organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo-6-nitro-1-(prop-2-yn­yl)-1H-indazole

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bLaboratoire de Chimie de Coordination, route de Narbonne, 31077 Toulouse, France, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 5 November 2011; accepted 7 November 2011; online 12 November 2011)

In the title compound, C10H6BrN3O2, the indazole fused-ring system is nearly planar (r.m.s. deviation = 0.008 Å); its nitro substituent is nearly coplanar with the fused ring [dihedral angle = 4.5 (2)°]. In the crystal, adjacent mol­ecules are linked by weak acetyl­ene–nitro C—H⋯O hydrogen bonds, generating a helical chain running along the b axis.

Related literature

For a related compound, 1-allyl-3-chloro-6-nitro-1H-indazole, see: El Brahmi et al. (2009[El Brahmi, N., Mohamed, B., Essassi, E. M., Zouihri, H. & Ng, S. W. (2009). Acta Cryst. E65, o2320.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6BrN3O2

  • Mr = 280.09

  • Monoclinic, P 21 /n

  • a = 14.6573 (3) Å

  • b = 4.1650 (1) Å

  • c = 17.4566 (3) Å

  • β = 102.659 (1)°

  • V = 1039.78 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.94 mm−1

  • T = 295 K

  • 0.50 × 0.10 × 0.05 mm

Data collection
  • Bruker APEX DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.243, Tmax = 0.827

  • 14908 measured reflections

  • 3137 independent reflections

  • 2236 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.079

  • S = 1.03

  • 3137 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H1⋯O1i 0.96 (3) 2.45 (3) 3.399 (3) 167 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We reported 1-allyl-3-chloro-6-nitro-1H-indazole, which exists as two independent molecules (El Brahmi et al., 2009). The present 1-propynyl-3-bromo-6-nitro-1H-indazole (Scheme I) also has halogen subsituent in the same position but the asymmetric unit consists of one molecule only. The indazole fused-ring is planar; its nitro substituent is nearly coplanar with the fused ring (Fig 1.). Adjacent molecules are linked by a C–Hacetylene···Onitro hydrogen bond to generate a helical polymer running along the b-axis of the monoclinic unit cell (Fig. 2). Weak Br···Br contacts of 3.57 Å are present.

Related literature top

For a related compound, 1-allyl-3-chloro-6-nitro-1H-indazole, see: El Brahmi et al. (2009).

Experimental top

3-Bromo-6-nitroindazole (1.2 g, 5 mmol) and propargyl bromide (1.2 g, 10 mmol) were reacted in THF (40 ml) in the presence of potassium carbonate (1.4 g, 10 mmol) and tetra-n-butylammonium bromide (0.5 mmol). The mixture was stirred for 24 h, filtered, and the THF removed under vacuum. The product was separated by chromatography on silica gel with a hexane:ethyl acetate (9:1) solvent system. The compound was obtained as yellow crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The acetylenic H-atom was located in a difference Fourier map and was refined. The 1 0 1 and -1 0 1 reflections were omitted owing to bad agreement.

Structure description top

We reported 1-allyl-3-chloro-6-nitro-1H-indazole, which exists as two independent molecules (El Brahmi et al., 2009). The present 1-propynyl-3-bromo-6-nitro-1H-indazole (Scheme I) also has halogen subsituent in the same position but the asymmetric unit consists of one molecule only. The indazole fused-ring is planar; its nitro substituent is nearly coplanar with the fused ring (Fig 1.). Adjacent molecules are linked by a C–Hacetylene···Onitro hydrogen bond to generate a helical polymer running along the b-axis of the monoclinic unit cell (Fig. 2). Weak Br···Br contacts of 3.57 Å are present.

For a related compound, 1-allyl-3-chloro-6-nitro-1H-indazole, see: El Brahmi et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C10H6BrN3O2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Helical chain motif.
3-Bromo-6-nitro-1-(prop-2-ynyl)-1H-indazole top
Crystal data top
C10H6BrN3O2F(000) = 552
Mr = 280.09Dx = 1.789 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5822 reflections
a = 14.6573 (3) Åθ = 2.4–30.3°
b = 4.1650 (1) ŵ = 3.94 mm1
c = 17.4566 (3) ÅT = 295 K
β = 102.659 (1)°Plate, yellow
V = 1039.78 (4) Å30.50 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker APEX DUO
diffractometer
3137 independent reflections
Radiation source: fine-focus sealed tube2236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1520
Tmin = 0.243, Tmax = 0.827k = 55
14908 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.4798P]
where P = (Fo2 + 2Fc2)/3
3137 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
C10H6BrN3O2V = 1039.78 (4) Å3
Mr = 280.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.6573 (3) ŵ = 3.94 mm1
b = 4.1650 (1) ÅT = 295 K
c = 17.4566 (3) Å0.50 × 0.10 × 0.05 mm
β = 102.659 (1)°
Data collection top
Bruker APEX DUO
diffractometer
3137 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2236 reflections with I > 2σ(I)
Tmin = 0.243, Tmax = 0.827Rint = 0.023
14908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.52 e Å3
3137 reflectionsΔρmin = 0.76 e Å3
149 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.234567 (17)0.49344 (5)0.664925 (11)0.03944 (9)
O10.44171 (11)0.5183 (4)0.38032 (10)0.0431 (4)
O20.30475 (11)0.5312 (3)0.30395 (9)0.0401 (4)
N10.11630 (11)0.3405 (4)0.52285 (9)0.0296 (3)
N20.11523 (10)0.1781 (4)0.45461 (9)0.0262 (3)
N30.35862 (11)0.4437 (4)0.36351 (10)0.0278 (3)
C10.20201 (14)0.3105 (4)0.56494 (10)0.0281 (4)
C20.26030 (13)0.1289 (4)0.52666 (10)0.0250 (4)
C30.35342 (14)0.0226 (4)0.54510 (11)0.0287 (4)
H30.39300.07580.59270.034*
C40.38431 (13)0.1624 (4)0.49070 (11)0.0278 (4)
H40.44560.23670.50110.033*
C50.32278 (12)0.2386 (4)0.41932 (10)0.0237 (3)
C60.23102 (12)0.1400 (4)0.39812 (10)0.0231 (3)
H60.19230.19230.35010.028*
C70.20061 (12)0.0457 (4)0.45476 (11)0.0226 (3)
C80.02773 (13)0.1524 (5)0.39593 (11)0.0288 (4)
H8A0.02290.23440.41790.035*
H8B0.01500.07220.38310.035*
C90.03026 (13)0.3299 (5)0.32386 (11)0.0293 (4)
C100.03171 (17)0.4760 (5)0.26605 (13)0.0403 (5)
H10.033 (2)0.595 (7)0.2189 (19)0.069 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.06481 (17)0.03278 (12)0.02030 (10)0.00030 (9)0.00838 (9)0.00163 (7)
O10.0298 (8)0.0620 (11)0.0371 (8)0.0170 (7)0.0068 (6)0.0001 (7)
O20.0352 (8)0.0498 (9)0.0340 (8)0.0039 (6)0.0049 (6)0.0132 (6)
N10.0398 (9)0.0261 (8)0.0257 (8)0.0012 (7)0.0131 (7)0.0006 (6)
N20.0266 (8)0.0284 (8)0.0244 (7)0.0018 (6)0.0072 (6)0.0018 (6)
N30.0270 (8)0.0301 (8)0.0269 (8)0.0028 (6)0.0071 (6)0.0046 (6)
C10.0415 (11)0.0236 (8)0.0199 (8)0.0026 (7)0.0084 (7)0.0014 (6)
C20.0319 (10)0.0205 (8)0.0220 (8)0.0023 (7)0.0045 (7)0.0034 (6)
C30.0310 (10)0.0299 (9)0.0220 (8)0.0045 (7)0.0012 (7)0.0030 (7)
C40.0227 (9)0.0292 (9)0.0292 (9)0.0002 (7)0.0008 (7)0.0053 (7)
C50.0245 (9)0.0228 (8)0.0241 (8)0.0010 (6)0.0057 (7)0.0039 (6)
C60.0238 (9)0.0232 (8)0.0218 (8)0.0023 (7)0.0036 (6)0.0012 (6)
C70.0235 (8)0.0204 (8)0.0236 (8)0.0016 (6)0.0044 (7)0.0029 (6)
C80.0239 (9)0.0292 (9)0.0335 (10)0.0003 (7)0.0062 (7)0.0008 (7)
C90.0246 (9)0.0323 (10)0.0298 (9)0.0007 (7)0.0032 (7)0.0060 (7)
C100.0429 (12)0.0481 (13)0.0283 (10)0.0086 (10)0.0042 (9)0.0021 (9)
Geometric parameters (Å, º) top
Br1—C11.8682 (17)C3—H30.9300
O1—N31.228 (2)C4—C51.405 (2)
O2—N31.216 (2)C4—H40.9300
N1—C11.315 (2)C5—C61.377 (2)
N1—N21.367 (2)C6—C71.403 (2)
N2—C71.367 (2)C6—H60.9300
N2—C81.459 (2)C8—C91.467 (3)
N3—C51.476 (2)C8—H8A0.9700
C1—C21.414 (3)C8—H8B0.9700
C2—C71.407 (2)C9—C101.183 (3)
C2—C31.403 (3)C10—H10.96 (3)
C3—C41.374 (3)
C1—N1—N2105.49 (15)C5—C4—H4120.2
N1—N2—C7111.24 (15)C6—C5—C4124.76 (17)
N1—N2—C8119.25 (15)C6—C5—N3117.59 (15)
C7—N2—C8129.42 (15)C4—C5—N3117.65 (16)
O2—N3—O1123.55 (17)C5—C6—C7114.68 (16)
O2—N3—C5118.66 (15)C5—C6—H6122.7
O1—N3—C5117.79 (16)C7—C6—H6122.7
N1—C1—C2112.90 (15)N2—C7—C6130.79 (16)
N1—C1—Br1120.03 (14)N2—C7—C2106.99 (16)
C2—C1—Br1127.07 (14)C6—C7—C2122.22 (16)
C7—C2—C3120.67 (17)N2—C8—C9112.42 (15)
C7—C2—C1103.38 (16)N2—C8—H8A109.1
C3—C2—C1135.92 (17)C9—C8—H8A109.1
C4—C3—C2118.00 (17)N2—C8—H8B109.1
C4—C3—H3121.0C9—C8—H8B109.1
C2—C3—H3121.0H8A—C8—H8B107.9
C3—C4—C5119.66 (17)C10—C9—C8179.2 (2)
C3—C4—H4120.2C9—C10—H1180 (2)
C1—N1—N2—C70.35 (19)O1—N3—C5—C44.7 (2)
C1—N1—N2—C8177.07 (15)C4—C5—C6—C70.9 (3)
N2—N1—C1—C20.1 (2)N3—C5—C6—C7178.09 (15)
N2—N1—C1—Br1179.08 (12)N1—N2—C7—C6179.58 (17)
N1—C1—C2—C70.2 (2)C8—N2—C7—C63.3 (3)
Br1—C1—C2—C7178.71 (13)N1—N2—C7—C20.49 (19)
N1—C1—C2—C3178.39 (19)C8—N2—C7—C2176.79 (17)
Br1—C1—C2—C30.5 (3)C5—C6—C7—N2178.79 (17)
C7—C2—C3—C40.4 (3)C5—C6—C7—C21.3 (2)
C1—C2—C3—C4178.4 (2)C3—C2—C7—N2178.93 (16)
C2—C3—C4—C50.0 (3)C1—C2—C7—N20.41 (18)
C3—C4—C5—C60.2 (3)C3—C2—C7—C61.1 (3)
C3—C4—C5—N3178.71 (16)C1—C2—C7—C6179.65 (16)
O2—N3—C5—C64.2 (2)N1—N2—C8—C9112.94 (18)
O1—N3—C5—C6176.26 (16)C7—N2—C8—C971.0 (2)
O2—N3—C5—C4174.85 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H1···O1i0.96 (3)2.45 (3)3.399 (3)167 (3)
Symmetry code: (i) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H6BrN3O2
Mr280.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)14.6573 (3), 4.1650 (1), 17.4566 (3)
β (°) 102.659 (1)
V3)1039.78 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.94
Crystal size (mm)0.50 × 0.10 × 0.05
Data collection
DiffractometerBruker APEX DUO
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.243, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
14908, 3137, 2236
Rint0.023
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.079, 1.03
No. of reflections3137
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.76

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H1···O1i0.96 (3)2.45 (3)3.399 (3)167 (3)
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We thank Université MohammedV-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Brahmi, N., Mohamed, B., Essassi, E. M., Zouihri, H. & Ng, S. W. (2009). Acta Cryst. E65, o2320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds