metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[diamminesilver(I)] bis­­(2-hy­dr­oxy-5-methyl­benzene-1,3-di­sulfonate) monohydrate

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 November 2011; accepted 13 November 2011; online 19 November 2011)

In the crystal structure of the title salt, [Ag(NH3)2]4(C7H6O7S2)2·H2O, the four independent AgI complex cations all lie on special positions of m site symmetry, as do the two independent 2-hy­droxy-5-methyl­benzene-1,3-disulfonate anions. The AgI cations exist in an almost linear coordination geometry [N—Ag—N = 175.2 (2), 178.08 (16), 175.8 (2) and 178.20 (19)°]. The water mol­ecule is disordered about a mirror plane. Two independent complex cations are linked by an Ag⋯Ag inter­action of 3.3151 (1) Å, furnishing a linear [Ag(NH3)2]n polycationic chain running along b. The free complex cations, polycationic chain and 2-hy­droxy-5-methyl­benzene-1,3-disulfonate anions inter­act via N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For background literature, see: Deng et al. (2011[Deng, Z.-P., Huo, L.-H., Li, M.-S., Zhang, L.-W., Zhu, Z.-B., Zhao, H. & Gao, S. (2011). Cryst. Growth Des. 11, 3090-3100.]). For the synthesis of disulfonic acid, see: Lambrechts et al. (1985[Lambrechts, H. J. A., Schaasberg-Nienhuis, Z. R. H. & Cerfontain, H. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 669-675.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NH3)2]4(C7H6O7S2)2·H2O

  • Mr = 1118.24

  • Monoclinic, C 2/m

  • a = 21.6379 (8) Å

  • b = 6.5889 (2) Å

  • c = 24.7793 (8) Å

  • β = 108.015 (1)°

  • V = 3359.59 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.62 mm−1

  • T = 293 K

  • 0.19 × 0.13 × 0.11 mm

Data collection
  • Rigaku RAXIS-RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.636, Tmax = 0.762

  • 16616 measured reflections

  • 4169 independent reflections

  • 3613 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.05

  • 4169 reflections

  • 274 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 1.48 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H12⋯O10 0.88 2.12 2.977 (4) 166
N2—H21⋯O1w 0.88 2.20 2.955 (9) 143
N7—H72⋯O10i 0.88 2.33 3.135 (5) 152
N8—H82⋯O4ii 0.88 2.21 3.064 (4) 164
O3—H3⋯O2 0.84 1.90 2.582 (5) 138
O9—H9⋯O7 0.84 1.95 2.612 (6) 134
O1w—H1w1⋯O11iii 0.84 1.91 2.720 (8) 160
O1w—H1w2⋯O6iv 0.84 1.94 2.762 (11) 166
O1w—H1w2⋯O8v 0.84 1.94 2.716 (11) 153
Symmetry codes: (i) x, y-1, z; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) -x+1, -y+2, -z+1; (v) -x+1, y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The silver derivative of hydroxy-5-methylbenzene-1,3-disulfonic acid as well as that of other o-hydroxy arenesulfonic acids are coordination polymers that exhibit luminescence; these feature silver–sulfonate covalent bonds (Deng et al., 2011). A variation of the synthesis yielded the title salt (Scheme I) in which the sulfonate dianion interacts with the metal atom indirectly, in an outer-sphere type of coordination. The AgI atoms in the salt, 2[Ag(NH3)2]+ (C7H6O7S2)2-.0.5H2O, exist in a linear coordination geometry. The four independent cations all lie on mirror planes, as do the two independent anions. The lattice water molecule is disordered about a mirror plane (Fig. 1). Two independent cations are linked by an Ag···Ag interaction of 3.3151 (1) Å to furnish a linear polycation [Ag(NH3)2]n chain running along b. The free cations, polycationic chain and anions interact by N–H···O and O–H···O hydrogen bonds to form a three-dimensional network (Table 1).

Related literature top

For background literature, see: Deng et al. (2011). For the synthesis of disulfonic acid, see: Lambrechts et al. (1985).

Experimental top

Silver nitrate (2 mmol) and 2-hydroxy-5-methylbenzene-1,3-disulfonic acid (1 mmol) were mixed in water (15 ml); the pH value was adjusted to ca 6 by the addition of ammonium hydroxide. The solution was filtered; colorless crystals were isolated from the solution, which was kept away from light, after several days.

Refinement top

Carbon-bound H-atoms were generated geometrically and were included in the riding model approximation for the aromatic ones only; the methyl ones were placed in calculated positions [C–H 0.93–0.98 Å, U(H) 1.2–1.5Ueq(C)]. The amino and water H-atoms were similarly placed [N–H 0.88 and O–H 0.84 Å, U(H) 1.2–1.5Ueq(N,O)].

The O atoms of one –SO3 groups were allowed to refine off the mirror plane. The S–O distances were restrained to within ±0.01 Å of each other, as were the O···O distances. Their anisotropic temperature factors were restrained to be nearly isotropic.

The largest peak was 0.92 Å from Ag1 and deepest hole 0.66 Å from Ag1.

Omitted because of bad disagreement were -1 1 1 and 1 1 2 reflections.

Structure description top

The silver derivative of hydroxy-5-methylbenzene-1,3-disulfonic acid as well as that of other o-hydroxy arenesulfonic acids are coordination polymers that exhibit luminescence; these feature silver–sulfonate covalent bonds (Deng et al., 2011). A variation of the synthesis yielded the title salt (Scheme I) in which the sulfonate dianion interacts with the metal atom indirectly, in an outer-sphere type of coordination. The AgI atoms in the salt, 2[Ag(NH3)2]+ (C7H6O7S2)2-.0.5H2O, exist in a linear coordination geometry. The four independent cations all lie on mirror planes, as do the two independent anions. The lattice water molecule is disordered about a mirror plane (Fig. 1). Two independent cations are linked by an Ag···Ag interaction of 3.3151 (1) Å to furnish a linear polycation [Ag(NH3)2]n chain running along b. The free cations, polycationic chain and anions interact by N–H···O and O–H···O hydrogen bonds to form a three-dimensional network (Table 1).

For background literature, see: Deng et al. (2011). For the synthesis of disulfonic acid, see: Lambrechts et al. (1985).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of 4[Ag(NH3)2]+(C7H6O7S2)22-.H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry-related atoms are not labeled.
Tetrakis[diamminesilver(I)] bis(2-hydroxy-5-methylbenzene-1,3-disulfonate) monohydrate top
Crystal data top
4(AgH6N2+)·2(C7H6O7S22)·H2OF(000) = 2200
Mr = 1118.24Dx = 2.211 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 13532 reflections
a = 21.6379 (8) Åθ = 3.0–27.5°
b = 6.5889 (2) ŵ = 2.62 mm1
c = 24.7793 (8) ÅT = 293 K
β = 108.015 (1)°Prism, colorless
V = 3359.59 (19) Å30.19 × 0.13 × 0.11 mm
Z = 4
Data collection top
Rigaku RAXIS-RAPID IP
diffractometer
4169 independent reflections
Radiation source: fine-focus sealed tube3613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2828
Tmin = 0.636, Tmax = 0.762k = 78
16616 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0669P)2 + 3.482P]
where P = (Fo2 + 2Fc2)/3
4169 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 1.48 e Å3
30 restraintsΔρmin = 1.14 e Å3
Crystal data top
4(AgH6N2+)·2(C7H6O7S22)·H2OV = 3359.59 (19) Å3
Mr = 1118.24Z = 4
Monoclinic, C2/mMo Kα radiation
a = 21.6379 (8) ŵ = 2.62 mm1
b = 6.5889 (2) ÅT = 293 K
c = 24.7793 (8) Å0.19 × 0.13 × 0.11 mm
β = 108.015 (1)°
Data collection top
Rigaku RAXIS-RAPID IP
diffractometer
4169 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3613 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.762Rint = 0.028
16616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03730 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 1.48 e Å3
4169 reflectionsΔρmin = 1.14 e Å3
274 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.34683 (2)1.00000.380433 (17)0.05373 (13)
Ag20.15158 (2)0.50000.079762 (18)0.04880 (13)
Ag30.006423 (19)0.50000.239383 (18)0.05088 (13)
Ag40.017750 (18)0.00000.254010 (17)0.04835 (13)
S10.05853 (5)1.00000.09757 (5)0.0374 (2)
S20.32892 (5)1.00000.15613 (4)0.0338 (2)
S30.45119 (6)0.50000.38736 (6)0.0533 (3)
S40.18163 (6)0.50000.30777 (5)0.0452 (3)
O10.02468 (13)0.8174 (4)0.07320 (13)0.0606 (7)
O20.07766 (17)1.00000.15926 (15)0.0723 (14)
O30.20199 (15)1.00000.17880 (12)0.0414 (7)
H30.16951.00000.19050.062*
O40.33304 (11)0.8183 (4)0.18995 (11)0.0487 (6)
O50.37405 (16)1.00000.12320 (15)0.0514 (9)
O60.4888 (4)0.6529 (10)0.4256 (3)0.073 (2)0.50
O70.4393 (3)0.5594 (10)0.3290 (2)0.079 (3)0.50
O80.4777 (5)0.3031 (10)0.4000 (3)0.080 (3)0.50
O90.31379 (17)0.50000.29697 (14)0.0512 (9)
H90.34830.50000.28820.077*
O100.18069 (14)0.6822 (5)0.27464 (12)0.0616 (7)
O110.13145 (19)0.50000.33504 (19)0.0742 (13)
O1w0.4062 (4)1.1079 (14)0.5739 (3)0.105 (3)0.50
H1w10.39881.10110.60530.157*0.50
H1w20.43421.19750.57520.157*0.50
N10.2833 (2)1.00000.29685 (18)0.0546 (11)
H110.30601.00000.27290.082*
H120.25870.89090.29130.082*
N20.4171 (3)1.00000.4614 (2)0.0697 (14)
H210.39751.00000.48770.104*
H220.44151.10910.46520.104*
N30.2209 (2)0.50000.16227 (19)0.0509 (10)
H310.26040.50000.15930.076*
H320.21550.39090.18080.076*
N40.0841 (2)0.50000.0049 (2)0.0495 (10)
H410.04410.50000.00320.074*
H420.09030.39090.02310.074*
N50.0525 (3)0.50000.1760 (2)0.0629 (13)
H510.02300.50000.14240.094*
H520.07700.39090.17960.094*
N60.0463 (3)0.50000.2980 (2)0.0766 (17)
H610.08820.50000.27960.115*
H620.03640.60910.31940.115*
N70.1036 (2)0.00000.3228 (2)0.0601 (12)
H710.09380.00000.35480.090*
H720.12650.10910.32130.090*
N80.0663 (2)0.00000.1835 (2)0.0584 (11)
H810.05520.00000.15220.088*
H820.08940.10910.18430.088*
C10.13312 (19)1.00000.08124 (17)0.0287 (8)
C60.1288 (2)1.00000.02360 (17)0.0318 (8)
H60.08811.00000.00370.038*
C50.1838 (2)1.00000.00656 (17)0.0338 (8)
C40.2439 (2)1.00000.04819 (18)0.0337 (8)
H40.28141.00000.03730.040*
C30.24984 (18)1.00000.10525 (17)0.0287 (7)
C20.19375 (18)1.00000.12287 (16)0.0267 (7)
C70.1787 (3)1.00000.05577 (19)0.0491 (12)
H7D0.13381.00000.07830.074*
H7E0.19960.88100.06430.074*0.50
H7F0.19961.11900.06430.074*0.50
C80.2568 (2)0.50000.36432 (19)0.0369 (9)
C90.3165 (2)0.50000.35254 (19)0.0363 (9)
C100.3735 (2)0.50000.3979 (2)0.0384 (9)
C110.3718 (3)0.50000.4540 (2)0.0453 (11)
H11A0.41040.50000.48390.054*
C120.3132 (3)0.50000.4652 (2)0.0504 (12)
C130.2559 (3)0.50000.4194 (2)0.0473 (11)
H130.21610.50000.42640.057*
C140.3111 (4)0.50000.5256 (2)0.091 (3)
H14A0.35460.50000.55140.136*
H14B0.28860.38100.53200.136*0.50
H14C0.28860.61900.53200.136*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0562 (3)0.0543 (2)0.0451 (2)0.0000.00751 (18)0.000
Ag20.0520 (2)0.0438 (2)0.0534 (2)0.0000.02034 (18)0.000
Ag30.0450 (2)0.0570 (3)0.0545 (2)0.0000.02104 (18)0.000
Ag40.0376 (2)0.0523 (2)0.0505 (2)0.0000.00692 (16)0.000
S10.0219 (5)0.0500 (6)0.0398 (5)0.0000.0086 (4)0.000
S20.0215 (4)0.0427 (5)0.0343 (5)0.0000.0042 (4)0.000
S30.0344 (6)0.0615 (8)0.0669 (8)0.0000.0199 (6)0.000
S40.0327 (6)0.0611 (7)0.0408 (6)0.0000.0099 (5)0.000
O10.0402 (14)0.0579 (15)0.085 (2)0.0170 (12)0.0207 (13)0.0071 (15)
O20.0343 (19)0.145 (5)0.043 (2)0.0000.0202 (16)0.000
O30.0281 (15)0.071 (2)0.0256 (13)0.0000.0088 (11)0.000
O40.0351 (12)0.0492 (13)0.0538 (14)0.0031 (10)0.0019 (10)0.0137 (12)
O50.0266 (16)0.080 (2)0.0496 (18)0.0000.0147 (14)0.000
O60.047 (4)0.082 (5)0.089 (5)0.019 (4)0.018 (4)0.008 (4)
O70.054 (3)0.121 (7)0.071 (3)0.008 (3)0.035 (3)0.015 (4)
O80.070 (5)0.064 (4)0.116 (6)0.017 (4)0.044 (5)0.010 (4)
O90.046 (2)0.077 (2)0.0361 (16)0.0000.0204 (15)0.000
O100.0518 (16)0.0666 (17)0.0573 (15)0.0055 (14)0.0038 (12)0.0122 (14)
O110.0331 (19)0.131 (4)0.061 (2)0.0000.0171 (17)0.000
O1w0.087 (5)0.143 (6)0.087 (5)0.028 (4)0.033 (4)0.007 (4)
N10.051 (3)0.065 (3)0.040 (2)0.0000.0036 (18)0.000
N20.076 (4)0.058 (3)0.059 (3)0.0000.002 (3)0.000
N30.058 (3)0.049 (2)0.051 (2)0.0000.024 (2)0.000
N40.038 (2)0.043 (2)0.067 (3)0.0000.014 (2)0.000
N50.067 (3)0.073 (3)0.055 (3)0.0000.029 (2)0.000
N60.051 (3)0.123 (5)0.061 (3)0.0000.024 (2)0.000
N70.053 (3)0.067 (3)0.051 (3)0.0000.003 (2)0.000
N80.043 (2)0.068 (3)0.054 (3)0.0000.000 (2)0.000
C10.0235 (18)0.0303 (18)0.0313 (18)0.0000.0071 (14)0.000
C60.031 (2)0.0316 (19)0.0271 (18)0.0000.0002 (15)0.000
C50.035 (2)0.036 (2)0.0281 (18)0.0000.0058 (16)0.000
C40.032 (2)0.037 (2)0.034 (2)0.0000.0132 (16)0.000
C30.0203 (17)0.0318 (18)0.0315 (18)0.0000.0046 (14)0.000
C20.0255 (18)0.0287 (17)0.0255 (17)0.0000.0073 (14)0.000
C70.057 (3)0.061 (3)0.030 (2)0.0000.014 (2)0.000
C80.034 (2)0.044 (2)0.035 (2)0.0000.0126 (17)0.000
C90.037 (2)0.039 (2)0.036 (2)0.0000.0157 (18)0.000
C100.032 (2)0.039 (2)0.046 (2)0.0000.0137 (19)0.000
C110.044 (3)0.049 (3)0.039 (2)0.0000.006 (2)0.000
C120.052 (3)0.068 (3)0.033 (2)0.0000.014 (2)0.000
C130.044 (3)0.062 (3)0.041 (2)0.0000.021 (2)0.000
C140.091 (5)0.150 (8)0.033 (3)0.0000.023 (3)0.000
Geometric parameters (Å, º) top
Ag3—Ag43.3151 (1)N2—H220.8800
Ag1—N12.102 (4)N3—H310.8800
Ag1—N22.110 (5)N3—H320.8800
Ag2—N32.129 (5)N4—H410.8800
Ag2—N42.154 (5)N4—H420.8800
Ag3—N52.105 (4)N5—H510.8800
Ag3—N62.107 (5)N5—H520.8800
Ag4—N82.096 (4)N6—H610.8800
Ag4—N72.097 (5)N6—H620.8800
S1—O11.441 (3)N7—H710.8800
S1—O1i1.441 (3)N7—H720.8800
S1—O21.455 (4)N8—H810.8800
S1—C11.781 (4)N8—H820.8800
S2—O4i1.448 (2)C1—C21.396 (5)
S2—O41.448 (2)C1—C61.402 (6)
S2—O51.453 (3)C6—C51.380 (6)
S2—C31.784 (4)C6—H60.9300
S3—O8ii1.414 (6)C5—C41.388 (6)
S3—O81.414 (6)C5—C71.514 (6)
S3—O71.442 (5)C4—C31.380 (6)
S3—O7ii1.442 (5)C4—H40.9300
S3—O61.448 (6)C3—C21.411 (5)
S3—O6ii1.448 (5)C7—H7D0.9600
S3—C101.778 (5)C7—H7E0.9600
S4—O111.446 (4)C7—H7F0.9600
S4—O10ii1.451 (3)C8—C131.370 (6)
S4—O101.451 (3)C8—C91.408 (6)
S4—C81.789 (5)C9—C101.389 (7)
O3—C21.342 (5)C10—C111.402 (7)
O3—H30.8400C11—C121.379 (7)
O9—C91.360 (5)C11—H11A0.9300
O9—H90.8400C12—C131.398 (7)
O1w—H1w10.8430C12—C141.514 (7)
O1w—H1w20.8400C13—H130.9300
N1—H110.8800C14—H14A0.9600
N1—H120.8800C14—H14B0.9600
N2—H210.8800C14—H14C0.9600
N1—Ag1—N2175.2 (2)Ag3—N6—H62109.5
N3—Ag2—N4178.08 (16)H61—N6—H62109.5
N5—Ag3—N6175.8 (2)Ag4—N7—H71109.5
N5—Ag3—Ag4iii92.607 (18)Ag4—N7—H72109.5
N6—Ag3—Ag4iii87.830 (19)H71—N7—H72109.5
N5—Ag3—Ag492.607 (18)Ag4—N8—H81109.5
N6—Ag3—Ag487.830 (19)Ag4—N8—H82109.5
Ag4iii—Ag3—Ag4167.20 (2)H81—N8—H82109.5
N8—Ag4—N7178.20 (19)C2—C1—C6120.2 (4)
N8—Ag4—Ag3iv83.864 (11)C2—C1—S1122.9 (3)
N7—Ag4—Ag3iv96.076 (11)C6—C1—S1116.9 (3)
N8—Ag4—Ag383.864 (11)C5—C6—C1121.3 (4)
N7—Ag4—Ag396.076 (11)C5—C6—H6119.3
Ag3iv—Ag4—Ag3167.20 (2)C1—C6—H6119.3
O1—S1—O1i113.3 (3)C6—C5—C4118.1 (4)
O1—S1—O2112.52 (15)C6—C5—C7121.0 (4)
O1i—S1—O2112.52 (15)C4—C5—C7120.9 (4)
O1—S1—C1106.48 (13)C3—C4—C5122.0 (4)
O1i—S1—C1106.48 (13)C3—C4—H4119.0
O2—S1—C1104.8 (2)C5—C4—H4119.0
O4i—S2—O4111.5 (2)C4—C3—C2120.1 (4)
O4i—S2—O5113.14 (13)C4—C3—S2119.3 (3)
O4—S2—O5113.14 (13)C2—C3—S2120.7 (3)
O4i—S2—C3106.43 (12)O3—C2—C1123.9 (3)
O4—S2—C3106.43 (12)O3—C2—C3117.9 (3)
O5—S2—C3105.5 (2)C1—C2—C3118.2 (3)
O8—S3—O7114.0 (4)C5—C7—H7D109.5
O8—S3—O6112.7 (4)C5—C7—H7E109.5
O7—S3—O6110.9 (4)H7D—C7—H7E109.5
O8—S3—C10107.7 (5)C5—C7—H7F109.5
O7—S3—C10105.2 (3)H7D—C7—H7F109.5
O6—S3—C10105.7 (4)H7E—C7—H7F109.5
O11—S4—O10ii112.54 (15)C13—C8—C9120.2 (4)
O11—S4—O10112.54 (15)C13—C8—S4119.4 (4)
O10ii—S4—O10111.7 (3)C9—C8—S4120.5 (3)
O11—S4—C8105.5 (2)O9—C9—C10124.6 (4)
O10ii—S4—C8107.06 (14)O9—C9—C8117.1 (4)
O10—S4—C8107.06 (14)C10—C9—C8118.4 (4)
C2—O3—H3120.0C9—C10—C11120.8 (4)
C9—O9—H9120.0C9—C10—S3121.7 (4)
H1w1—O1w—H1w2110.0C11—C10—S3117.5 (4)
Ag1—N1—H11109.5C12—C11—C10120.5 (5)
Ag1—N1—H12109.5C12—C11—H11A119.7
H11—N1—H12109.5C10—C11—H11A119.7
Ag1—N2—H21109.5C11—C12—C13118.4 (4)
Ag1—N2—H22109.5C11—C12—C14120.7 (5)
H21—N2—H22109.5C13—C12—C14120.8 (5)
Ag2—N3—H31109.5C8—C13—C12121.7 (4)
Ag2—N3—H32109.5C8—C13—H13119.1
H31—N3—H32109.5C12—C13—H13119.1
Ag2—N4—H41109.5C12—C14—H14A109.5
Ag2—N4—H42109.5C12—C14—H14B109.5
H41—N4—H42109.5H14A—C14—H14B109.5
Ag3—N5—H51109.5C12—C14—H14C109.5
Ag3—N5—H52109.5H14A—C14—H14C109.5
H51—N5—H52109.5H14B—C14—H14C109.5
Ag3—N6—H61109.5
O1—S1—C1—C2119.42 (14)O11—S4—C8—C9180.0
O1i—S1—C1—C2119.42 (14)O10ii—S4—C8—C959.94 (14)
O2—S1—C1—C20.0O10—S4—C8—C959.94 (14)
O1—S1—C1—C660.58 (14)C13—C8—C9—O9180.0
O1i—S1—C1—C660.58 (14)S4—C8—C9—O90.0
O2—S1—C1—C6180.0C13—C8—C9—C100.000 (1)
C2—C1—C6—C50.0S4—C8—C9—C10180.0
S1—C1—C6—C5180.0O9—C9—C10—C11180.000 (1)
C1—C6—C5—C40.0C8—C9—C10—C110.000 (1)
C1—C6—C5—C7180.0O9—C9—C10—S30.0
C6—C5—C4—C30.0C8—C9—C10—S3180.0
C7—C5—C4—C3180.0O8ii—S3—C10—C9105.6 (3)
C5—C4—C3—C20.0O8—S3—C10—C9105.6 (3)
C5—C4—C3—S2180.0O7—S3—C10—C916.3 (3)
O4i—S2—C3—C4120.47 (12)O7ii—S3—C10—C916.3 (3)
O4—S2—C3—C4120.47 (12)O6—S3—C10—C9133.8 (3)
O5—S2—C3—C40.0O6ii—S3—C10—C9133.8 (3)
O4i—S2—C3—C259.53 (12)O8ii—S3—C10—C1174.4 (3)
O4—S2—C3—C259.53 (12)O8—S3—C10—C1174.4 (3)
O5—S2—C3—C2180.0O7—S3—C10—C11163.7 (3)
C6—C1—C2—O3180.0O7ii—S3—C10—C11163.7 (3)
S1—C1—C2—O30.0O6—S3—C10—C1146.2 (3)
C6—C1—C2—C30.0O6ii—S3—C10—C1146.2 (3)
S1—C1—C2—C3180.0C9—C10—C11—C120.000 (1)
C4—C3—C2—O3180.0S3—C10—C11—C12180.000 (1)
S2—C3—C2—O30.0C10—C11—C12—C130.000 (1)
C4—C3—C2—C10.0C10—C11—C12—C14180.000 (2)
S2—C3—C2—C1180.0C9—C8—C13—C120.0
O11—S4—C8—C130.0S4—C8—C13—C12180.0
O10ii—S4—C8—C13120.06 (14)C11—C12—C13—C80.000 (1)
O10—S4—C8—C13120.06 (14)C14—C12—C13—C8180.000 (1)
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O100.882.122.977 (4)166
N2—H21···O1w0.882.202.955 (9)143
N7—H72···O10iv0.882.333.135 (5)152
N8—H82···O4v0.882.213.064 (4)164
O3—H3···O20.841.902.582 (5)138
O9—H9···O70.841.952.612 (6)134
O1w—H1w1···O11vi0.841.912.720 (8)160
O1w—H1w2···O6vii0.841.942.762 (11)166
O1w—H1w2···O8viii0.841.942.716 (11)153
Symmetry codes: (iv) x, y1, z; (v) x1/2, y1/2, z; (vi) x+1/2, y+3/2, z+1; (vii) x+1, y+2, z+1; (viii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula4(AgH6N2+)·2(C7H6O7S22)·H2O
Mr1118.24
Crystal system, space groupMonoclinic, C2/m
Temperature (K)293
a, b, c (Å)21.6379 (8), 6.5889 (2), 24.7793 (8)
β (°) 108.015 (1)
V3)3359.59 (19)
Z4
Radiation typeMo Kα
µ (mm1)2.62
Crystal size (mm)0.19 × 0.13 × 0.11
Data collection
DiffractometerRigaku RAXIS-RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.636, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
16616, 4169, 3613
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.05
No. of reflections4169
No. of parameters274
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.48, 1.14

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O100.882.122.977 (4)166
N2—H21···O1w0.882.202.955 (9)143
N7—H72···O10i0.882.333.135 (5)152
N8—H82···O4ii0.882.213.064 (4)164
O3—H3···O20.841.902.582 (5)138
O9—H9···O70.841.952.612 (6)134
O1w—H1w1···O11iii0.841.912.720 (8)160
O1w—H1w2···O6iv0.841.942.762 (11)166
O1w—H1w2···O8v0.841.942.716 (11)153
Symmetry codes: (i) x, y1, z; (ii) x1/2, y1/2, z; (iii) x+1/2, y+3/2, z+1; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDeng, Z.-P., Huo, L.-H., Li, M.-S., Zhang, L.-W., Zhu, Z.-B., Zhao, H. & Gao, S. (2011). Cryst. Growth Des. 11, 3090–3100.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLambrechts, H. J. A., Schaasberg-Nienhuis, Z. R. H. & Cerfontain, H. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 669–675.  CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds