organic compounds
[3-Bromomethyl-1-(4-methylphenylsulfonyl)azetidin-3-yl]methanol
aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: qiqingronghh@yahoo.com.cn
The 12H16BrNO3S, contains two independent molecules. In each molecule, the azetidine four-membered ring adopts a nearly planar conformation, the maximum deviations being 0.087 (3) and 0.079 (3) Å. The mean azetidine plane is twisted by 75.2 (2) and 73.6 (2)° with respect to the plane of the benzene ring in the two independent molecules. The crystal packing is stabilized by O—H⋯O hydrogen bonds.
of the title compound, CRelated literature
For biochemical properties of related compounds, see: Wuitschik et al. (2006). For background to the title compound and related structures, see: Wuitschik et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
https://doi.org/10.1107/S1600536811048392/xu5388sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811048392/xu5388Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811048392/xu5388Isup3.cml
The solution of hydrobromic acid (ca 33% in AcOH; 6 ml, 35.25 mmol) in Et2O (55 ml) was dropwise added to a suspension of 6-(p-toluenesulfonyl)-2-oxa-6-azaspiro[3.3] heptane (7.99 g, 31.5 mmol) in Et2O (300 ml) at 273 K over a period of 15 min. The resulting mixture was warmed to 298 K and stirred for 45 min. Then the reacting solution was poured into a saturated aqueous solution of NaHCO3 (300 ml). The solution were separated and the aqueous phase was extracted with Et2O (100 ml). The combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo to afford the title compound. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution at room temperature.
All H atoms were placed in calculated positions and refined in the riding model, with O—H= 0.8200 Å; C—H= 0.93–0.97 Å. The hydrogen atoms were refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2Ueq(C) for aromatic, methylene groups, Uiso(H)= 1.5Ueq(C) for methyl group and Uiso(H) = 1.5Ueq(O) for hydroxy groups.
2,6-Diazaspiro [3.3] heptanes may be considered at the very least as a structural surrogate for piperazines. The spirocyclic framework confers upon it the ability to populate structural space not accessible to the parent piperazine. It has potential use as a small-molecule modulator of pharmacokinetic properties (Wuitschik et al., 2006). The title compound, (3-(bromomethyl)-1-(p-toluenesulfonyl)azetidin-3-yl)methanol is a important intermediate in our study. So it was synthesized according to the published method (Wuitschik et al., 2008). We report here the
of the title compound. In the title compound (Fig. 1), the bond angles C10—N1—C8 and C10—C9—C8 are 91.8 (2) ° and 87.2 (3) °, respectively. The crystal packing is stabilized by O—H···O hydrogen bond. The packing view of the title compound is shown in Fig. 2.For biochemical properties of related compounds, see: Wuitschik et al. (2006). For background to the title compound and related structures, see: Wuitschik et al. (2008).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. The molecular structure of the title compound with the atom numbering, showing displacement ellipsoids at the 30% probability level. | |
Fig. 2. A packing diagram of the title compound. |
C12H16BrNO3S | Z = 4 |
Mr = 334.23 | F(000) = 680 |
Triclinic, P1 | Dx = 1.579 Mg m−3 |
a = 6.6290 (9) Å | Mo Kα radiation, λ = 0.7107 Å |
b = 12.4888 (17) Å | Cell parameters from 2835 reflections |
c = 18.166 (2) Å | θ = 2.9–29.1° |
α = 109.922 (12)° | µ = 3.07 mm−1 |
β = 95.811 (12)° | T = 293 K |
γ = 90.199 (12)° | Block, colourless |
V = 1405.5 (3) Å3 | 0.35 × 0.30 × 0.30 mm |
Agilent Xcalibur Eos diffractometer | 5752 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3142 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 16.0874 pixels mm-1 | θmax = 26.4°, θmin = 3.1° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −15→15 |
Tmin = 0.565, Tmax = 1.000 | l = −22→22 |
11524 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 0.94 | w = 1/[σ2(Fo2) + (0.014P)2] where P = (Fo2 + 2Fc2)/3 |
5752 reflections | (Δ/σ)max = 0.001 |
329 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.86 e Å−3 |
C12H16BrNO3S | γ = 90.199 (12)° |
Mr = 334.23 | V = 1405.5 (3) Å3 |
Triclinic, P1 | Z = 4 |
a = 6.6290 (9) Å | Mo Kα radiation |
b = 12.4888 (17) Å | µ = 3.07 mm−1 |
c = 18.166 (2) Å | T = 293 K |
α = 109.922 (12)° | 0.35 × 0.30 × 0.30 mm |
β = 95.811 (12)° |
Agilent Xcalibur Eos diffractometer | 5752 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 3142 reflections with I > 2σ(I) |
Tmin = 0.565, Tmax = 1.000 | Rint = 0.042 |
11524 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.57 e Å−3 |
5752 reflections | Δρmin = −0.86 e Å−3 |
329 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.80877 (7) | 0.16709 (4) | 0.80446 (3) | 0.07787 (18) | |
Br2 | 0.33261 (6) | 0.14921 (4) | 0.31547 (3) | 0.07053 (18) | |
S1 | 1.51454 (14) | 0.27546 (9) | 1.04138 (7) | 0.0468 (3) | |
S2 | 1.02857 (14) | 0.28105 (9) | 0.55348 (7) | 0.0487 (3) | |
O1 | 1.6007 (4) | 0.3816 (2) | 1.09642 (17) | 0.0659 (8) | |
O2 | 1.6411 (3) | 0.1825 (2) | 1.00815 (17) | 0.0616 (8) | |
O3 | 1.0699 (4) | 0.4627 (2) | 0.8377 (2) | 0.0793 (10) | |
H3 | 1.1458 | 0.5191 | 0.8594 | 0.119* | |
O4 | 1.1179 (4) | 0.2353 (2) | 0.61106 (17) | 0.0699 (9) | |
O5 | 1.1512 (4) | 0.3410 (2) | 0.51847 (17) | 0.0607 (8) | |
O6 | 0.5704 (4) | −0.1092 (2) | 0.3565 (2) | 0.0842 (11) | |
H6 | 0.6459 | −0.1549 | 0.3672 | 0.126* | |
N1 | 1.4048 (4) | 0.3079 (2) | 0.96791 (18) | 0.0415 (8) | |
N2 | 0.9243 (4) | 0.1719 (2) | 0.48128 (19) | 0.0441 (8) | |
C1 | 1.3256 (5) | 0.2284 (3) | 1.0856 (2) | 0.0371 (9) | |
C2 | 1.2236 (5) | 0.3063 (3) | 1.1414 (2) | 0.0477 (10) | |
H2 | 1.2595 | 0.3836 | 1.1580 | 0.057* | |
C3 | 1.0687 (6) | 0.2686 (3) | 1.1723 (2) | 0.0510 (11) | |
H3A | 1.0004 | 0.3215 | 1.2099 | 0.061* | |
C4 | 1.0108 (5) | 0.1538 (3) | 1.1490 (2) | 0.0448 (10) | |
C5 | 1.1207 (5) | 0.0778 (3) | 1.0949 (2) | 0.0467 (10) | |
H5 | 1.0887 | 0.0002 | 1.0796 | 0.056* | |
C6 | 1.2753 (5) | 0.1135 (3) | 1.0629 (2) | 0.0446 (10) | |
H6A | 1.3459 | 0.0607 | 1.0262 | 0.054* | |
C7 | 0.8370 (5) | 0.1126 (3) | 1.1813 (3) | 0.0670 (13) | |
H7A | 0.7259 | 0.0855 | 1.1406 | 0.101* | |
H7B | 0.7942 | 0.1743 | 1.2244 | 0.101* | |
H7C | 0.8803 | 0.0518 | 1.1996 | 0.101* | |
C8 | 1.2449 (5) | 0.3929 (3) | 0.9770 (2) | 0.0448 (10) | |
H8A | 1.2937 | 0.4670 | 0.9784 | 0.054* | |
H8B | 1.1667 | 0.4002 | 1.0207 | 0.054* | |
C9 | 1.1372 (5) | 0.3180 (3) | 0.8959 (2) | 0.0398 (9) | |
C10 | 1.2804 (5) | 0.2230 (3) | 0.9007 (2) | 0.0480 (10) | |
H10A | 1.2162 | 0.1635 | 0.9145 | 0.058* | |
H10B | 1.3515 | 0.1909 | 0.8545 | 0.058* | |
C11 | 0.9156 (5) | 0.2929 (3) | 0.8966 (2) | 0.0542 (11) | |
H11A | 0.8403 | 0.3602 | 0.8989 | 0.065* | |
H11B | 0.8969 | 0.2748 | 0.9434 | 0.065* | |
C12 | 1.1785 (6) | 0.3631 (3) | 0.8315 (2) | 0.0558 (11) | |
H12A | 1.3227 | 0.3804 | 0.8352 | 0.067* | |
H12B | 1.1387 | 0.3053 | 0.7806 | 0.067* | |
C13 | 0.8356 (5) | 0.3687 (3) | 0.5967 (2) | 0.0409 (9) | |
C14 | 0.7384 (6) | 0.3484 (3) | 0.6541 (2) | 0.0501 (11) | |
H14 | 0.7797 | 0.2904 | 0.6727 | 0.060* | |
C15 | 0.5788 (6) | 0.4144 (3) | 0.6842 (2) | 0.0538 (11) | |
H15 | 0.5129 | 0.3998 | 0.7228 | 0.065* | |
C16 | 0.5157 (6) | 0.5015 (3) | 0.6578 (2) | 0.0472 (10) | |
C17 | 0.6161 (6) | 0.5204 (3) | 0.6009 (2) | 0.0497 (11) | |
H17 | 0.5756 | 0.5790 | 0.5827 | 0.060* | |
C18 | 0.7749 (5) | 0.4559 (3) | 0.5695 (2) | 0.0462 (10) | |
H18 | 0.8402 | 0.4706 | 0.5308 | 0.055* | |
C19 | 0.3394 (6) | 0.5712 (3) | 0.6908 (3) | 0.0725 (14) | |
H19A | 0.2738 | 0.5363 | 0.7222 | 0.109* | |
H19B | 0.2442 | 0.5748 | 0.6483 | 0.109* | |
H19C | 0.3879 | 0.6469 | 0.7229 | 0.109* | |
C20 | 0.7598 (5) | 0.0976 (3) | 0.4909 (2) | 0.0529 (11) | |
H20A | 0.6813 | 0.1354 | 0.5341 | 0.064* | |
H20B | 0.8055 | 0.0251 | 0.4934 | 0.064* | |
C21 | 0.6554 (5) | 0.0905 (3) | 0.4092 (2) | 0.0412 (9) | |
C22 | 0.8041 (5) | 0.1863 (3) | 0.4122 (2) | 0.0473 (10) | |
H22A | 0.8772 | 0.1687 | 0.3661 | 0.057* | |
H22B | 0.7436 | 0.2600 | 0.4235 | 0.057* | |
C23 | 0.4346 (5) | 0.1207 (3) | 0.4107 (2) | 0.0589 (12) | |
H23A | 0.4205 | 0.1881 | 0.4561 | 0.071* | |
H23B | 0.3549 | 0.0587 | 0.4155 | 0.071* | |
C24 | 0.6879 (6) | −0.0218 (3) | 0.3458 (3) | 0.0580 (12) | |
H24A | 0.6479 | −0.0167 | 0.2943 | 0.070* | |
H24B | 0.8304 | −0.0391 | 0.3489 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0660 (3) | 0.0807 (4) | 0.0774 (4) | −0.0317 (3) | −0.0074 (3) | 0.0194 (3) |
Br2 | 0.0586 (3) | 0.0701 (3) | 0.0829 (4) | 0.0068 (2) | −0.0081 (3) | 0.0307 (3) |
S1 | 0.0379 (6) | 0.0522 (7) | 0.0537 (7) | −0.0079 (5) | −0.0009 (5) | 0.0243 (6) |
S2 | 0.0382 (6) | 0.0528 (7) | 0.0549 (8) | 0.0090 (5) | 0.0007 (5) | 0.0193 (6) |
O1 | 0.0612 (18) | 0.067 (2) | 0.065 (2) | −0.0276 (15) | −0.0115 (16) | 0.0234 (18) |
O2 | 0.0411 (15) | 0.073 (2) | 0.084 (2) | 0.0173 (15) | 0.0200 (16) | 0.0407 (19) |
O3 | 0.077 (2) | 0.064 (2) | 0.108 (3) | −0.0195 (17) | −0.030 (2) | 0.056 (2) |
O4 | 0.0580 (18) | 0.085 (2) | 0.071 (2) | 0.0310 (17) | −0.0054 (16) | 0.0349 (19) |
O5 | 0.0474 (16) | 0.0585 (18) | 0.078 (2) | −0.0022 (14) | 0.0193 (16) | 0.0215 (18) |
O6 | 0.0589 (19) | 0.0461 (19) | 0.145 (3) | −0.0002 (16) | −0.012 (2) | 0.037 (2) |
N1 | 0.0430 (18) | 0.0392 (18) | 0.042 (2) | −0.0025 (15) | −0.0003 (16) | 0.0147 (16) |
N2 | 0.0447 (19) | 0.0446 (19) | 0.047 (2) | 0.0048 (16) | 0.0052 (16) | 0.0206 (18) |
C1 | 0.034 (2) | 0.038 (2) | 0.042 (2) | 0.0021 (17) | 0.0010 (18) | 0.0185 (19) |
C2 | 0.053 (3) | 0.037 (2) | 0.051 (3) | −0.002 (2) | 0.002 (2) | 0.013 (2) |
C3 | 0.057 (3) | 0.046 (2) | 0.046 (3) | 0.014 (2) | 0.010 (2) | 0.010 (2) |
C4 | 0.043 (2) | 0.056 (3) | 0.046 (3) | 0.004 (2) | 0.006 (2) | 0.029 (2) |
C5 | 0.055 (3) | 0.036 (2) | 0.051 (3) | −0.002 (2) | 0.008 (2) | 0.017 (2) |
C6 | 0.052 (2) | 0.038 (2) | 0.049 (3) | 0.0093 (19) | 0.017 (2) | 0.017 (2) |
C7 | 0.059 (3) | 0.078 (3) | 0.073 (3) | −0.001 (2) | 0.021 (3) | 0.035 (3) |
C8 | 0.053 (2) | 0.038 (2) | 0.045 (3) | −0.0023 (19) | 0.009 (2) | 0.015 (2) |
C9 | 0.039 (2) | 0.038 (2) | 0.044 (3) | −0.0041 (18) | 0.0022 (19) | 0.016 (2) |
C10 | 0.055 (2) | 0.045 (2) | 0.043 (3) | 0.000 (2) | 0.008 (2) | 0.013 (2) |
C11 | 0.049 (2) | 0.050 (2) | 0.063 (3) | −0.003 (2) | 0.013 (2) | 0.017 (2) |
C12 | 0.056 (3) | 0.065 (3) | 0.051 (3) | −0.012 (2) | 0.000 (2) | 0.028 (2) |
C13 | 0.041 (2) | 0.044 (2) | 0.039 (2) | 0.0041 (18) | 0.0009 (19) | 0.016 (2) |
C14 | 0.058 (3) | 0.052 (3) | 0.048 (3) | 0.011 (2) | 0.008 (2) | 0.027 (2) |
C15 | 0.058 (3) | 0.063 (3) | 0.043 (3) | 0.003 (2) | 0.018 (2) | 0.017 (2) |
C16 | 0.049 (2) | 0.042 (2) | 0.043 (3) | 0.005 (2) | 0.003 (2) | 0.006 (2) |
C17 | 0.061 (3) | 0.042 (2) | 0.050 (3) | 0.013 (2) | 0.010 (2) | 0.019 (2) |
C18 | 0.046 (2) | 0.048 (2) | 0.051 (3) | 0.003 (2) | 0.016 (2) | 0.022 (2) |
C19 | 0.062 (3) | 0.070 (3) | 0.079 (4) | 0.015 (3) | 0.020 (3) | 0.013 (3) |
C20 | 0.052 (2) | 0.051 (3) | 0.066 (3) | 0.002 (2) | 0.011 (2) | 0.030 (2) |
C21 | 0.038 (2) | 0.039 (2) | 0.051 (3) | 0.0027 (18) | 0.0089 (19) | 0.019 (2) |
C22 | 0.056 (3) | 0.048 (2) | 0.040 (3) | −0.001 (2) | 0.009 (2) | 0.017 (2) |
C23 | 0.049 (2) | 0.054 (3) | 0.083 (3) | 0.012 (2) | 0.015 (2) | 0.032 (3) |
C24 | 0.047 (2) | 0.044 (2) | 0.079 (3) | 0.009 (2) | 0.010 (2) | 0.015 (3) |
Br1—C11 | 1.931 (4) | C9—C10 | 1.542 (4) |
Br2—C23 | 1.939 (4) | C9—C11 | 1.503 (4) |
S1—O1 | 1.435 (3) | C9—C12 | 1.509 (5) |
S1—O2 | 1.431 (2) | C10—H10A | 0.9700 |
S1—N1 | 1.628 (3) | C10—H10B | 0.9700 |
S1—C1 | 1.754 (4) | C11—H11A | 0.9700 |
S2—O4 | 1.434 (3) | C11—H11B | 0.9700 |
S2—O5 | 1.432 (3) | C12—H12A | 0.9700 |
S2—N2 | 1.627 (3) | C12—H12B | 0.9700 |
S2—C13 | 1.754 (3) | C13—C14 | 1.372 (5) |
O3—H3 | 0.8200 | C13—C18 | 1.386 (4) |
O3—C12 | 1.416 (4) | C14—H14 | 0.9300 |
O6—H6 | 0.8200 | C14—C15 | 1.383 (4) |
O6—C24 | 1.416 (4) | C15—H15 | 0.9300 |
N1—C8 | 1.484 (4) | C15—C16 | 1.380 (5) |
N1—C10 | 1.484 (4) | C16—C17 | 1.369 (5) |
N2—C20 | 1.491 (4) | C16—C19 | 1.509 (4) |
N2—C22 | 1.481 (4) | C17—H17 | 0.9300 |
C1—C2 | 1.380 (5) | C17—C18 | 1.377 (4) |
C1—C6 | 1.380 (4) | C18—H18 | 0.9300 |
C2—H2 | 0.9300 | C19—H19A | 0.9600 |
C2—C3 | 1.373 (5) | C19—H19B | 0.9600 |
C3—H3A | 0.9300 | C19—H19C | 0.9600 |
C3—C4 | 1.390 (5) | C20—H20A | 0.9700 |
C4—C5 | 1.383 (5) | C20—H20B | 0.9700 |
C4—C7 | 1.508 (5) | C20—C21 | 1.546 (5) |
C5—H5 | 0.9300 | C21—C22 | 1.531 (5) |
C5—C6 | 1.371 (5) | C21—C23 | 1.514 (4) |
C6—H6A | 0.9300 | C21—C24 | 1.513 (5) |
C7—H7A | 0.9600 | C22—H22A | 0.9700 |
C7—H7B | 0.9600 | C22—H22B | 0.9700 |
C7—H7C | 0.9600 | C23—H23A | 0.9700 |
C8—H8A | 0.9700 | C23—H23B | 0.9700 |
C8—H8B | 0.9700 | C24—H24A | 0.9700 |
C8—C9 | 1.549 (5) | C24—H24B | 0.9700 |
O1—S1—N1 | 104.75 (16) | C9—C11—Br1 | 111.9 (3) |
O1—S1—C1 | 107.73 (18) | C9—C11—H11A | 109.2 |
O2—S1—O1 | 120.65 (17) | C9—C11—H11B | 109.2 |
O2—S1—N1 | 106.34 (16) | H11A—C11—H11B | 107.9 |
O2—S1—C1 | 108.70 (16) | O3—C12—C9 | 110.7 (3) |
N1—S1—C1 | 108.07 (16) | O3—C12—H12A | 109.5 |
O4—S2—N2 | 105.38 (16) | O3—C12—H12B | 109.5 |
O4—S2—C13 | 106.54 (17) | C9—C12—H12A | 109.5 |
O5—S2—O4 | 120.77 (17) | C9—C12—H12B | 109.5 |
O5—S2—N2 | 105.93 (17) | H12A—C12—H12B | 108.1 |
O5—S2—C13 | 109.28 (17) | C14—C13—S2 | 120.8 (3) |
N2—S2—C13 | 108.40 (16) | C14—C13—C18 | 119.9 (3) |
C12—O3—H3 | 109.5 | C18—C13—S2 | 119.2 (3) |
C24—O6—H6 | 109.5 | C13—C14—H14 | 120.0 |
C8—N1—S1 | 123.0 (2) | C13—C14—C15 | 119.9 (3) |
C10—N1—S1 | 122.1 (2) | C15—C14—H14 | 120.0 |
C10—N1—C8 | 91.8 (2) | C14—C15—H15 | 119.5 |
C20—N2—S2 | 122.8 (3) | C16—C15—C14 | 121.1 (4) |
C22—N2—S2 | 121.3 (2) | C16—C15—H15 | 119.5 |
C22—N2—C20 | 91.3 (3) | C15—C16—C19 | 120.1 (4) |
C2—C1—S1 | 120.1 (3) | C17—C16—C15 | 117.8 (3) |
C2—C1—C6 | 119.9 (4) | C17—C16—C19 | 122.1 (4) |
C6—C1—S1 | 120.0 (3) | C16—C17—H17 | 118.8 |
C1—C2—H2 | 120.3 | C16—C17—C18 | 122.5 (3) |
C3—C2—C1 | 119.4 (4) | C18—C17—H17 | 118.8 |
C3—C2—H2 | 120.3 | C13—C18—H18 | 120.6 |
C2—C3—H3A | 119.0 | C17—C18—C13 | 118.8 (4) |
C2—C3—C4 | 121.9 (4) | C17—C18—H18 | 120.6 |
C4—C3—H3A | 119.0 | C16—C19—H19A | 109.5 |
C3—C4—C7 | 122.0 (4) | C16—C19—H19B | 109.5 |
C5—C4—C3 | 117.1 (4) | C16—C19—H19C | 109.5 |
C5—C4—C7 | 120.9 (4) | H19A—C19—H19B | 109.5 |
C4—C5—H5 | 119.0 | H19A—C19—H19C | 109.5 |
C6—C5—C4 | 122.0 (4) | H19B—C19—H19C | 109.5 |
C6—C5—H5 | 119.0 | N2—C20—H20A | 113.8 |
C1—C6—H6A | 120.2 | N2—C20—H20B | 113.8 |
C5—C6—C1 | 119.7 (4) | N2—C20—C21 | 89.0 (3) |
C5—C6—H6A | 120.2 | H20A—C20—H20B | 111.0 |
C4—C7—H7A | 109.5 | C21—C20—H20A | 113.8 |
C4—C7—H7B | 109.5 | C21—C20—H20B | 113.8 |
C4—C7—H7C | 109.5 | C22—C21—C20 | 87.4 (3) |
H7A—C7—H7B | 109.5 | C23—C21—C20 | 113.0 (3) |
H7A—C7—H7C | 109.5 | C23—C21—C22 | 115.5 (3) |
H7B—C7—H7C | 109.5 | C24—C21—C20 | 112.4 (3) |
N1—C8—H8A | 113.8 | C24—C21—C22 | 113.2 (3) |
N1—C8—H8B | 113.8 | C24—C21—C23 | 113.0 (3) |
N1—C8—C9 | 89.0 (3) | N2—C22—C21 | 89.9 (3) |
H8A—C8—H8B | 111.0 | N2—C22—H22A | 113.7 |
C9—C8—H8A | 113.8 | N2—C22—H22B | 113.7 |
C9—C8—H8B | 113.8 | C21—C22—H22A | 113.7 |
C10—C9—C8 | 87.2 (3) | C21—C22—H22B | 113.7 |
C11—C9—C8 | 114.0 (3) | H22A—C22—H22B | 110.9 |
C11—C9—C10 | 115.5 (3) | Br2—C23—H23A | 109.5 |
C11—C9—C12 | 113.2 (3) | Br2—C23—H23B | 109.5 |
C12—C9—C8 | 111.9 (3) | C21—C23—Br2 | 110.9 (3) |
C12—C9—C10 | 112.5 (3) | C21—C23—H23A | 109.5 |
N1—C10—C9 | 89.2 (3) | C21—C23—H23B | 109.5 |
N1—C10—H10A | 113.8 | H23A—C23—H23B | 108.1 |
N1—C10—H10B | 113.8 | O6—C24—C21 | 109.3 (3) |
C9—C10—H10A | 113.8 | O6—C24—H24A | 109.8 |
C9—C10—H10B | 113.8 | O6—C24—H24B | 109.8 |
H10A—C10—H10B | 111.0 | C21—C24—H24A | 109.8 |
Br1—C11—H11A | 109.2 | C21—C24—H24B | 109.8 |
Br1—C11—H11B | 109.2 | H24A—C24—H24B | 108.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1i | 0.82 | 2.01 | 2.800 (4) | 161 |
O6—H6···O4ii | 0.82 | 1.94 | 2.739 (3) | 164 |
Symmetry codes: (i) −x+3, −y+1, −z+2; (ii) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C12H16BrNO3S |
Mr | 334.23 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.6290 (9), 12.4888 (17), 18.166 (2) |
α, β, γ (°) | 109.922 (12), 95.811 (12), 90.199 (12) |
V (Å3) | 1405.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.07 |
Crystal size (mm) | 0.35 × 0.30 × 0.30 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.565, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11524, 5752, 3142 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.085, 0.94 |
No. of reflections | 5752 |
No. of parameters | 329 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.57, −0.86 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1i | 0.82 | 2.01 | 2.800 (4) | 161.3 |
O6—H6···O4ii | 0.82 | 1.94 | 2.739 (3) | 164.1 |
Symmetry codes: (i) −x+3, −y+1, −z+2; (ii) −x+2, −y, −z+1. |
Acknowledgements
This work was supported by the Applied Basic Research Program of Sichuan Provincial Science and Technology Department, China (No. 2009JY0113). The authors thank Mr Z.-H. Mao and Mr D.-B. Luo of the Analytical & Testing Center, Sichuan University, for assistance with the data collection.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wuitschik, G., Rogers-Evans, M., Buckl, A., Bernasconi, M., Märki, M., Godel, T., Fischer, H., Wagner, B., Parrilla, I., Schuler, F., Schneider, J., Alker, A., Schweizer, W. B., Müller, K. & Carreira, E. M. (2008). Angew. Chem. Int. Ed. 47, 4512–4515. Web of Science CSD CrossRef CAS Google Scholar
Wuitschik, G., Rogers-Evans, M., Müller, K., Fischer, H., Wagner, B., Schuler, F., Polonchuk, L. & Carreira, E. M. (2006). Angew. Chem. Int. Ed. 45, 7736–7739. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2,6-Diazaspiro [3.3] heptanes may be considered at the very least as a structural surrogate for piperazines. The spirocyclic framework confers upon it the ability to populate structural space not accessible to the parent piperazine. It has potential use as a small-molecule modulator of pharmacokinetic properties (Wuitschik et al., 2006). The title compound, (3-(bromomethyl)-1-(p-toluenesulfonyl)azetidin-3-yl)methanol is a important intermediate in our study. So it was synthesized according to the published method (Wuitschik et al., 2008). We report here the crystal structure of the title compound. In the title compound (Fig. 1), the bond angles C10—N1—C8 and C10—C9—C8 are 91.8 (2) ° and 87.2 (3) °, respectively. The crystal packing is stabilized by O—H···O hydrogen bond. The packing view of the title compound is shown in Fig. 2.