metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[hexa­aqua­(μ2-oxalato-κ4O1,O2:O1′,O2′)bis­­(μ3-pyridine-2,4-di­carboxyl­ato-κ4N,O2:O2′:O4)dilanthanum(III)] monohydrate]

aDepartment of Biotechnology, Yuanpei University, HsinChu 30015, Taiwan, and bDepartment of General Education Center, Yuanpei University, HsinChu 30015, Taiwan
*Correspondence e-mail: lush@mail.ypu.edu.tw

(Received 30 October 2011; accepted 5 November 2011; online 9 November 2011)

In the polymeric title compound, {[La2(C7H3NO4)2(C2O4)(H2O)6]·H2O}n, the La3+ cation is nine-coordinated in a distorted LaNO8 tricapped trigonal–prismatic geometry formed by three pyridinedicarboxylate anions, one oxalate anion and three water mol­ecules. The oxalate anion is located on an inversion center. The oxalate and pyridine­dicarboxyl­ate anions bridge the La3+ cations, forming a two-dimensional polymeric complex parallel to (010). Inter­molecular O—H⋯O hydrogen bonding and weak C—H⋯O hydrogen bonding is present in the crystal structure and ππ stacking [centroid–centroid distance = 3.571 (3) Å] is observed between parallel pyridine rings of adjacent mol­ecules. The uncoordinated water molecule shows an occupancy of 0.5.

Related literature

For related structures, see: Aghabozorg et al. (2011[Aghabozorg, H., Jafarbak, F., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, m435-m436.]); Li et al. (2007[Li, X.-M., Niu, Y.-L., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m487-m488.]); Wang et al. (2009[Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568-m1569.]).

[Scheme 1]

Experimental

Crystal data
  • [La2(C7H3NO4)2(C2O4)(H2O)6]·H2O

  • Mr = 822.16

  • Triclinic, [P \overline 1]

  • a = 6.4614 (8) Å

  • b = 6.6844 (8) Å

  • c = 14.0796 (17) Å

  • α = 89.735 (2)°

  • β = 85.266 (2)°

  • γ = 73.135 (2)°

  • V = 579.85 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.73 mm−1

  • T = 295 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.686, Tmax = 0.950

  • 5023 measured reflections

  • 2046 independent reflections

  • 1795 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.093

  • S = 1.09

  • 2046 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 2.14 e Å−3

  • Δρmin = −2.13 e Å−3

Table 1
Selected bond lengths (Å)

La1—N1 2.726 (4)
La1—O1i 2.454 (4)
La1—O3ii 2.541 (5)
La1—O4 2.551 (5)
La1—O5 2.543 (4)
La1—O6iii 2.550 (5)
La1—O7 2.604 (7)
La1—O8 2.553 (5)
La1—O9 2.612 (7)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4ii 0.84 2.08 2.911 (8) 168
O7—H7B⋯O10iv 0.83 1.71 2.533 (12) 168
O8—H8A⋯O2v 0.83 1.83 2.660 (7) 173
O8—H8B⋯O6vi 0.96 2.03 2.914 (7) 153
O9—H9A⋯O6vi 0.88 2.27 2.987 (8) 138
O9—H9B⋯O10 0.85 1.73 2.390 (14) 133
O10—H10A⋯O5ii 0.83 2.24 2.885 (12) 135
O10—H10A⋯O8ii 0.83 2.29 2.924 (15) 133
O10—H10B⋯O9vii 0.85 1.77 2.591 (17) 163
C5—H5A⋯O3ii 0.93 2.49 3.164 (7) 130
Symmetry codes: (ii) x-1, y, z; (iv) x, y+1, z; (v) -x+2, -y, -z+1; (vi) -x+1, -y, -z+2; (vii) -x, -y, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The pyridine-2,4-dicarboxylic acid (pdcH2) has important coordination functions to metals by either carboxylate bridges between metal centers, to form dimeric complexes or tridentate (O, N, O') chelation to metal ions. Some pydc complexes have been reported (Li et al., 2007; Wang et al., 2009; Aghabozorg et al., 2011).

The symmetric unit of the title compound,{[(LaC7H3NO4)(C2O4)0.5(H2O)3]2.(H2O)}n, contains two LaIII atoms, two pyridine-2,4-dicarboxylate(pydc) ligands, one oxalate ligand and six coordinated water molecules. The oxalate ligand are both chelating and bridging, forming an oxalate-bridged dinuclear complex. The LaIII is nine-coordinated in a distorted tricapped trigonal prismatic geometry by N,O atom from a pydc ligand, two O atoms from two pydc ligands, two O atoms from one oxalate ligand and three O atoms from coordinated water molecules (shown as Fig. 1, Table 1). The geometric center of the dimer lies on an inversion center.

The crystal structure contains weak O—H···O and non-classical C—H···O hydrogen bonds. The π-π stacking between two pyridine rings of (pydc) anion fragments with distances of 3.570 (3) Å (1 - x, 1 - y,1 - z) are observed (Fig. 3). The uncoordinated water molecule shows half-occupation.

Related literature top

For related structures, see: Aghabozorg et al. (2011); Li et al. (2007); Wang et al. (2009).

Experimental top

La(NO3)3.6H2O (0.1096 g, 0.25 mmole), pydridine-2,4-dicarboxylic acid (0.0418 g, 0.25 mmol) and 4,4'-dipyridine (0.0464 g, 0.25 mmol) were mixed in 10 ml of deionized water. After stirring for 30 min, the mixture was placed in a 23 ml Teflon-lined reactor which was heated under autogenous pressure to 418 K for 48 h and then allowed to cool to room temperature. The brown transparent single crystals were obtained in 41.3% yield (based on La).

Refinement top

The site occupancy factor of the lattice water O10 was refined to 0.509 (16), and was set as 0.5 at the final cycles of refinement. Water H atoms were fixed in chemical sensible positions, thermal parameters were fixed as 0.08 Å2. Other H atoms were positioned geometrically with C—H = 0.93 Å (aromatic) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

The pyridine-2,4-dicarboxylic acid (pdcH2) has important coordination functions to metals by either carboxylate bridges between metal centers, to form dimeric complexes or tridentate (O, N, O') chelation to metal ions. Some pydc complexes have been reported (Li et al., 2007; Wang et al., 2009; Aghabozorg et al., 2011).

The symmetric unit of the title compound,{[(LaC7H3NO4)(C2O4)0.5(H2O)3]2.(H2O)}n, contains two LaIII atoms, two pyridine-2,4-dicarboxylate(pydc) ligands, one oxalate ligand and six coordinated water molecules. The oxalate ligand are both chelating and bridging, forming an oxalate-bridged dinuclear complex. The LaIII is nine-coordinated in a distorted tricapped trigonal prismatic geometry by N,O atom from a pydc ligand, two O atoms from two pydc ligands, two O atoms from one oxalate ligand and three O atoms from coordinated water molecules (shown as Fig. 1, Table 1). The geometric center of the dimer lies on an inversion center.

The crystal structure contains weak O—H···O and non-classical C—H···O hydrogen bonds. The π-π stacking between two pyridine rings of (pydc) anion fragments with distances of 3.570 (3) Å (1 - x, 1 - y,1 - z) are observed (Fig. 3). The uncoordinated water molecule shows half-occupation.

For related structures, see: Aghabozorg et al. (2011); Li et al. (2007); Wang et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry code: (i) -1 + x, y, z; (ii) 1 - x, 1 - y, 1 - z; (iv)1+x, y, z.]
[Figure 2] Fig. 2. The molecular packing for the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. π-π Stacking between pyridine rings [symmetry code: (ii) 1 - x, 1 - y,1 - z.]
Poly[[hexaaqua(µ2-oxalato- κ4O1,O2:O1',O2')bis(µ3-pyridine-2,4- dicarboxylato-κ4N,O2:O2':O4) dilanthanum(III)] monohydrate] top
Crystal data top
[La2(C7H3NO4)2(C2O4)(H2O)6]·H2OZ = 1
Mr = 822.16F(000) = 396
Triclinic, P1Dx = 2.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4614 (8) ÅCell parameters from 3390 reflections
b = 6.6844 (8) Åθ = 2.5–25.0°
c = 14.0796 (17) ŵ = 3.73 mm1
α = 89.735 (2)°T = 295 K
β = 85.266 (2)°Columnar, brown
γ = 73.135 (2)°0.30 × 0.10 × 0.10 mm
V = 579.85 (12) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2046 independent reflections
Radiation source: fine-focus sealed tube1795 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 1.5°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 77
Tmin = 0.686, Tmax = 0.950l = 1616
5023 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
2046 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 2.14 e Å3
0 restraintsΔρmin = 2.13 e Å3
Crystal data top
[La2(C7H3NO4)2(C2O4)(H2O)6]·H2Oγ = 73.135 (2)°
Mr = 822.16V = 579.85 (12) Å3
Triclinic, P1Z = 1
a = 6.4614 (8) ÅMo Kα radiation
b = 6.6844 (8) ŵ = 3.73 mm1
c = 14.0796 (17) ÅT = 295 K
α = 89.735 (2)°0.30 × 0.10 × 0.10 mm
β = 85.266 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2046 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1795 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.950Rint = 0.035
5023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.09Δρmax = 2.14 e Å3
2046 reflectionsΔρmin = 2.13 e Å3
175 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.36051 (5)0.32815 (5)0.80389 (2)0.0265 (1)
O10.7674 (8)0.3427 (7)0.2806 (3)0.0392 (16)
O21.0913 (8)0.2154 (8)0.3384 (3)0.0525 (19)
O31.0788 (7)0.2730 (8)0.6993 (3)0.0396 (16)
O40.7592 (7)0.3177 (9)0.7799 (3)0.0521 (18)
O50.5103 (8)0.2478 (6)0.9657 (3)0.0423 (14)
O60.5841 (9)0.3677 (7)1.1030 (3)0.0485 (18)
O70.0071 (10)0.5171 (10)0.8990 (5)0.0863 (19)
O80.5618 (9)0.0608 (7)0.7835 (4)0.0542 (19)
O90.1731 (10)0.0871 (10)0.9025 (5)0.0863 (19)
N10.5725 (7)0.2598 (7)0.6261 (3)0.0249 (14)
C10.7769 (9)0.2729 (9)0.6137 (4)0.0257 (17)
C20.5722 (10)0.2408 (9)0.4559 (4)0.0294 (17)
C30.7801 (9)0.2612 (8)0.4439 (4)0.0260 (17)
C40.8843 (9)0.2739 (9)0.5250 (4)0.0285 (17)
C50.4771 (9)0.2395 (9)0.5474 (4)0.0291 (17)
C60.8914 (10)0.2739 (9)0.3464 (4)0.0301 (17)
C70.8804 (10)0.2893 (10)0.7040 (4)0.0341 (19)
C80.5274 (10)0.3885 (9)1.0197 (4)0.0288 (17)
O100.1015 (18)0.0885 (16)0.9137 (11)0.072 (5)0.500
H2A0.498100.228200.403400.0350*
H4A1.025700.283000.519600.0340*
H5A0.338500.223400.554700.0350*
H7A0.084700.477400.862700.0800*
H7B0.052500.647200.899000.0800*
H8A0.670100.118900.747000.0800*
H8B0.558800.189600.813400.0800*
H9A0.295400.013200.890800.0800*
H9B0.074500.052800.875800.0800*
H10A0.223900.019800.899100.0800*0.500
H10B0.112400.068700.973600.0800*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0283 (2)0.0378 (2)0.0187 (2)0.0182 (2)0.0020 (1)0.0042 (1)
O10.043 (3)0.047 (3)0.025 (2)0.009 (2)0.004 (2)0.0078 (19)
O20.033 (3)0.074 (4)0.039 (3)0.001 (2)0.009 (2)0.014 (2)
O30.028 (2)0.060 (3)0.038 (3)0.022 (2)0.0100 (19)0.002 (2)
O40.037 (3)0.112 (4)0.023 (2)0.046 (3)0.005 (2)0.007 (2)
O50.067 (3)0.029 (2)0.032 (2)0.013 (2)0.015 (2)0.0013 (19)
O60.079 (4)0.038 (2)0.036 (3)0.022 (2)0.030 (3)0.013 (2)
O70.059 (3)0.072 (3)0.113 (4)0.008 (2)0.037 (3)0.026 (3)
O80.071 (4)0.034 (3)0.053 (3)0.016 (2)0.023 (3)0.001 (2)
O90.059 (3)0.072 (3)0.113 (4)0.008 (2)0.037 (3)0.026 (3)
N10.020 (2)0.029 (2)0.027 (3)0.0093 (19)0.0018 (19)0.002 (2)
C10.018 (3)0.029 (3)0.031 (3)0.008 (2)0.003 (2)0.006 (2)
C20.030 (3)0.037 (3)0.023 (3)0.011 (3)0.009 (2)0.002 (2)
C30.025 (3)0.027 (3)0.024 (3)0.005 (2)0.001 (2)0.004 (2)
C40.019 (3)0.039 (3)0.027 (3)0.008 (2)0.002 (2)0.008 (3)
C50.023 (3)0.036 (3)0.030 (3)0.011 (2)0.004 (2)0.003 (2)
C60.033 (3)0.032 (3)0.023 (3)0.007 (3)0.001 (2)0.000 (2)
C70.030 (3)0.046 (4)0.033 (3)0.021 (3)0.006 (3)0.011 (3)
C80.032 (3)0.030 (3)0.022 (3)0.006 (2)0.000 (2)0.003 (2)
O100.044 (6)0.044 (6)0.135 (12)0.014 (5)0.036 (7)0.007 (7)
Geometric parameters (Å, º) top
La1—N12.726 (4)O8—H8B0.9600
La1—O1i2.454 (4)O9—H9B0.8500
La1—O3ii2.541 (5)O9—H9A0.8800
La1—O42.551 (5)O10—H10A0.8300
La1—O52.543 (4)O10—H10B0.8500
La1—O6iii2.550 (5)N1—C51.338 (7)
La1—O72.604 (7)N1—C11.346 (8)
La1—O82.553 (5)C1—C41.379 (8)
La1—O92.612 (7)C1—C71.503 (8)
O1—C61.271 (8)C2—C31.386 (9)
O2—C61.232 (9)C2—C51.382 (8)
O3—C71.251 (8)C3—C61.510 (8)
O4—C71.253 (7)C3—C41.388 (8)
O5—C81.247 (7)C8—C8iii1.541 (8)
O6—C81.253 (7)C2—H2A0.9300
O7—H7B0.8300C4—H4A0.9300
O7—H7A0.8400C5—H5A0.9300
O8—H8A0.8300
O4—La1—O573.91 (15)La1—O5—C8121.8 (4)
O4—La1—O7143.20 (19)La1iii—O6—C8121.6 (4)
O4—La1—O876.08 (19)La1—O7—H7B119.00
O4—La1—O9130.46 (19)H7A—O7—H7B105.00
O4—La1—N160.09 (14)La1—O7—H7A96.00
O3ii—La1—O4136.05 (14)La1—O8—H8A129.00
O1i—La1—O494.15 (17)H8A—O8—H8B93.00
O4—La1—O6iii71.03 (17)La1—O8—H8B138.00
O5—La1—O785.94 (19)La1—O9—H9A87.00
O5—La1—O878.78 (15)H9A—O9—H9B108.00
O5—La1—O968.31 (19)La1—O9—H9B116.00
O5—La1—N1129.55 (15)H10A—O10—H10B102.00
O3ii—La1—O5143.58 (15)La1—N1—C5123.7 (4)
O1i—La1—O5131.93 (14)La1—N1—C1118.9 (3)
O5—La1—O6iii62.98 (13)C1—N1—C5116.8 (5)
O7—La1—O8130.39 (19)N1—C1—C4122.9 (5)
O7—La1—O964.2 (2)N1—C1—C7115.1 (5)
O7—La1—N1143.97 (18)C4—C1—C7121.9 (6)
O3ii—La1—O776.45 (18)C3—C2—C5118.7 (5)
O1i—La1—O776.62 (19)C2—C3—C6122.0 (5)
O6iii—La1—O772.42 (19)C4—C3—C6120.1 (5)
O8—La1—O966.27 (19)C2—C3—C4117.9 (5)
O8—La1—N171.47 (16)C1—C4—C3119.6 (6)
O3ii—La1—O888.67 (17)N1—C5—C2123.9 (6)
O1i—La1—O8144.45 (16)O1—C6—O2126.8 (6)
O6iii—La1—O8134.78 (18)O2—C6—C3117.2 (5)
O9—La1—N1128.72 (18)O1—C6—C3116.1 (6)
O3ii—La1—O975.33 (18)O4—C7—C1116.7 (6)
O1i—La1—O9135.03 (19)O3—C7—C1119.0 (5)
O6iii—La1—O9115.40 (18)O3—C7—O4124.3 (6)
O3ii—La1—N176.02 (14)O5—C8—O6126.8 (5)
O1i—La1—N174.06 (14)O5—C8—C8iii116.9 (5)
O6iii—La1—N1114.76 (15)O6—C8—C8iii116.4 (5)
O1i—La1—O3ii74.77 (16)C5—C2—H2A121.00
O3ii—La1—O6iii136.50 (17)C3—C2—H2A121.00
O1i—La1—O6iii69.06 (15)C1—C4—H4A120.00
La1i—O1—C6137.1 (4)C3—C4—H4A120.00
La1iv—O3—C7139.6 (4)N1—C5—H5A118.00
La1—O4—C7128.4 (4)C2—C5—H5A118.00
O5—La1—O4—C7158.8 (6)N1—La1—O1i—C6i73.1 (6)
O7—La1—O4—C7141.7 (5)O4—La1—O6iii—C8iii86.9 (5)
O8—La1—O4—C776.7 (6)O5—La1—O6iii—C8iii5.7 (5)
O9—La1—O4—C7117.6 (6)O7—La1—O6iii—C8iii88.8 (5)
N1—La1—O4—C70.3 (5)O8—La1—O6iii—C8iii41.2 (6)
O3ii—La1—O4—C73.7 (7)O9—La1—O6iii—C8iii39.8 (6)
O1i—La1—O4—C768.6 (6)N1—La1—O6iii—C8iii129.2 (5)
O6iii—La1—O4—C7134.8 (6)La1i—O1—C6—C3102.3 (6)
O4—La1—O5—C882.1 (5)La1i—O1—C6—O278.5 (8)
O7—La1—O5—C866.7 (5)La1iv—O3—C7—O411.4 (11)
O8—La1—O5—C8160.7 (5)La1iv—O3—C7—C1169.0 (4)
O9—La1—O5—C8130.5 (5)La1—O4—C7—C14.4 (9)
N1—La1—O5—C8106.5 (5)La1—O4—C7—O3175.2 (5)
O3ii—La1—O5—C8127.3 (5)La1—O5—C8—O6174.5 (5)
O1i—La1—O5—C81.2 (6)La1—O5—C8—C8iii5.3 (8)
O6iii—La1—O5—C85.6 (5)La1iii—O6—C8—O5174.7 (5)
O4—La1—N1—C15.7 (4)La1iii—O6—C8—C8iii5.5 (8)
O4—La1—N1—C5177.0 (5)C5—N1—C1—C42.4 (8)
O5—La1—N1—C132.9 (5)La1—N1—C1—C79.8 (6)
O5—La1—N1—C5155.9 (4)C1—N1—C5—C23.0 (8)
O7—La1—N1—C1135.5 (4)C5—N1—C1—C7178.3 (5)
O7—La1—N1—C535.7 (6)La1—N1—C5—C2168.4 (4)
O8—La1—N1—C190.0 (4)La1—N1—C1—C4169.4 (4)
O8—La1—N1—C598.8 (4)N1—C1—C7—O3170.2 (6)
O9—La1—N1—C1125.6 (4)N1—C1—C7—O49.4 (8)
O9—La1—N1—C563.2 (5)C4—C1—C7—O310.5 (9)
O3ii—La1—N1—C1176.7 (4)C4—C1—C7—O4169.9 (6)
O3ii—La1—N1—C55.4 (4)N1—C1—C4—C30.1 (9)
O1i—La1—N1—C198.8 (4)C7—C1—C4—C3179.1 (5)
O1i—La1—N1—C572.4 (4)C5—C2—C3—C41.6 (8)
O6iii—La1—N1—C141.6 (4)C3—C2—C5—N11.0 (9)
O6iii—La1—N1—C5129.7 (4)C5—C2—C3—C6177.2 (5)
O4—La1—O3ii—C7ii173.4 (6)C2—C3—C6—O125.5 (8)
O5—La1—O3ii—C7ii49.4 (8)C6—C3—C4—C1176.7 (5)
O7—La1—O3ii—C7ii13.9 (7)C4—C3—C6—O227.4 (8)
O8—La1—O3ii—C7ii118.3 (7)C2—C3—C6—O2153.9 (6)
O9—La1—O3ii—C7ii52.5 (7)C4—C3—C6—O1153.3 (5)
N1—La1—O3ii—C7ii170.5 (7)C2—C3—C4—C12.1 (8)
O4—La1—O1i—C6i130.4 (6)O5—C8—C8iii—O5iii180.0 (6)
O5—La1—O1i—C6i157.6 (6)O5—C8—C8iii—O6iii0.2 (9)
O7—La1—O1i—C6i85.8 (6)O6—C8—C8iii—O5iii0.2 (9)
O8—La1—O1i—C6i58.6 (7)O6—C8—C8iii—O6iii180.0 (6)
O9—La1—O1i—C6i56.3 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4ii0.842.082.911 (8)168
O7—H7B···O10v0.831.712.533 (12)168
O8—H8A···O2vi0.831.832.660 (7)173
O8—H8B···O6vii0.962.032.914 (7)153
O9—H9A···O6vii0.882.272.987 (8)138
O9—H9B···O100.851.732.390 (14)133
O10—H10A···O5ii0.832.242.885 (12)135
O10—H10A···O8ii0.832.292.924 (15)133
O10—H10B···O9viii0.851.772.591 (17)163
C5—H5A···O3ii0.932.493.164 (7)130
Symmetry codes: (ii) x1, y, z; (v) x, y+1, z; (vi) x+2, y, z+1; (vii) x+1, y, z+2; (viii) x, y, z+2.

Experimental details

Crystal data
Chemical formula[La2(C7H3NO4)2(C2O4)(H2O)6]·H2O
Mr822.16
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.4614 (8), 6.6844 (8), 14.0796 (17)
α, β, γ (°)89.735 (2), 85.266 (2), 73.135 (2)
V3)579.85 (12)
Z1
Radiation typeMo Kα
µ (mm1)3.73
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.686, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
5023, 2046, 1795
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 1.09
No. of reflections2046
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.14, 2.13

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
La1—N12.726 (4)La1—O6iii2.550 (5)
La1—O1i2.454 (4)La1—O72.604 (7)
La1—O3ii2.541 (5)La1—O82.553 (5)
La1—O42.551 (5)La1—O92.612 (7)
La1—O52.543 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4ii0.842.082.911 (8)168
O7—H7B···O10iv0.831.712.533 (12)168
O8—H8A···O2v0.831.832.660 (7)173
O8—H8B···O6vi0.962.032.914 (7)153
O9—H9A···O6vi0.882.272.987 (8)138
O9—H9B···O100.851.732.390 (14)133
O10—H10A···O5ii0.832.242.885 (12)135
O10—H10A···O8ii0.832.292.924 (15)133
O10—H10B···O9vii0.851.772.591 (17)163
C5—H5A···O3ii0.932.493.164 (7)130
Symmetry codes: (ii) x1, y, z; (iv) x, y+1, z; (v) x+2, y, z+1; (vi) x+1, y, z+2; (vii) x, y, z+2.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationAghabozorg, H., Jafarbak, F., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, m435–m436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X.-M., Niu, Y.-L., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m487–m488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568–m1569.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds