metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-aqua-aqua-μ5-naphthalene-2,7-di­sulfonato-strontium]

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 November 2011; accepted 8 November 2011; online 19 November 2011)

In the crystal structure of the polymeric title compound, [Sr(C10H6O6S2)(H2O)2]n, the naphthalene-2,7-disulfonate dianion uses one –SO3 unit to bind to two SrII cations and the other –SO3 unit to bind to three SrII cations; of the two coordinated water mol­ecules, one is monodentate to one SrII cation, whereas the other bridges two SrII cations. The μ5-bridging mode of the dianon and the μ2-bridging mode of the water mol­ecule generate a polymeric three-dimensional network which is consolidated by O—H⋯O hydrogen bonds. The SrII cation exists in an undefined eight-coordinate environment.

Related literature

For a review of metal arene­sulfonates, see: Cai (2004[Cai, J.-W. (2004). Coord. Chem. Rev. 248, 1061-1083.]). For a related strontium naphthalene­disulfonate, see: Cai et al. (2001[Cai, J., Chen, C.-H., Liao, C.-Z., Feng, X.-L. & Chen, X.-M. (2001). Acta Cryst. B57, 520-530.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C10H6O6S2)(H2O)2]

  • Mr = 409.92

  • Orthorhombic, P n a 21

  • a = 13.064 (6) Å

  • b = 19.324 (9) Å

  • c = 5.1989 (17) Å

  • V = 1312.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.46 mm−1

  • T = 293 K

  • 0.18 × 0.12 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.501, Tmax = 0.616

  • 11845 measured reflections

  • 2962 independent reflections

  • 2646 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.071

  • S = 1.04

  • 2962 reflections

  • 190 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.51 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1584 Friedel pairs

  • Flack parameter: −0.011 (6)

Table 1
Selected bond lengths (Å)

Sr1—O1 2.612 (2)
Sr1—O2i 2.494 (2)
Sr1—O3ii 2.595 (2)
Sr1—O5iii 2.549 (2)
Sr1—O6iv 2.540 (2)
Sr1—O1w 2.614 (2)
Sr1—O2w 2.756 (3)
Sr1—O2wv 2.974 (3)
Symmetry codes: (i) [-x, -y+1, z-{\script{1\over 2}}]; (ii) [-x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x, y, z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w1⋯O4vi 0.84 2.29 3.066 (4) 154
O1w—H1w2⋯O4vii 0.84 2.27 2.904 (4) 132
O2w—H2w2⋯O4vii 0.84 2.03 2.856 (3) 167
Symmetry codes: (vi) [-x+1, -y+1, z+{\script{1\over 2}}]; (vii) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A review of metal arenesulfonates that are synthesized in aqueous medium explains the reasons for the ability of the ions to form stable metal-organic frameworks owing to multiple coordination modes of the sulfonate –SO3 groups (Cai, 2004). Among the divalent metal derivatives, the strontium system has been less studied (Cai et al., 2001). In the crystal structure of Sr(H2O)2(C10H6O6S2), the C10H6O6S22- dianion uses one –SO3 unit to bind to two SrII atoms and the other –SO3 unit to bind to three SrII atoms; of the two water molecules, one is monodentate to one Sr atom whereas the other bridge two Sr atoms (Scheme I, Fig. 1). The µ5-bridging mode of the dianon and the µ2-bridging mode of the water molecule generates a polymeric three-dimensional network; the network is consolidated by O–H···O hydrogen bonds (Table 1). The Sr atom exists in an undefined eight-coordinate environment.

Related literature top

For a review of metal arenesulfonates, see: Cai (2004). For a related strontium naphthalenedisulfonate, see: Cai et al. (2001).

Experimental top

Strontium nitrate (1 mmol) and sodium naphthalene-2,7-disulfonate (1 mmol) were dissolved in water (10 ml). The solution was filtered and set aside; colorless crystals were isolated from the filtrate after several days.

Refinement top

Hydrogen atoms were generated geometrically and were included in the riding model approximation [C—H 0.93 Å and O–H 0.84 Å, U 1.2 to 1.5Ueq(C,O)]. The 3 7 2 reflection was omitted owing to bad agreement.

Structure description top

A review of metal arenesulfonates that are synthesized in aqueous medium explains the reasons for the ability of the ions to form stable metal-organic frameworks owing to multiple coordination modes of the sulfonate –SO3 groups (Cai, 2004). Among the divalent metal derivatives, the strontium system has been less studied (Cai et al., 2001). In the crystal structure of Sr(H2O)2(C10H6O6S2), the C10H6O6S22- dianion uses one –SO3 unit to bind to two SrII atoms and the other –SO3 unit to bind to three SrII atoms; of the two water molecules, one is monodentate to one Sr atom whereas the other bridge two Sr atoms (Scheme I, Fig. 1). The µ5-bridging mode of the dianon and the µ2-bridging mode of the water molecule generates a polymeric three-dimensional network; the network is consolidated by O–H···O hydrogen bonds (Table 1). The Sr atom exists in an undefined eight-coordinate environment.

For a review of metal arenesulfonates, see: Cai (2004). For a related strontium naphthalenedisulfonate, see: Cai et al. (2001).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a fragment of polymeric Sr(H2O)2(C10H6O6S2) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Poly[µ2-aqua-aqua-µ5-naphthalene-2,7-disulfonato-strontium] top
Crystal data top
[Sr(C10H6O6S2)(H2O)2]F(000) = 816
Mr = 409.92Dx = 2.075 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 10271 reflections
a = 13.064 (6) Åθ = 3.1–27.5°
b = 19.324 (9) ŵ = 4.46 mm1
c = 5.1989 (17) ÅT = 293 K
V = 1312.5 (9) Å3Prism, colorless
Z = 40.18 × 0.12 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2962 independent reflections
Radiation source: fine-focus sealed tube2646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.501, Tmax = 0.616k = 2425
11845 measured reflectionsl = 66
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0383P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2962 reflectionsΔρmax = 0.60 e Å3
190 parametersΔρmin = 0.51 e Å3
1 restraintAbsolute structure: Flack (1983), 1584 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (6)
Crystal data top
[Sr(C10H6O6S2)(H2O)2]V = 1312.5 (9) Å3
Mr = 409.92Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.064 (6) ŵ = 4.46 mm1
b = 19.324 (9) ÅT = 293 K
c = 5.1989 (17) Å0.18 × 0.12 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2962 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2646 reflections with I > 2σ(I)
Tmin = 0.501, Tmax = 0.616Rint = 0.040
11845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.60 e Å3
S = 1.04Δρmin = 0.51 e Å3
2962 reflectionsAbsolute structure: Flack (1983), 1584 Friedel pairs
190 parametersAbsolute structure parameter: 0.011 (6)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.008465 (18)0.635847 (12)0.49937 (9)0.02043 (9)
S10.14037 (4)0.47764 (3)0.49983 (18)0.01857 (14)
S20.64351 (5)0.24848 (3)0.49376 (18)0.01863 (14)
O10.14590 (15)0.55148 (11)0.5589 (4)0.0294 (6)
O20.12497 (16)0.43544 (11)0.7268 (4)0.0256 (5)
O30.06622 (16)0.46443 (12)0.2980 (4)0.0285 (5)
O40.74894 (15)0.27350 (11)0.5219 (6)0.0310 (5)
O50.63559 (18)0.19599 (11)0.2968 (4)0.0294 (5)
O60.59963 (17)0.22808 (12)0.7371 (4)0.0288 (5)
O1w0.13881 (15)0.72744 (11)0.5039 (7)0.0376 (5)
H1w10.15430.73690.65670.056*
H1w20.19030.71130.42780.056*
O2w0.08346 (17)0.63163 (10)0.0225 (6)0.0315 (5)
H2w10.11870.59530.02420.038*
H2w20.12570.66440.02420.038*
C10.3192 (2)0.40460 (13)0.4846 (8)0.0208 (5)
H10.29580.38260.63250.025*
C20.2615 (2)0.45518 (15)0.3713 (5)0.0187 (6)
C30.2939 (2)0.48863 (15)0.1474 (6)0.0240 (7)
H30.25260.52220.07170.029*
C40.3857 (2)0.47221 (15)0.0399 (6)0.0230 (7)
H40.40720.49490.10830.028*
C50.4485 (2)0.42073 (15)0.1525 (6)0.0195 (6)
C60.4143 (2)0.38578 (15)0.3764 (6)0.0196 (6)
C70.4773 (2)0.33370 (14)0.4836 (9)0.0205 (6)
H70.45550.30970.62870.025*
C80.5694 (2)0.31837 (15)0.3767 (5)0.0196 (6)
C90.6062 (3)0.35484 (15)0.1587 (6)0.0247 (7)
H90.67070.34510.09200.030*
C100.5462 (2)0.40419 (15)0.0481 (6)0.0241 (7)
H100.56940.42740.09740.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.02020 (14)0.02060 (13)0.02050 (13)0.00055 (9)0.00006 (17)0.00153 (17)
S10.0168 (3)0.0174 (3)0.0215 (3)0.0006 (2)0.0002 (4)0.0011 (4)
S20.0182 (3)0.0182 (3)0.0195 (3)0.0003 (2)0.0002 (4)0.0013 (4)
O10.0256 (12)0.0186 (10)0.0439 (18)0.0013 (8)0.0031 (10)0.0054 (9)
O20.0238 (12)0.0276 (12)0.0252 (11)0.0004 (9)0.0028 (9)0.0027 (9)
O30.0219 (12)0.0363 (13)0.0273 (11)0.0012 (10)0.0039 (10)0.0047 (10)
O40.0206 (10)0.0311 (11)0.0414 (13)0.0040 (8)0.0073 (12)0.0085 (14)
O50.0360 (14)0.0235 (12)0.0287 (12)0.0056 (9)0.0051 (11)0.0047 (10)
O60.0355 (14)0.0249 (11)0.0260 (12)0.0005 (10)0.0050 (10)0.0045 (10)
O1w0.0341 (12)0.0421 (13)0.0366 (12)0.0059 (9)0.0008 (16)0.0050 (16)
O2w0.0313 (11)0.0307 (11)0.0324 (13)0.0031 (9)0.0037 (14)0.0060 (11)
C10.0234 (13)0.0192 (12)0.0197 (12)0.0033 (10)0.0004 (17)0.0003 (15)
C20.0143 (14)0.0210 (14)0.0210 (14)0.0008 (11)0.0003 (11)0.0046 (12)
C30.0243 (17)0.0208 (14)0.0270 (15)0.0016 (12)0.0040 (14)0.0028 (13)
C40.0253 (15)0.0245 (14)0.0193 (19)0.0021 (11)0.0002 (13)0.0025 (12)
C50.0208 (16)0.0184 (14)0.0192 (15)0.0036 (12)0.0012 (12)0.0001 (12)
C60.0210 (16)0.0159 (14)0.0219 (14)0.0016 (12)0.0027 (12)0.0023 (12)
C70.0221 (13)0.0210 (13)0.0185 (14)0.0015 (10)0.0001 (16)0.0049 (18)
C80.0224 (16)0.0162 (14)0.0202 (13)0.0005 (12)0.0027 (12)0.0015 (11)
C90.0236 (17)0.0257 (16)0.0248 (16)0.0001 (12)0.0064 (14)0.0002 (13)
C100.0271 (16)0.0243 (15)0.021 (2)0.0001 (12)0.0041 (12)0.0032 (12)
Geometric parameters (Å, º) top
Sr1—O12.612 (2)O1w—H1w20.8400
Sr1—O2i2.494 (2)O2w—Sr1viii2.974 (3)
Sr1—O3ii2.595 (2)O2w—H2w10.8400
Sr1—O5iii2.549 (2)O2w—H2w20.8400
Sr1—O6iv2.540 (2)C1—C21.367 (4)
Sr1—O1w2.614 (2)C1—C61.412 (4)
Sr1—O2w2.756 (3)C1—H10.9300
Sr1—O2wv2.974 (3)C2—C31.397 (4)
S1—O21.448 (2)C3—C41.360 (4)
S1—O31.451 (2)C3—H30.9300
S1—O11.461 (2)C4—C51.417 (4)
S1—C21.772 (3)C4—H40.9300
S2—O61.444 (2)C5—C61.418 (4)
S2—O51.445 (2)C5—C101.423 (4)
S2—O41.467 (2)C6—C71.414 (4)
S2—C81.769 (3)C7—C81.358 (4)
O2—Sr1ii2.494 (2)C7—H70.9300
O3—Sr1i2.595 (2)C8—C91.418 (4)
O5—Sr1vi2.549 (2)C9—C101.362 (4)
O6—Sr1vii2.540 (2)C9—H90.9300
O1w—H1w10.8400C10—H100.9300
O2i—Sr1—O6iv78.25 (8)S1—O3—Sr1i139.31 (13)
O2i—Sr1—O5iii101.47 (8)S2—O5—Sr1vi142.79 (14)
O6iv—Sr1—O5iii72.56 (8)S2—O6—Sr1vii147.99 (15)
O2i—Sr1—O3ii75.53 (8)Sr1—O1w—H1w1109.5
O6iv—Sr1—O3ii135.12 (7)Sr1—O1w—H1w2109.5
O5iii—Sr1—O3ii77.77 (8)H1w1—O1w—H1w2109.5
O2i—Sr1—O1101.17 (7)Sr1—O2w—Sr1viii130.23 (8)
O6iv—Sr1—O1149.72 (7)Sr1—O2w—H2w1104.7
O5iii—Sr1—O1135.70 (8)Sr1viii—O2w—H2w1104.7
O3ii—Sr1—O171.79 (7)Sr1—O2w—H2w2104.7
O2i—Sr1—O1w145.90 (10)Sr1viii—O2w—H2w2104.7
O6iv—Sr1—O1w82.82 (8)H2w1—O2w—H2w2105.7
O5iii—Sr1—O1w99.51 (9)C2—C1—C6119.8 (3)
O3ii—Sr1—O1w135.57 (9)C2—C1—H1120.1
O1—Sr1—O1w81.56 (8)C6—C1—H1120.1
O2i—Sr1—O2w74.84 (7)C1—C2—C3121.5 (3)
O6iv—Sr1—O2w75.06 (7)C1—C2—S1120.3 (2)
O5iii—Sr1—O2w147.45 (7)C3—C2—S1118.1 (2)
O3ii—Sr1—O2w130.00 (7)C4—C3—C2120.1 (3)
O1—Sr1—O2w75.62 (7)C4—C3—H3120.0
O1w—Sr1—O2w72.99 (10)C2—C3—H3120.0
O2i—Sr1—O2wv138.66 (7)C3—C4—C5120.3 (3)
O6iv—Sr1—O2wv134.37 (7)C3—C4—H4119.8
O5iii—Sr1—O2wv73.79 (7)C5—C4—H4119.8
O3ii—Sr1—O2wv63.25 (7)C4—C5—C6119.4 (3)
O1—Sr1—O2wv64.07 (7)C4—C5—C10121.3 (3)
O1w—Sr1—O2wv73.33 (9)C6—C5—C10119.2 (3)
O2w—Sr1—O2wv130.23 (8)C1—C6—C7122.6 (3)
O2—S1—O3113.41 (13)C1—C6—C5118.8 (3)
O2—S1—O1112.68 (14)C7—C6—C5118.6 (3)
O3—S1—O1110.90 (13)C8—C7—C6120.6 (3)
O2—S1—C2107.06 (13)C8—C7—H7119.7
O3—S1—C2106.29 (14)C6—C7—H7119.7
O1—S1—C2105.92 (13)C7—C8—C9121.2 (3)
O6—S2—O5113.63 (13)C7—C8—S2120.7 (2)
O6—S2—O4112.04 (16)C9—C8—S2118.0 (2)
O5—S2—O4111.67 (15)C10—C9—C8119.4 (3)
O6—S2—C8107.02 (14)C10—C9—H9120.3
O5—S2—C8104.65 (14)C8—C9—H9120.3
O4—S2—C8107.23 (14)C9—C10—C5120.8 (3)
S1—O1—Sr1123.13 (12)C9—C10—H10119.6
S1—O2—Sr1ii149.15 (13)C5—C10—H10119.6
O2—S1—O1—Sr199.69 (16)O2—S1—C2—C11.7 (3)
O3—S1—O1—Sr128.67 (19)O3—S1—C2—C1119.8 (3)
C2—S1—O1—Sr1143.58 (13)O1—S1—C2—C1122.2 (3)
O2i—Sr1—O1—S114.73 (16)Sr1—S1—C2—C1151.7 (2)
O6iv—Sr1—O1—S1100.53 (18)O2—S1—C2—C3179.3 (2)
O5iii—Sr1—O1—S1104.78 (16)O3—S1—C2—C357.8 (2)
O3ii—Sr1—O1—S155.81 (15)O1—S1—C2—C360.2 (3)
O1w—Sr1—O1—S1160.21 (17)Sr1—S1—C2—C330.7 (3)
O2w—Sr1—O1—S185.71 (15)C1—C2—C3—C41.4 (4)
O2wv—Sr1—O1—S1124.29 (16)S1—C2—C3—C4179.0 (2)
O3—S1—O2—Sr1ii22.5 (3)C2—C3—C4—C50.6 (4)
O1—S1—O2—Sr1ii104.6 (3)C3—C4—C5—C60.9 (4)
C2—S1—O2—Sr1ii139.4 (2)C3—C4—C5—C10178.0 (3)
Sr1—S1—O2—Sr1ii64.1 (3)C2—C1—C6—C7179.7 (3)
O2—S1—O3—Sr1i62.7 (2)C2—C1—C6—C50.7 (4)
O1—S1—O3—Sr1i169.39 (18)C4—C5—C6—C11.5 (4)
C2—S1—O3—Sr1i54.7 (2)C10—C5—C6—C1177.4 (3)
Sr1—S1—O3—Sr1i173.4 (2)C4—C5—C6—C7178.9 (3)
O6—S2—O5—Sr1vi72.0 (3)C10—C5—C6—C72.2 (4)
O4—S2—O5—Sr1vi160.0 (2)C1—C6—C7—C8178.4 (3)
C8—S2—O5—Sr1vi44.4 (3)C5—C6—C7—C81.1 (5)
O5—S2—O6—Sr1vii0.2 (3)C6—C7—C8—C91.4 (5)
O4—S2—O6—Sr1vii127.6 (2)C6—C7—C8—S2174.7 (2)
C8—S2—O6—Sr1vii115.2 (3)O6—S2—C8—C713.3 (3)
O2i—Sr1—O2w—Sr1viii37.85 (9)O5—S2—C8—C7107.5 (3)
O6iv—Sr1—O2w—Sr1viii43.75 (10)O4—S2—C8—C7133.7 (3)
O5iii—Sr1—O2w—Sr1viii49.76 (17)O6—S2—C8—C9170.5 (2)
O3ii—Sr1—O2w—Sr1viii93.43 (12)O5—S2—C8—C968.6 (3)
O1—Sr1—O2w—Sr1viii143.91 (11)O4—S2—C8—C950.1 (3)
O1w—Sr1—O2w—Sr1viii130.67 (11)C7—C8—C9—C102.7 (5)
O2wv—Sr1—O2w—Sr1viii180.0S2—C8—C9—C10173.4 (2)
S1—Sr1—O2w—Sr1viii123.51 (9)C8—C9—C10—C51.6 (5)
C6—C1—C2—C30.7 (4)C4—C5—C10—C9179.7 (3)
C6—C1—C2—S1178.3 (2)C6—C5—C10—C90.8 (4)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x, y, z+1; (vi) x+1/2, y1/2, z1/2; (vii) x+1/2, y1/2, z+1/2; (viii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O4ix0.842.293.066 (4)154
O1w—H1w2···O4x0.842.272.904 (4)132
O2w—H2w2···O4x0.842.032.856 (3)167
Symmetry codes: (ix) x+1, y+1, z+1/2; (x) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Sr(C10H6O6S2)(H2O)2]
Mr409.92
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)13.064 (6), 19.324 (9), 5.1989 (17)
V3)1312.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)4.46
Crystal size (mm)0.18 × 0.12 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.501, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
11845, 2962, 2646
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.04
No. of reflections2962
No. of parameters190
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.51
Absolute structureFlack (1983), 1584 Friedel pairs
Absolute structure parameter0.011 (6)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sr1—O12.612 (2)Sr1—O6iv2.540 (2)
Sr1—O2i2.494 (2)Sr1—O1w2.614 (2)
Sr1—O3ii2.595 (2)Sr1—O2w2.756 (3)
Sr1—O5iii2.549 (2)Sr1—O2wv2.974 (3)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O4vi0.842.293.066 (4)154
O1w—H1w2···O4vii0.842.272.904 (4)132
O2w—H2w2···O4vii0.842.032.856 (3)167
Symmetry codes: (vi) x+1, y+1, z+1/2; (vii) x+1, y+1, z1/2.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCai, J.-W. (2004). Coord. Chem. Rev. 248, 1061–1083.  Web of Science CSD CrossRef CAS Google Scholar
First citationCai, J., Chen, C.-H., Liao, C.-Z., Feng, X.-L. & Chen, X.-M. (2001). Acta Cryst. B57, 520–530.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds