organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Acetyl-4-methyl-2-oxo-2H-chromen-7-yl acetate

aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and bDepartment of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China
*Correspondence e-mail: spyang69320@yahoo.cn

(Received 4 November 2011; accepted 16 November 2011; online 19 November 2011)

In the title compound, C14H12O5, the benzopyran-2-one ring system is approximately planar [maximum deviation = 0.018 (1) Å]; the mean plane is oriented at dihedral angles of 52.26 (11) and 72.92 (7)°, respectively, to the acetyl and acet­oxy groups. In the crystal, ππ stacking is observed between parallel benzene rings of adjacent mol­ecules, the centroid–centroid distance being 3.6774 (17) Å. Inter­molecular weak C—H⋯O hydrogen bonding, and C=O⋯C=O [O⋯C = 3.058 (3) Å] and C=O⋯π [O⋯centroid = 3.328 (2) Å] inter­actions occur in the crystal structure.

Related literature

For structures of related coumarin derivatives, see: Yang et al. (2006[Yang, S.-P., Han, L.-J., Xia, H.-T. & Wang, D.-Q. (2006). Acta Cryst. E62, o4181-o4182.], 2007[Yang, S.-P., Han, L.-J., Wang, D.-Q. & Xia, H.-T. (2007). Acta Cryst. E63, o4643.], 2010[Yang, S.-P., Han, L.-J., Wang, D.-Q. & Chen, X.-Y. (2010). Acta Cryst. E66, o3183.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12O5

  • Mr = 260.24

  • Triclinic, [P \overline 1]

  • a = 8.198 (3) Å

  • b = 8.504 (3) Å

  • c = 9.644 (3) Å

  • α = 90.213 (4)°

  • β = 97.761 (4)°

  • γ = 111.686 (4)°

  • V = 618.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.989

  • 4891 measured reflections

  • 2292 independent reflections

  • 1572 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.150

  • S = 1.07

  • 2292 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.52 3.324 (3) 145
Symmetry code: (i) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Previous we have reported the crystal structures of some coumarin derivatives (Yang et al., 2006, 2007, 2010). As part of our study of the crystal structures of coumarin derivatives, we decribed here the crystal structure of 8-acetyl-7-acetoxy-4-methyl-2H-1-benzopyran-2-one, (I).

In the molecule (I) (Fig. 1), the benzopyran-2-one ring system is approximately palnar [maximum deviation 0.018 (1) Å]; the mean plane is oriented with respect to the acetyl and acetoxy groups at 52.26 (11) and 72.92 (7)°, respectively.

Molecules are linked together by one weak C—H···O hydrogen bond (Table. 1), two CO···CO interactions: C1O2···C13iiO4ii [O2···C13ii = 3.101 (3) Å, C1O2···C13ii = 143.37 (15)°; symmetry code:(ii). x + 1, y + 1, z] and C1O2···C1iii O2iii [O2···C1iii = 3.058 (3) Å, C1O2···C1iii = 88.63 (13)°; symmetry code: (iii). 1 - x, 2 - y, 2 - z.], one C O···π interaction C1O2···Cg1iii [O2···Cg1iii = 3.328 (2) Å, C1O2···Cg1iii = 113.74 (14)°, Cg1 is the centroid of the pyran ring] and one π-π stacking interaction Cg2···Cg2iv [Cg2···Cg2iv = 3.6774 (17) Å, Cg2 is the centroid of the benzene ring; symmetry code: (iv) -x, 1 - y, 2 - z] and generated a two-dimensional crystal structure by translation and inversion symmetry.

Related literature top

For structures of related coumarin derivatives, see: Yang et al. (2006, 2007, 2010).

Experimental top

To a solution containing 8-acetyl-7-hydroxy- 4-methylcoumarin (2.18 g, 10 mmol) and anhydrous pyridine (10 ml), a solution of acetic anhydride (1.53 g, 15 mmol) was slowly added at 278–283 K, with stirring, then the reaction mixture was stirred at 303 K continuously for 24 h and then poured into ice–water (200 ml). The solid obtained was filtered off, washed with water and dried at room temperature. Colourless crystal suitable for X-ray structure analysis were obtained by recrystallizing the crude product from an ethanol solution [m.p. 484–485K].

Refinement top

All H-atoms were placed in calculated positions (C—H = 0.93 and 0.96 Å) and were included in the refinement in the riding model, with Uiso(H) = 1.2Ueq(aromatic C) and Uiso(H) = 1.5Ueq(methyl C).

Structure description top

Previous we have reported the crystal structures of some coumarin derivatives (Yang et al., 2006, 2007, 2010). As part of our study of the crystal structures of coumarin derivatives, we decribed here the crystal structure of 8-acetyl-7-acetoxy-4-methyl-2H-1-benzopyran-2-one, (I).

In the molecule (I) (Fig. 1), the benzopyran-2-one ring system is approximately palnar [maximum deviation 0.018 (1) Å]; the mean plane is oriented with respect to the acetyl and acetoxy groups at 52.26 (11) and 72.92 (7)°, respectively.

Molecules are linked together by one weak C—H···O hydrogen bond (Table. 1), two CO···CO interactions: C1O2···C13iiO4ii [O2···C13ii = 3.101 (3) Å, C1O2···C13ii = 143.37 (15)°; symmetry code:(ii). x + 1, y + 1, z] and C1O2···C1iii O2iii [O2···C1iii = 3.058 (3) Å, C1O2···C1iii = 88.63 (13)°; symmetry code: (iii). 1 - x, 2 - y, 2 - z.], one C O···π interaction C1O2···Cg1iii [O2···Cg1iii = 3.328 (2) Å, C1O2···Cg1iii = 113.74 (14)°, Cg1 is the centroid of the pyran ring] and one π-π stacking interaction Cg2···Cg2iv [Cg2···Cg2iv = 3.6774 (17) Å, Cg2 is the centroid of the benzene ring; symmetry code: (iv) -x, 1 - y, 2 - z] and generated a two-dimensional crystal structure by translation and inversion symmetry.

For structures of related coumarin derivatives, see: Yang et al. (2006, 2007, 2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
8-Acetyl-4-methyl-2-oxo-2H-chromen-7-yl acetate top
Crystal data top
C14H12O5Z = 2
Mr = 260.24F(000) = 272
Triclinic, P1Dx = 1.399 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.198 (3) ÅCell parameters from 1283 reflections
b = 8.504 (3) Åθ = 2.6–25.2°
c = 9.644 (3) ŵ = 0.11 mm1
α = 90.213 (4)°T = 298 K
β = 97.761 (4)°Prism, colourless
γ = 111.686 (4)°0.30 × 0.10 × 0.10 mm
V = 618.0 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2292 independent reflections
Radiation source: fine-focus sealed tube1572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.969, Tmax = 0.989k = 1010
4891 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0824P)2 + 0.0107P]
where P = (Fo2 + 2Fc2)/3
2292 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H12O5γ = 111.686 (4)°
Mr = 260.24V = 618.0 (3) Å3
Triclinic, P1Z = 2
a = 8.198 (3) ÅMo Kα radiation
b = 8.504 (3) ŵ = 0.11 mm1
c = 9.644 (3) ÅT = 298 K
α = 90.213 (4)°0.30 × 0.10 × 0.10 mm
β = 97.761 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2292 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1572 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.989Rint = 0.030
4891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
2292 reflectionsΔρmin = 0.19 e Å3
175 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3325 (3)1.0614 (2)0.9868 (2)0.0430 (5)
C20.2915 (3)1.0571 (3)1.1282 (2)0.0463 (5)
H20.36571.14271.19380.056*
C30.1515 (3)0.9353 (2)1.1690 (2)0.0409 (5)
C40.0343 (2)0.8014 (2)1.0672 (2)0.0354 (5)
C50.1181 (3)0.6703 (2)1.0954 (2)0.0408 (5)
H50.14860.66551.18520.049*
C60.2241 (3)0.5482 (2)0.9946 (2)0.0419 (5)
H60.32510.46151.01560.050*
C70.1786 (2)0.5559 (2)0.8607 (2)0.0368 (5)
C80.0288 (2)0.6828 (2)0.8251 (2)0.0349 (5)
C90.0747 (2)0.8046 (2)0.9306 (2)0.0344 (5)
C100.1127 (3)0.9338 (3)1.3169 (2)0.0646 (7)
H10A0.20101.02991.37090.097*
H10B0.11450.83141.35740.097*
H10C0.00230.93901.31680.097*
C110.0155 (3)0.6857 (2)0.6786 (2)0.0432 (5)
C120.1973 (3)0.6967 (3)0.6594 (3)0.0593 (7)
H12A0.18810.60880.59250.089*
H12B0.25940.68300.74750.089*
H12C0.26120.80520.62590.089*
C130.4432 (3)0.4153 (3)0.7065 (2)0.0463 (5)
C140.5350 (3)0.2647 (3)0.6076 (3)0.0634 (7)
H14A0.65770.24940.58400.095*
H14B0.52630.16610.65080.095*
H14C0.48030.28130.52410.095*
O10.21819 (16)0.93313 (16)0.89181 (14)0.0416 (4)
O20.4560 (2)1.16541 (18)0.94235 (18)0.0601 (5)
O30.27782 (17)0.42394 (16)0.76069 (15)0.0447 (4)
O40.5014 (2)0.5178 (2)0.73698 (19)0.0684 (5)
O50.0952 (2)0.6742 (2)0.57939 (17)0.0694 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0312 (11)0.0310 (11)0.0618 (14)0.0074 (9)0.0020 (10)0.0004 (10)
C20.0374 (12)0.0396 (11)0.0551 (14)0.0110 (9)0.0060 (10)0.0082 (10)
C30.0402 (11)0.0389 (11)0.0420 (12)0.0154 (9)0.0016 (9)0.0018 (9)
C40.0314 (10)0.0343 (10)0.0405 (11)0.0132 (8)0.0027 (8)0.0019 (8)
C50.0393 (11)0.0409 (11)0.0417 (11)0.0134 (9)0.0093 (9)0.0056 (9)
C60.0312 (10)0.0360 (11)0.0529 (13)0.0047 (8)0.0103 (9)0.0043 (9)
C70.0292 (10)0.0314 (10)0.0463 (12)0.0091 (8)0.0000 (8)0.0022 (8)
C80.0296 (10)0.0331 (10)0.0421 (11)0.0125 (8)0.0034 (8)0.0007 (8)
C90.0248 (9)0.0308 (10)0.0463 (12)0.0090 (8)0.0046 (8)0.0050 (8)
C100.0727 (17)0.0653 (16)0.0455 (14)0.0164 (13)0.0016 (12)0.0083 (12)
C110.0415 (12)0.0403 (11)0.0456 (12)0.0133 (9)0.0050 (10)0.0001 (9)
C120.0539 (14)0.0754 (16)0.0571 (15)0.0293 (12)0.0221 (12)0.0068 (12)
C130.0319 (11)0.0500 (12)0.0508 (13)0.0092 (10)0.0026 (9)0.0017 (10)
C140.0442 (14)0.0689 (16)0.0619 (16)0.0076 (12)0.0036 (12)0.0196 (13)
O10.0315 (7)0.0372 (8)0.0489 (9)0.0040 (6)0.0070 (6)0.0021 (6)
O20.0442 (9)0.0414 (9)0.0804 (12)0.0021 (7)0.0141 (8)0.0035 (8)
O30.0315 (8)0.0380 (8)0.0578 (9)0.0075 (6)0.0004 (6)0.0097 (7)
O40.0503 (10)0.0742 (12)0.0835 (13)0.0333 (9)0.0093 (9)0.0180 (10)
O50.0583 (11)0.1014 (14)0.0466 (10)0.0311 (10)0.0026 (8)0.0036 (9)
Geometric parameters (Å, º) top
C1—O21.204 (2)C9—O11.374 (2)
C1—O11.383 (2)C10—H10A0.9600
C1—C21.445 (3)C10—H10B0.9600
C2—C31.338 (3)C10—H10C0.9600
C2—H20.9300C11—O51.203 (2)
C3—C41.453 (3)C11—C121.495 (3)
C3—C101.502 (3)C12—H12A0.9600
C4—C51.394 (3)C12—H12B0.9600
C4—C91.400 (3)C12—H12C0.9600
C5—C61.369 (3)C13—O41.191 (2)
C5—H50.9300C13—O31.361 (2)
C6—C71.388 (3)C13—C141.483 (3)
C6—H60.9300C14—H14A0.9600
C7—C81.388 (3)C14—H14B0.9600
C7—O31.399 (2)C14—H14C0.9600
C8—C91.392 (3)O2—C1i3.058 (3)
C8—C111.504 (3)O2—C13ii3.101 (3)
O2—C1—O1116.15 (19)C3—C10—H10B109.5
O2—C1—C2126.87 (19)H10A—C10—H10B109.5
O1—C1—C2116.97 (17)C3—C10—H10C109.5
C3—C2—C1122.88 (19)H10A—C10—H10C109.5
C3—C2—H2118.6H10B—C10—H10C109.5
C1—C2—H2118.6O5—C11—C12121.1 (2)
C2—C3—C4118.98 (19)O5—C11—C8120.33 (19)
C2—C3—C10121.69 (19)C12—C11—C8118.50 (18)
C4—C3—C10119.33 (19)C11—C12—H12A109.5
C5—C4—C9117.28 (18)C11—C12—H12B109.5
C5—C4—C3124.53 (18)H12A—C12—H12B109.5
C9—C4—C3118.19 (18)C11—C12—H12C109.5
C6—C5—C4121.83 (19)H12A—C12—H12C109.5
C6—C5—H5119.1H12B—C12—H12C109.5
C4—C5—H5119.1O4—C13—O3122.68 (19)
C5—C6—C7118.96 (18)O4—C13—C14126.4 (2)
C5—C6—H6120.5O3—C13—C14110.89 (18)
C7—C6—H6120.5C13—C14—H14A109.5
C6—C7—C8122.35 (18)C13—C14—H14B109.5
C6—C7—O3119.13 (17)H14A—C14—H14B109.5
C8—C7—O3118.30 (17)C13—C14—H14C109.5
C7—C8—C9116.78 (18)H14A—C14—H14C109.5
C7—C8—C11120.47 (17)H14B—C14—H14C109.5
C9—C8—C11122.75 (17)C9—O1—C1121.70 (15)
O1—C9—C8115.92 (17)C1—O2—C1i88.63 (13)
O1—C9—C4121.25 (17)C1—O2—C13ii143.37 (15)
C8—C9—C4122.81 (18)C1i—O2—C13ii118.73 (8)
C3—C10—H10A109.5C13—O3—C7117.16 (14)
O2—C1—C2—C3179.5 (2)C3—C4—C9—O11.9 (3)
O1—C1—C2—C30.7 (3)C5—C4—C9—C80.8 (3)
C1—C2—C3—C40.3 (3)C3—C4—C9—C8179.87 (16)
C1—C2—C3—C10179.75 (19)C7—C8—C11—O550.4 (3)
C2—C3—C4—C5178.21 (18)C9—C8—C11—O5129.3 (2)
C10—C3—C4—C51.7 (3)C7—C8—C11—C12127.4 (2)
C2—C3—C4—C90.8 (3)C9—C8—C11—C1252.9 (3)
C10—C3—C4—C9179.22 (18)C8—C9—O1—C1179.47 (15)
C9—C4—C5—C60.5 (3)C4—C9—O1—C12.4 (3)
C3—C4—C5—C6179.52 (17)O2—C1—O1—C9178.42 (16)
C4—C5—C6—C70.2 (3)C2—C1—O1—C91.7 (3)
C5—C6—C7—C80.2 (3)O1—C1—O2—C1i87.95 (16)
C5—C6—C7—O3174.65 (16)C2—C1—O2—C1i92.2 (2)
C6—C7—C8—C90.4 (3)O1—C1—O2—C13ii52.7 (3)
O3—C7—C8—C9174.95 (15)C2—C1—O2—C13ii127.1 (2)
C6—C7—C8—C11179.84 (18)O4—C13—O3—C72.9 (3)
O3—C7—C8—C115.3 (3)C14—C13—O3—C7177.22 (18)
C7—C8—C9—O1177.37 (14)C6—C7—O3—C1373.3 (2)
C11—C8—C9—O12.3 (3)C8—C7—O3—C13112.06 (19)
C7—C8—C9—C40.7 (3)C1—O2—C13ii—O4ii69.0 (3)
C11—C8—C9—C4179.55 (17)C1—O2—C1i—O2i0.0
C5—C4—C9—O1177.26 (15)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2iii0.932.523.324 (3)145
Symmetry code: (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC14H12O5
Mr260.24
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.198 (3), 8.504 (3), 9.644 (3)
α, β, γ (°)90.213 (4), 97.761 (4), 111.686 (4)
V3)618.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.969, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4891, 2292, 1572
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.150, 1.07
No. of reflections2292
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.523.324 (3)144.5
Symmetry code: (i) x1, y1, z.
 

Acknowledgements

The project was supported by the Natural Science Foundation of Huaihai Institute of Technology, China (No. Z2009019)

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S.-P., Han, L.-J., Wang, D.-Q. & Chen, X.-Y. (2010). Acta Cryst. E66, o3183.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, S.-P., Han, L.-J., Wang, D.-Q. & Xia, H.-T. (2007). Acta Cryst. E63, o4643.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, S.-P., Han, L.-J., Xia, H.-T. & Wang, D.-Q. (2006). Acta Cryst. E62, o4181–o4182.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds