metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­cobalt(II) bis­­(5-acetyl-2-hy­dr­oxy­benzoate) dihydrate

aDepartment of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and bDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China
*Correspondence e-mail: spyang69320@yahoo.cn

(Received 29 October 2011; accepted 5 November 2011; online 9 November 2011)

In the title compound, [Co(H2O)6](C9H7O4)2·2H2O, the Co2+ cation lies on a twofold rotation axis and is coordinated by six water mol­ecules in a distorted octa­hedral geometry. In the 5-acetyl-2-hy­droxy­benzoate anion, the hy­droxy group links with the carboxyl­ate group via an intra­molecular O—H⋯O hydrogen bond and the acetyl group is twisted to the benzene ring at a dihedral angle of 16.99 (12)°. In the crystal structure, the cations, anions and water mol­ecules are linked by extensive O—H⋯O hydrogen bonding.

Related literature

For related cobalt salts, see: Wang et al. (2011[Wang, H., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, m1521.]); Zhang et al. (2011[Zhang, L.-W., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, m1519.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(H2O)6](C9H7O4)2·2H2O

  • Mr = 561.35

  • Orthorhombic, I b c a

  • a = 10.6238 (10) Å

  • b = 13.6271 (12) Å

  • c = 33.318 (3) Å

  • V = 4823.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.743, Tmax = 0.798

  • 19647 measured reflections

  • 3036 independent reflections

  • 2508 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.110

  • S = 1.03

  • 3036 reflections

  • 184 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.0888 (15)
Co1—O2 2.0985 (16)
Co1—O3 2.0900 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.84 (1) 1.93 (1) 2.766 (2) 179 (3)
O1—H1B⋯O8 0.83 (1) 1.91 (1) 2.728 (3) 168 (2)
O2—H2A⋯O4 0.84 (1) 1.83 (1) 2.667 (2) 172 (3)
O2—H2B⋯O8ii 0.83 (1) 2.25 (1) 3.069 (3) 171 (3)
O3—H3A⋯O5 0.84 (1) 1.85 (1) 2.680 (2) 176 (2)
O3—H3B⋯O6iii 0.83 (1) 1.93 (1) 2.752 (2) 172 (3)
O7—H7⋯O5 0.82 1.79 2.518 (2) 147
O8—H8A⋯O6i 0.83 (1) 2.17 (1) 2.996 (2) 171 (3)
O8—H8B⋯O1iv 0.84 (1) 2.59 (2) 3.267 (3) 139 (3)
O8—H8B⋯O3iv 0.84 (1) 2.37 (3) 3.054 (3) 139 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structures of hexaaquacobalt(II) carboxylate hydrate have been decribed (Zhang et al., 2011; Wang et al., 2011). We obtained unexpectedly the crystal structure of the title hexaaquacobalt(II) bis(5-acetyl-2-hydroxybenzoate) dihydrate in the preparation of cobalt(II) 5-acetyl-2-hydroxybenzoate complex, we report here the crystal structure of the title salt.

In the molecule, the asymmetric unit consist of half cobalt atom, three coordinated water molecules, one benzoic anion and one uncoordinated water molecule(Fig. 1), forming an axisymmetric structure and a coordinated octahedron of six water molecules around metal cobalt centrer generated by 2-fold rotation axis (1/2 1/4 z) across the Co1 atom, the midpoint of atoms O1 and O1i and the midpoint of atoms O3 and O3i [symmetry code: (i). 1 - x, 1/2 – y, z].

The equatorial plane of the octahedron is defined by atoms O1, O3, O1i and O3i with deviations of 0.0666 (12)Å for atom O1 and 0.0624 (11)Å for atom O3, and atom Co1 is located in the equatorial plane accurately; axis positions are occupied by atoms O2 and O2i. The equatorial Co — O bond distances are 2.0888 (15) and 2.0900 (15) Å, axial Co — O bond distance is 2.0985 (16) Å, axial O — Co — O bond angle O2 — Co1 — O2i = 173.95 (7)°, the maximum equatorial O — Co — O bond angle O1 — Co1 — O3i = 174.85 (6)°, the all other O — Co — O bond angles range from 87.42 (6) to 95.11 (6)°(Table 1).

In crystal structure, cations, anions and uncoordinated water molecules are linked into a two-dimensional crystal structure by O — H ··· O hydrogen bonds (Table. 2), neighbouring two-dimensional structure exist no any O—H···O hydrogen bond interactions.

Related literature top

For related cobalt salts, see: Wang et al. (2011); Zhang et al. (2011).

Experimental top

Cobalt dichloride 0.47 g (2 mmol) was added to the solution (ethanol:water = 3:1, pH = 7) containing 5-acetyl-2-hydroxybenzoic acid 0.72 g (4 mmol) and sodium hydroxide 0.16 g (4 mmol). The reaction mixture was stirred for 2 h at 333–343 K and then the solution was filtered off. Red crystals of the title salt suitable for X-ray structure analysis were obtained from the filtered solution after a week.

Refinement top

The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O—H = 0.84 (1) and H···H = 1.37 (1) Å with Uiso(H) = 1.5Ueq(O). The other H-atoms were placed in calculated positions (C—H = 0.93–0.97 and O—H = 0.82 Å) and were included in the refinement in the riding model, with Uiso(H) = 1.2Ueq(aromatic C) and Uiso(H) = 1.5Ueq(hydroxyl O, methyl C).

Structure description top

The crystal structures of hexaaquacobalt(II) carboxylate hydrate have been decribed (Zhang et al., 2011; Wang et al., 2011). We obtained unexpectedly the crystal structure of the title hexaaquacobalt(II) bis(5-acetyl-2-hydroxybenzoate) dihydrate in the preparation of cobalt(II) 5-acetyl-2-hydroxybenzoate complex, we report here the crystal structure of the title salt.

In the molecule, the asymmetric unit consist of half cobalt atom, three coordinated water molecules, one benzoic anion and one uncoordinated water molecule(Fig. 1), forming an axisymmetric structure and a coordinated octahedron of six water molecules around metal cobalt centrer generated by 2-fold rotation axis (1/2 1/4 z) across the Co1 atom, the midpoint of atoms O1 and O1i and the midpoint of atoms O3 and O3i [symmetry code: (i). 1 - x, 1/2 – y, z].

The equatorial plane of the octahedron is defined by atoms O1, O3, O1i and O3i with deviations of 0.0666 (12)Å for atom O1 and 0.0624 (11)Å for atom O3, and atom Co1 is located in the equatorial plane accurately; axis positions are occupied by atoms O2 and O2i. The equatorial Co — O bond distances are 2.0888 (15) and 2.0900 (15) Å, axial Co — O bond distance is 2.0985 (16) Å, axial O — Co — O bond angle O2 — Co1 — O2i = 173.95 (7)°, the maximum equatorial O — Co — O bond angle O1 — Co1 — O3i = 174.85 (6)°, the all other O — Co — O bond angles range from 87.42 (6) to 95.11 (6)°(Table 1).

In crystal structure, cations, anions and uncoordinated water molecules are linked into a two-dimensional crystal structure by O — H ··· O hydrogen bonds (Table. 2), neighbouring two-dimensional structure exist no any O—H···O hydrogen bond interactions.

For related cobalt salts, see: Wang et al. (2011); Zhang et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title structure and coordinated octahedron, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. [Symmetric code:(i). -x + 1, -y + 1/2, z.].
Hexaaquacobalt(II) bis(5-acetyl-2-hydroxybenzoate) dihydrate top
Crystal data top
[Co(H2O)6](C9H7O4)2·2H2OF(000) = 2344
Mr = 561.35Dx = 1.546 Mg m3
Orthorhombic, IbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2b 2cCell parameters from 7064 reflections
a = 10.6238 (10) Åθ = 2.5–28.4°
b = 13.6271 (12) ŵ = 0.79 mm1
c = 33.318 (3) ÅT = 298 K
V = 4823.5 (8) Å3Block, red
Z = 80.40 × 0.30 × 0.30 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3036 independent reflections
Radiation source: fine-focus sealed tube2508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1410
Tmin = 0.743, Tmax = 0.798k = 1818
19647 measured reflectionsl = 4444
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0555P)2 + 4.7025P]
where P = (Fo2 + 2Fc2)/3
3036 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.50 e Å3
12 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Co(H2O)6](C9H7O4)2·2H2OV = 4823.5 (8) Å3
Mr = 561.35Z = 8
Orthorhombic, IbcaMo Kα radiation
a = 10.6238 (10) ŵ = 0.79 mm1
b = 13.6271 (12) ÅT = 298 K
c = 33.318 (3) Å0.40 × 0.30 × 0.30 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3036 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2508 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.798Rint = 0.025
19647 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03812 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.50 e Å3
3036 reflectionsΔρmin = 0.38 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.25000.466722 (9)0.04068 (13)
O10.51255 (17)0.35551 (13)0.51203 (5)0.0568 (4)
O20.69453 (14)0.22453 (12)0.46340 (4)0.0470 (4)
O30.52582 (14)0.36122 (13)0.42432 (4)0.0517 (4)
H1A0.555 (2)0.351 (2)0.5330 (5)0.078*
H1B0.4513 (18)0.3927 (19)0.5155 (7)0.078*
H2A0.736 (2)0.2629 (15)0.4486 (7)0.078*
H2B0.733 (2)0.1720 (12)0.4664 (8)0.078*
H3A0.5802 (17)0.358 (2)0.4063 (6)0.078*
H3B0.4574 (13)0.380 (2)0.4151 (7)0.078*
O40.84476 (13)0.33748 (13)0.41891 (4)0.0533 (4)
O50.70791 (12)0.34819 (12)0.36892 (4)0.0487 (4)
O61.29926 (13)0.40867 (11)0.38932 (4)0.0477 (3)
O70.77990 (15)0.36935 (14)0.29743 (4)0.0608 (4)
H70.73000.36350.31610.091*
C10.81924 (17)0.35113 (14)0.38283 (5)0.0376 (4)
C20.92337 (16)0.36890 (12)0.35340 (5)0.0333 (3)
C31.04694 (17)0.37693 (13)0.36600 (5)0.0335 (3)
H31.06430.37560.39340.040*
C41.14660 (18)0.38701 (13)0.33896 (5)0.0362 (4)
C51.1187 (2)0.38921 (17)0.29793 (6)0.0482 (5)
H51.18360.39430.27930.058*
C60.9973 (2)0.3840 (2)0.28495 (5)0.0557 (6)
H60.98040.38720.25760.067*
C70.89775 (19)0.37410 (15)0.31202 (5)0.0424 (4)
C81.27713 (17)0.39131 (13)0.35418 (6)0.0387 (4)
C91.3838 (2)0.37177 (18)0.32548 (7)0.0552 (5)
H9A1.38790.42360.30600.083*
H9B1.37000.31030.31210.083*
H9C1.46170.36900.34010.083*
O80.3217 (2)0.47763 (16)0.53449 (6)0.0864 (7)
H8A0.290 (4)0.465 (2)0.5567 (6)0.130*
H8B0.351 (4)0.5344 (15)0.5342 (10)0.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0320 (2)0.0640 (3)0.02606 (18)0.01256 (16)0.0000.000
O10.0641 (11)0.0646 (10)0.0417 (8)0.0001 (8)0.0173 (7)0.0097 (7)
O20.0382 (7)0.0689 (10)0.0339 (7)0.0131 (7)0.0052 (5)0.0096 (6)
O30.0347 (7)0.0834 (11)0.0371 (7)0.0033 (7)0.0018 (5)0.0135 (7)
O40.0369 (7)0.0905 (11)0.0325 (7)0.0114 (7)0.0012 (5)0.0148 (7)
O50.0309 (7)0.0726 (10)0.0424 (7)0.0018 (6)0.0021 (5)0.0050 (6)
O60.0362 (7)0.0680 (9)0.0390 (7)0.0004 (6)0.0033 (5)0.0039 (6)
O70.0472 (9)0.0981 (13)0.0372 (7)0.0024 (8)0.0107 (6)0.0048 (8)
C10.0331 (9)0.0456 (10)0.0341 (8)0.0020 (7)0.0016 (7)0.0042 (7)
C20.0353 (9)0.0362 (8)0.0286 (8)0.0016 (7)0.0010 (7)0.0026 (6)
C30.0361 (9)0.0383 (8)0.0261 (7)0.0004 (7)0.0029 (6)0.0028 (6)
C40.0377 (9)0.0390 (9)0.0319 (8)0.0014 (7)0.0059 (7)0.0038 (7)
C50.0494 (12)0.0654 (13)0.0299 (8)0.0022 (10)0.0098 (8)0.0049 (8)
C60.0606 (14)0.0819 (16)0.0247 (8)0.0037 (11)0.0001 (8)0.0047 (9)
C70.0430 (10)0.0520 (10)0.0321 (9)0.0043 (8)0.0046 (7)0.0031 (8)
C80.0372 (10)0.0397 (9)0.0391 (9)0.0002 (7)0.0101 (7)0.0073 (7)
C90.0421 (11)0.0695 (14)0.0542 (12)0.0008 (10)0.0184 (9)0.0014 (10)
O80.0901 (16)0.0714 (13)0.0976 (16)0.0081 (11)0.0233 (12)0.0315 (11)
Geometric parameters (Å, º) top
Co1—O12.0888 (15)C1—C21.498 (2)
Co1—O1i2.0888 (15)C2—C31.383 (3)
Co1—O22.0985 (16)C2—C71.407 (2)
Co1—O2i2.0985 (16)C3—C41.397 (2)
Co1—O3i2.0900 (15)C3—H30.9300
Co1—O32.0900 (15)C4—C51.399 (3)
O1—H1A0.84 (1)C4—C81.478 (3)
O1—H1B0.83 (1)C5—C61.362 (3)
O2—H2A0.84 (1)C5—H50.9300
O2—H2B0.83 (1)C6—C71.396 (3)
O3—H3A0.84 (1)C6—H60.9300
O3—H3B0.83 (1)C8—C91.507 (3)
O4—C11.246 (2)C9—H9A0.9600
O5—C11.271 (2)C9—H9B0.9600
O6—C81.217 (2)C9—H9C0.9600
O7—C71.345 (2)O8—H8A0.83 (1)
O7—H70.8200O8—H8B0.835 (10)
O1—Co1—O1i87.46 (10)C3—C2—C7118.51 (16)
O1—Co1—O3i174.85 (6)C3—C2—C1121.00 (15)
O1i—Co1—O3i88.91 (7)C7—C2—C1120.45 (16)
O1—Co1—O388.91 (7)C2—C3—C4122.11 (16)
O1i—Co1—O3174.85 (6)C2—C3—H3118.9
O3i—Co1—O394.94 (9)C4—C3—H3118.9
O1—Co1—O295.11 (6)C3—C4—C5118.12 (18)
O1i—Co1—O289.26 (6)C3—C4—C8119.59 (15)
O3i—Co1—O288.49 (6)C5—C4—C8122.24 (16)
O3—Co1—O287.42 (6)C6—C5—C4120.67 (18)
O1—Co1—O2i89.26 (6)C6—C5—H5119.7
O1i—Co1—O2i95.11 (6)C4—C5—H5119.7
O3i—Co1—O2i87.42 (6)C5—C6—C7121.13 (17)
O3—Co1—O2i88.49 (6)C5—C6—H6119.4
O2—Co1—O2i173.95 (7)C7—C6—H6119.4
Co1—O1—H1A125.8 (18)O7—C7—C6118.45 (17)
Co1—O1—H1B118.0 (18)O7—C7—C2122.13 (18)
H1A—O1—H1B110.7 (16)C6—C7—C2119.42 (18)
Co1—O2—H2A116.2 (18)O6—C8—C4121.26 (16)
Co1—O2—H2B129 (2)O6—C8—C9119.95 (18)
H2A—O2—H2B110.4 (16)C4—C8—C9118.77 (17)
Co1—O3—H3A122.3 (19)C8—C9—H9A109.5
Co1—O3—H3B111.3 (19)C8—C9—H9B109.5
H3A—O3—H3B110.9 (16)H9A—C9—H9B109.5
C7—O7—H7109.5C8—C9—H9C109.5
O4—C1—O5123.33 (17)H9A—C9—H9C109.5
O4—C1—C2119.66 (16)H9B—C9—H9C109.5
O5—C1—C2116.97 (15)H8A—O8—H8B111.0 (17)
O4—C1—C2—C34.4 (3)C5—C6—C7—O7180.0 (2)
O5—C1—C2—C3177.55 (17)C5—C6—C7—C20.3 (4)
O4—C1—C2—C7173.23 (18)C3—C2—C7—O7178.33 (18)
O5—C1—C2—C74.9 (3)C1—C2—C7—O74.0 (3)
C7—C2—C3—C41.9 (3)C3—C2—C7—C62.0 (3)
C1—C2—C3—C4175.68 (17)C1—C2—C7—C6175.7 (2)
C2—C3—C4—C50.2 (3)C3—C4—C8—O616.9 (3)
C2—C3—C4—C8177.58 (16)C5—C4—C8—O6165.37 (19)
C3—C4—C5—C61.6 (3)C3—C4—C8—C9161.89 (18)
C8—C4—C5—C6179.3 (2)C5—C4—C8—C915.8 (3)
C4—C5—C6—C71.5 (4)
Symmetry code: (i) x+1, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4ii0.84 (1)1.93 (1)2.766 (2)179 (3)
O1—H1B···O80.83 (1)1.91 (1)2.728 (3)168 (2)
O2—H2A···O40.84 (1)1.83 (1)2.667 (2)172 (3)
O2—H2B···O8iii0.83 (1)2.25 (1)3.069 (3)171 (3)
O3—H3A···O50.84 (1)1.85 (1)2.680 (2)176 (2)
O3—H3B···O6iv0.83 (1)1.93 (1)2.752 (2)172 (3)
O7—H7···O50.821.792.518 (2)147
O8—H8A···O6ii0.83 (1)2.17 (1)2.996 (2)171 (3)
O8—H8B···O1v0.84 (1)2.59 (2)3.267 (3)139 (3)
O8—H8B···O3v0.84 (1)2.37 (3)3.054 (3)139 (3)
Symmetry codes: (ii) x+3/2, y, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x1, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(H2O)6](C9H7O4)2·2H2O
Mr561.35
Crystal system, space groupOrthorhombic, Ibca
Temperature (K)298
a, b, c (Å)10.6238 (10), 13.6271 (12), 33.318 (3)
V3)4823.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.743, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
19647, 3036, 2508
Rint0.025
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.03
No. of reflections3036
No. of parameters184
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.38

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999).

Selected bond lengths (Å) top
Co1—O12.0888 (15)Co1—O32.0900 (15)
Co1—O22.0985 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.84 (1)1.93 (1)2.766 (2)179 (3)
O1—H1B···O80.83 (1)1.91 (1)2.728 (3)168 (2)
O2—H2A···O40.84 (1)1.83 (1)2.667 (2)172 (3)
O2—H2B···O8ii0.83 (1)2.25 (1)3.069 (3)171 (3)
O3—H3A···O50.84 (1)1.85 (1)2.680 (2)176 (2)
O3—H3B···O6iii0.83 (1)1.93 (1)2.752 (2)172 (3)
O7—H7···O50.821.792.518 (2)147.2
O8—H8A···O6i0.83 (1)2.17 (1)2.996 (2)171 (3)
O8—H8B···O1iv0.84 (1)2.59 (2)3.267 (3)139 (3)
O8—H8B···O3iv0.84 (1)2.37 (3)3.054 (3)139 (3)
Symmetry codes: (i) x+3/2, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1.
 

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, m1521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L.-W., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, m1519.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds