13—H13119.5
C3—C2—C1122.9 (3)C12—C13—H13119.5
C3—C2—H2118.5C13—C14—C15117.8 (3)
C1—C2—H2118.5C13—C14—C18121.1 (3)
C2—C3—C4118.7 (3)C15—C14—C18121.1 (3)
C2—C3—C10121.6 (3)C16—C15—C14122.0 (3)
C4—C3—C10119.7 (3)C16—C15—H15119.0
C9—C4—C5116.6 (3)C14—C15—H15119.0
C9—C4—C3118.3 (3)C15—C16—C17119.8 (3)
C5—C4—C3125.1 (3)C15—C16—H16120.1
C6—C5—C4121.9 (3)C17—C16—H16120.1
C6—C5—H5119.0C16—C17—C12119.8 (3)
C4—C5—H5119.0C16—C17—H17120.1
C5—C6—C7120.1 (3)C12—C17—H17120.1
C5—C6—H6120.0C14—C18—H18A109.5
C7—C6—H6120.0C14—C18—H18B109.5
O3—C7—C8117.1 (3)H18A—C18—H18B109.5
O3—C7—C6122.6 (3)C14—C18—H18C109.5
C8—C7—C6120.3 (3)H18A—C18—H18C109.5
C7—C8—C9117.9 (3)H18B—C18—H18C109.5
C7—C8—C11121.8 (3)C1—O1—C9121.4 (2)
C9—C8—C11120.3 (2)C7—O3—H3109.5
O1—C9—C8115.4 (2)O5—C19—C20113.8 (3)
O1—C9—C4121.3 (3)O5—C19—H19A108.8
C8—C9—C4123.3 (3)C20—C19—H19A108.8
C3—C10—H10A109.5O5—C19—H19B108.8
C3—C10—H10B109.5C20—C19—H19B108.8
H10A—C10—H10B109.5H19A—C19—H19B107.7
C3—C10—H10C109.5C19—C20—H20A109.5
H10A—C10—H10C109.5C19—C20—H20B109.5
H10B—C10—H10C109.5H20A—C20—H20B109.5
O4—C11—C12122.8 (3)C19—C20—H20C109.5
O4—C11—C8118.9 (2)H20A—C20—H20C109.5
C12—C11—C8118.2 (2)H20B—C20—H20C109.5
C17—C12—C13119.5 (3)C19—O5—H5A109.5
C17—C12—C11120.7 (3)
O2—C1—C2—C3178.8 (3)C3—C4—C9—C8176.9 (3)
O1—C1—C2—C31.5 (4)C7—C8—C11—O494.5 (3)
C1—C2—C3—C40.2 (5)C9—C8—C11—O482.6 (3)
C1—C2—C3—C10178.6 (3)C7—C8—C11—C1288.2 (3)
C2—C3—C4—C91.9 (4)C9—C8—C11—C1294.7 (3)
C10—C3—C4—C9176.5 (3)O4—C11—C12—C17179.6 (3)
C2—C3—C4—C5179.9 (3)C8—C11—C12—C172.4 (4)
C10—C3—C4—C51.7 (4)O4—C11—C12—C132.3 (4)
C9—C4—C5—C60.7 (4)C8—C11—C12—C13174.8 (2)
C3—C4—C5—C6177.6 (3)C17—C12—C13—C141.8 (4)
C4—C5—C6—C70.4 (5)C11—C12—C13—C14175.5 (3)
C5—C6—C7—O3179.5 (3)C12—C13—C14—C152.6 (4)
C5—C6—C7—C80.8 (4)C12—C13—C14—C18175.2 (3)
O3—C7—C8—C9179.8 (2)C13—C14—C15—C161.4 (5)
C6—C7—C8—C90.0 (4)C18—C14—C15—C16176.3 (3)
O3—C7—C8—C113.1 (4)C14—C15—C16—C170.5 (6)
C6—C7—C8—C11177.2 (3)C15—C16—C17—C121.3 (5)
C7—C8—C9—O1179.1 (2)C13—C12—C17—C160.1 (5)
C11—C8—C9—O13.6 (3)C11—C12—C17—C16177.4 (3)
C7—C8—C9—C41.2 (4)O2—C1—O1—C9179.6 (2)
C11—C8—C9—C4176.1 (2)C2—C1—O1—C90.6 (4)
C5—C4—C9—O1178.8 (2)C8—C9—O1—C1178.2 (2)
C3—C4—C9—O12.8 (4)C4—C9—O1—C11.5 (4)
C5—C4—C9—C81.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.821.822.629 (3)166
O5—H5A···O20.821.952.764 (3)169
C17—H17···O2ii0.932.543.398 (4)154
C20—H20B···O4iii0.962.533.489 (5)177
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H14O4·C2H6O
Mr340.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.4562 (6), 10.0341 (5), 14.8999 (7)
β (°) 111.980 (3)
V3)1726.93 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.972, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
12216, 3021, 1762
Rint0.119
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.188, 1.05
No. of reflections3021
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.821.822.629 (3)166.4
O5—H5A···O20.821.952.764 (3)169.4
C17—H17···O2ii0.932.543.398 (4)153.7
C20—H20B···O4iii0.962.533.489 (5)177.0
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+1, z+1.
 

Acknowledgements

The project was supported by the Natural Science Foundation of Huaihai Institute of Technology, China (No. Z2009019).

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany  Google Scholar
First citationBrühlmann, C., Ooms, F., Carrupt, P.-A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001). J. Med. Chem. 44, 3195–3198.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIqbal, P. F., Bhat, A. R. & Azam, A. (2009). Eur. J. Med. Chem. 44, 2252–2259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRollinger, J. M., Hornick, A., Langer, T., Stuppner, H. & Prast, H. (2004). J. Med. Chem. 47, 6248–6254.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, S. D., Rajor, H. K., Chopra, S. & Sharma, R. K. (2005). Biometals, 18, 143–154.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161–167.  CAS Google Scholar
First citationXiao, C.-F., Tao, L.-Y., Sun, H.-Y., Wei, W., Chen, Y., Fu, L.-W. & Zou, Y. (2010). Chin. Chem. Lett. 21, 1295–1298.  Web of Science CrossRef CAS Google Scholar
First citationYang, S.-P., Han, L.-J., Wang, D.-Q. & Chen, X.-Y. (2010). Acta Cryst. E66, o3183.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds