organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[3-Bromo­meth­yl-1-(4-methyl­phenyl­sulfon­yl)azetidin-3-yl]methanol

aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: qiqingronghh@yahoo.com.cn

(Received 12 November 2011; accepted 15 November 2011; online 19 November 2011)

The asymmetric unit of the title compound, C12H16BrNO3S, contains two independent mol­ecules. In each mol­ecule, the azetidine four-membered ring adopts a nearly planar conformation, the maximum deviations being 0.087 (3) and 0.079 (3) Å. The mean azetidine plane is twisted by 75.2 (2) and 73.6 (2)° with respect to the plane of the benzene ring in the two independent mol­ecules. The crystal packing is stabilized by O—H⋯O hydrogen bonds.

Related literature

For biochemical properties of related compounds, see: Wuitschik et al. (2006[Wuitschik, G., Rogers-Evans, M., Müller, K., Fischer, H., Wagner, B., Schuler, F., Polonchuk, L. & Carreira, E. M. (2006). Angew. Chem. Int. Ed. 45, 7736-7739.]). For background to the title compound and related structures, see: Wuitschik et al. (2008[Wuitschik, G., Rogers-Evans, M., Buckl, A., Bernasconi, M., Märki, M., Godel, T., Fischer, H., Wagner, B., Parrilla, I., Schuler, F., Schneider, J., Alker, A., Schweizer, W. B., Müller, K. & Carreira, E. M. (2008). Angew. Chem. Int. Ed. 47, 4512-4515.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16BrNO3S

  • Mr = 334.23

  • Triclinic, [P \overline 1]

  • a = 6.6290 (9) Å

  • b = 12.4888 (17) Å

  • c = 18.166 (2) Å

  • α = 109.922 (12)°

  • β = 95.811 (12)°

  • γ = 90.199 (12)°

  • V = 1405.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.07 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.565, Tmax = 1.000

  • 11524 measured reflections

  • 5752 independent reflections

  • 3142 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.085

  • S = 0.94

  • 5752 reflections

  • 329 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.82 2.01 2.800 (4) 161
O6—H6⋯O4ii 0.82 1.94 2.739 (3) 164
Symmetry codes: (i) -x+3, -y+1, -z+2; (ii) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

2,6-Diazaspiro [3.3] heptanes may be considered at the very least as a structural surrogate for piperazines. The spirocyclic framework confers upon it the ability to populate structural space not accessible to the parent piperazine. It has potential use as a small-molecule modulator of pharmacokinetic properties (Wuitschik et al., 2006). The title compound, (3-(bromomethyl)-1-(p-toluenesulfonyl)azetidin-3-yl)methanol is a important intermediate in our study. So it was synthesized according to the published method (Wuitschik et al., 2008). We report here the crystal structure of the title compound. In the title compound (Fig. 1), the bond angles C10—N1—C8 and C10—C9—C8 are 91.8 (2) ° and 87.2 (3) °, respectively. The crystal packing is stabilized by O—H···O hydrogen bond. The packing view of the title compound is shown in Fig. 2.

Related literature top

For biochemical properties of related compounds, see: Wuitschik et al. (2006). For background to the title compound and related structures, see: Wuitschik et al. (2008).

Experimental top

The solution of hydrobromic acid (ca 33% in AcOH; 6 ml, 35.25 mmol) in Et2O (55 ml) was dropwise added to a suspension of 6-(p-toluenesulfonyl)-2-oxa-6-azaspiro[3.3] heptane (7.99 g, 31.5 mmol) in Et2O (300 ml) at 273 K over a period of 15 min. The resulting mixture was warmed to 298 K and stirred for 45 min. Then the reacting solution was poured into a saturated aqueous solution of NaHCO3 (300 ml). The solution were separated and the aqueous phase was extracted with Et2O (100 ml). The combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo to afford the title compound. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution at room temperature.

Refinement top

All H atoms were placed in calculated positions and refined in the riding model, with O—H= 0.8200 Å; C—H= 0.93–0.97 Å. The hydrogen atoms were refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2Ueq(C) for aromatic, methylene groups, Uiso(H)= 1.5Ueq(C) for methyl group and Uiso(H) = 1.5Ueq(O) for hydroxy groups.

Structure description top

2,6-Diazaspiro [3.3] heptanes may be considered at the very least as a structural surrogate for piperazines. The spirocyclic framework confers upon it the ability to populate structural space not accessible to the parent piperazine. It has potential use as a small-molecule modulator of pharmacokinetic properties (Wuitschik et al., 2006). The title compound, (3-(bromomethyl)-1-(p-toluenesulfonyl)azetidin-3-yl)methanol is a important intermediate in our study. So it was synthesized according to the published method (Wuitschik et al., 2008). We report here the crystal structure of the title compound. In the title compound (Fig. 1), the bond angles C10—N1—C8 and C10—C9—C8 are 91.8 (2) ° and 87.2 (3) °, respectively. The crystal packing is stabilized by O—H···O hydrogen bond. The packing view of the title compound is shown in Fig. 2.

For biochemical properties of related compounds, see: Wuitschik et al. (2006). For background to the title compound and related structures, see: Wuitschik et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering, showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound.
[3-Bromomethyl-1-(4-methylphenylsulfonyl)azetidin-3-yl]methanol top
Crystal data top
C12H16BrNO3SZ = 4
Mr = 334.23F(000) = 680
Triclinic, P1Dx = 1.579 Mg m3
a = 6.6290 (9) ÅMo Kα radiation, λ = 0.7107 Å
b = 12.4888 (17) ÅCell parameters from 2835 reflections
c = 18.166 (2) Åθ = 2.9–29.1°
α = 109.922 (12)°µ = 3.07 mm1
β = 95.811 (12)°T = 293 K
γ = 90.199 (12)°Block, colourless
V = 1405.5 (3) Å30.35 × 0.30 × 0.30 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
5752 independent reflections
Radiation source: Enhance (Mo) X-ray Source3142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1515
Tmin = 0.565, Tmax = 1.000l = 2222
11524 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.014P)2]
where P = (Fo2 + 2Fc2)/3
5752 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
C12H16BrNO3Sγ = 90.199 (12)°
Mr = 334.23V = 1405.5 (3) Å3
Triclinic, P1Z = 4
a = 6.6290 (9) ÅMo Kα radiation
b = 12.4888 (17) ŵ = 3.07 mm1
c = 18.166 (2) ÅT = 293 K
α = 109.922 (12)°0.35 × 0.30 × 0.30 mm
β = 95.811 (12)°
Data collection top
Agilent Xcalibur Eos
diffractometer
5752 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3142 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 1.000Rint = 0.042
11524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 0.94Δρmax = 0.57 e Å3
5752 reflectionsΔρmin = 0.86 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.80877 (7)0.16709 (4)0.80446 (3)0.07787 (18)
Br20.33261 (6)0.14921 (4)0.31547 (3)0.07053 (18)
S11.51454 (14)0.27546 (9)1.04138 (7)0.0468 (3)
S21.02857 (14)0.28105 (9)0.55348 (7)0.0487 (3)
O11.6007 (4)0.3816 (2)1.09642 (17)0.0659 (8)
O21.6411 (3)0.1825 (2)1.00815 (17)0.0616 (8)
O31.0699 (4)0.4627 (2)0.8377 (2)0.0793 (10)
H31.14580.51910.85940.119*
O41.1179 (4)0.2353 (2)0.61106 (17)0.0699 (9)
O51.1512 (4)0.3410 (2)0.51847 (17)0.0607 (8)
O60.5704 (4)0.1092 (2)0.3565 (2)0.0842 (11)
H60.64590.15490.36720.126*
N11.4048 (4)0.3079 (2)0.96791 (18)0.0415 (8)
N20.9243 (4)0.1719 (2)0.48128 (19)0.0441 (8)
C11.3256 (5)0.2284 (3)1.0856 (2)0.0371 (9)
C21.2236 (5)0.3063 (3)1.1414 (2)0.0477 (10)
H21.25950.38361.15800.057*
C31.0687 (6)0.2686 (3)1.1723 (2)0.0510 (11)
H3A1.00040.32151.20990.061*
C41.0108 (5)0.1538 (3)1.1490 (2)0.0448 (10)
C51.1207 (5)0.0778 (3)1.0949 (2)0.0467 (10)
H51.08870.00021.07960.056*
C61.2753 (5)0.1135 (3)1.0629 (2)0.0446 (10)
H6A1.34590.06071.02620.054*
C70.8370 (5)0.1126 (3)1.1813 (3)0.0670 (13)
H7A0.72590.08551.14060.101*
H7B0.79420.17431.22440.101*
H7C0.88030.05181.19960.101*
C81.2449 (5)0.3929 (3)0.9770 (2)0.0448 (10)
H8A1.29370.46700.97840.054*
H8B1.16670.40021.02070.054*
C91.1372 (5)0.3180 (3)0.8959 (2)0.0398 (9)
C101.2804 (5)0.2230 (3)0.9007 (2)0.0480 (10)
H10A1.21620.16350.91450.058*
H10B1.35150.19090.85450.058*
C110.9156 (5)0.2929 (3)0.8966 (2)0.0542 (11)
H11A0.84030.36020.89890.065*
H11B0.89690.27480.94340.065*
C121.1785 (6)0.3631 (3)0.8315 (2)0.0558 (11)
H12A1.32270.38040.83520.067*
H12B1.13870.30530.78060.067*
C130.8356 (5)0.3687 (3)0.5967 (2)0.0409 (9)
C140.7384 (6)0.3484 (3)0.6541 (2)0.0501 (11)
H140.77970.29040.67270.060*
C150.5788 (6)0.4144 (3)0.6842 (2)0.0538 (11)
H150.51290.39980.72280.065*
C160.5157 (6)0.5015 (3)0.6578 (2)0.0472 (10)
C170.6161 (6)0.5204 (3)0.6009 (2)0.0497 (11)
H170.57560.57900.58270.060*
C180.7749 (5)0.4559 (3)0.5695 (2)0.0462 (10)
H180.84020.47060.53080.055*
C190.3394 (6)0.5712 (3)0.6908 (3)0.0725 (14)
H19A0.27380.53630.72220.109*
H19B0.24420.57480.64830.109*
H19C0.38790.64690.72290.109*
C200.7598 (5)0.0976 (3)0.4909 (2)0.0529 (11)
H20A0.68130.13540.53410.064*
H20B0.80550.02510.49340.064*
C210.6554 (5)0.0905 (3)0.4092 (2)0.0412 (9)
C220.8041 (5)0.1863 (3)0.4122 (2)0.0473 (10)
H22A0.87720.16870.36610.057*
H22B0.74360.26000.42350.057*
C230.4346 (5)0.1207 (3)0.4107 (2)0.0589 (12)
H23A0.42050.18810.45610.071*
H23B0.35490.05870.41550.071*
C240.6879 (6)0.0218 (3)0.3458 (3)0.0580 (12)
H24A0.64790.01670.29430.070*
H24B0.83040.03910.34890.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0660 (3)0.0807 (4)0.0774 (4)0.0317 (3)0.0074 (3)0.0194 (3)
Br20.0586 (3)0.0701 (3)0.0829 (4)0.0068 (2)0.0081 (3)0.0307 (3)
S10.0379 (6)0.0522 (7)0.0537 (7)0.0079 (5)0.0009 (5)0.0243 (6)
S20.0382 (6)0.0528 (7)0.0549 (8)0.0090 (5)0.0007 (5)0.0193 (6)
O10.0612 (18)0.067 (2)0.065 (2)0.0276 (15)0.0115 (16)0.0234 (18)
O20.0411 (15)0.073 (2)0.084 (2)0.0173 (15)0.0200 (16)0.0407 (19)
O30.077 (2)0.064 (2)0.108 (3)0.0195 (17)0.030 (2)0.056 (2)
O40.0580 (18)0.085 (2)0.071 (2)0.0310 (17)0.0054 (16)0.0349 (19)
O50.0474 (16)0.0585 (18)0.078 (2)0.0022 (14)0.0193 (16)0.0215 (18)
O60.0589 (19)0.0461 (19)0.145 (3)0.0002 (16)0.012 (2)0.037 (2)
N10.0430 (18)0.0392 (18)0.042 (2)0.0025 (15)0.0003 (16)0.0147 (16)
N20.0447 (19)0.0446 (19)0.047 (2)0.0048 (16)0.0052 (16)0.0206 (18)
C10.034 (2)0.038 (2)0.042 (2)0.0021 (17)0.0010 (18)0.0185 (19)
C20.053 (3)0.037 (2)0.051 (3)0.002 (2)0.002 (2)0.013 (2)
C30.057 (3)0.046 (2)0.046 (3)0.014 (2)0.010 (2)0.010 (2)
C40.043 (2)0.056 (3)0.046 (3)0.004 (2)0.006 (2)0.029 (2)
C50.055 (3)0.036 (2)0.051 (3)0.002 (2)0.008 (2)0.017 (2)
C60.052 (2)0.038 (2)0.049 (3)0.0093 (19)0.017 (2)0.017 (2)
C70.059 (3)0.078 (3)0.073 (3)0.001 (2)0.021 (3)0.035 (3)
C80.053 (2)0.038 (2)0.045 (3)0.0023 (19)0.009 (2)0.015 (2)
C90.039 (2)0.038 (2)0.044 (3)0.0041 (18)0.0022 (19)0.016 (2)
C100.055 (2)0.045 (2)0.043 (3)0.000 (2)0.008 (2)0.013 (2)
C110.049 (2)0.050 (2)0.063 (3)0.003 (2)0.013 (2)0.017 (2)
C120.056 (3)0.065 (3)0.051 (3)0.012 (2)0.000 (2)0.028 (2)
C130.041 (2)0.044 (2)0.039 (2)0.0041 (18)0.0009 (19)0.016 (2)
C140.058 (3)0.052 (3)0.048 (3)0.011 (2)0.008 (2)0.027 (2)
C150.058 (3)0.063 (3)0.043 (3)0.003 (2)0.018 (2)0.017 (2)
C160.049 (2)0.042 (2)0.043 (3)0.005 (2)0.003 (2)0.006 (2)
C170.061 (3)0.042 (2)0.050 (3)0.013 (2)0.010 (2)0.019 (2)
C180.046 (2)0.048 (2)0.051 (3)0.003 (2)0.016 (2)0.022 (2)
C190.062 (3)0.070 (3)0.079 (4)0.015 (3)0.020 (3)0.013 (3)
C200.052 (2)0.051 (3)0.066 (3)0.002 (2)0.011 (2)0.030 (2)
C210.038 (2)0.039 (2)0.051 (3)0.0027 (18)0.0089 (19)0.019 (2)
C220.056 (3)0.048 (2)0.040 (3)0.001 (2)0.009 (2)0.017 (2)
C230.049 (2)0.054 (3)0.083 (3)0.012 (2)0.015 (2)0.032 (3)
C240.047 (2)0.044 (2)0.079 (3)0.009 (2)0.010 (2)0.015 (3)
Geometric parameters (Å, º) top
Br1—C111.931 (4)C9—C101.542 (4)
Br2—C231.939 (4)C9—C111.503 (4)
S1—O11.435 (3)C9—C121.509 (5)
S1—O21.431 (2)C10—H10A0.9700
S1—N11.628 (3)C10—H10B0.9700
S1—C11.754 (4)C11—H11A0.9700
S2—O41.434 (3)C11—H11B0.9700
S2—O51.432 (3)C12—H12A0.9700
S2—N21.627 (3)C12—H12B0.9700
S2—C131.754 (3)C13—C141.372 (5)
O3—H30.8200C13—C181.386 (4)
O3—C121.416 (4)C14—H140.9300
O6—H60.8200C14—C151.383 (4)
O6—C241.416 (4)C15—H150.9300
N1—C81.484 (4)C15—C161.380 (5)
N1—C101.484 (4)C16—C171.369 (5)
N2—C201.491 (4)C16—C191.509 (4)
N2—C221.481 (4)C17—H170.9300
C1—C21.380 (5)C17—C181.377 (4)
C1—C61.380 (4)C18—H180.9300
C2—H20.9300C19—H19A0.9600
C2—C31.373 (5)C19—H19B0.9600
C3—H3A0.9300C19—H19C0.9600
C3—C41.390 (5)C20—H20A0.9700
C4—C51.383 (5)C20—H20B0.9700
C4—C71.508 (5)C20—C211.546 (5)
C5—H50.9300C21—C221.531 (5)
C5—C61.371 (5)C21—C231.514 (4)
C6—H6A0.9300C21—C241.513 (5)
C7—H7A0.9600C22—H22A0.9700
C7—H7B0.9600C22—H22B0.9700
C7—H7C0.9600C23—H23A0.9700
C8—H8A0.9700C23—H23B0.9700
C8—H8B0.9700C24—H24A0.9700
C8—C91.549 (5)C24—H24B0.9700
O1—S1—N1104.75 (16)C9—C11—Br1111.9 (3)
O1—S1—C1107.73 (18)C9—C11—H11A109.2
O2—S1—O1120.65 (17)C9—C11—H11B109.2
O2—S1—N1106.34 (16)H11A—C11—H11B107.9
O2—S1—C1108.70 (16)O3—C12—C9110.7 (3)
N1—S1—C1108.07 (16)O3—C12—H12A109.5
O4—S2—N2105.38 (16)O3—C12—H12B109.5
O4—S2—C13106.54 (17)C9—C12—H12A109.5
O5—S2—O4120.77 (17)C9—C12—H12B109.5
O5—S2—N2105.93 (17)H12A—C12—H12B108.1
O5—S2—C13109.28 (17)C14—C13—S2120.8 (3)
N2—S2—C13108.40 (16)C14—C13—C18119.9 (3)
C12—O3—H3109.5C18—C13—S2119.2 (3)
C24—O6—H6109.5C13—C14—H14120.0
C8—N1—S1123.0 (2)C13—C14—C15119.9 (3)
C10—N1—S1122.1 (2)C15—C14—H14120.0
C10—N1—C891.8 (2)C14—C15—H15119.5
C20—N2—S2122.8 (3)C16—C15—C14121.1 (4)
C22—N2—S2121.3 (2)C16—C15—H15119.5
C22—N2—C2091.3 (3)C15—C16—C19120.1 (4)
C2—C1—S1120.1 (3)C17—C16—C15117.8 (3)
C2—C1—C6119.9 (4)C17—C16—C19122.1 (4)
C6—C1—S1120.0 (3)C16—C17—H17118.8
C1—C2—H2120.3C16—C17—C18122.5 (3)
C3—C2—C1119.4 (4)C18—C17—H17118.8
C3—C2—H2120.3C13—C18—H18120.6
C2—C3—H3A119.0C17—C18—C13118.8 (4)
C2—C3—C4121.9 (4)C17—C18—H18120.6
C4—C3—H3A119.0C16—C19—H19A109.5
C3—C4—C7122.0 (4)C16—C19—H19B109.5
C5—C4—C3117.1 (4)C16—C19—H19C109.5
C5—C4—C7120.9 (4)H19A—C19—H19B109.5
C4—C5—H5119.0H19A—C19—H19C109.5
C6—C5—C4122.0 (4)H19B—C19—H19C109.5
C6—C5—H5119.0N2—C20—H20A113.8
C1—C6—H6A120.2N2—C20—H20B113.8
C5—C6—C1119.7 (4)N2—C20—C2189.0 (3)
C5—C6—H6A120.2H20A—C20—H20B111.0
C4—C7—H7A109.5C21—C20—H20A113.8
C4—C7—H7B109.5C21—C20—H20B113.8
C4—C7—H7C109.5C22—C21—C2087.4 (3)
H7A—C7—H7B109.5C23—C21—C20113.0 (3)
H7A—C7—H7C109.5C23—C21—C22115.5 (3)
H7B—C7—H7C109.5C24—C21—C20112.4 (3)
N1—C8—H8A113.8C24—C21—C22113.2 (3)
N1—C8—H8B113.8C24—C21—C23113.0 (3)
N1—C8—C989.0 (3)N2—C22—C2189.9 (3)
H8A—C8—H8B111.0N2—C22—H22A113.7
C9—C8—H8A113.8N2—C22—H22B113.7
C9—C8—H8B113.8C21—C22—H22A113.7
C10—C9—C887.2 (3)C21—C22—H22B113.7
C11—C9—C8114.0 (3)H22A—C22—H22B110.9
C11—C9—C10115.5 (3)Br2—C23—H23A109.5
C11—C9—C12113.2 (3)Br2—C23—H23B109.5
C12—C9—C8111.9 (3)C21—C23—Br2110.9 (3)
C12—C9—C10112.5 (3)C21—C23—H23A109.5
N1—C10—C989.2 (3)C21—C23—H23B109.5
N1—C10—H10A113.8H23A—C23—H23B108.1
N1—C10—H10B113.8O6—C24—C21109.3 (3)
C9—C10—H10A113.8O6—C24—H24A109.8
C9—C10—H10B113.8O6—C24—H24B109.8
H10A—C10—H10B111.0C21—C24—H24A109.8
Br1—C11—H11A109.2C21—C24—H24B109.8
Br1—C11—H11B109.2H24A—C24—H24B108.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.012.800 (4)161
O6—H6···O4ii0.821.942.739 (3)164
Symmetry codes: (i) x+3, y+1, z+2; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H16BrNO3S
Mr334.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.6290 (9), 12.4888 (17), 18.166 (2)
α, β, γ (°)109.922 (12), 95.811 (12), 90.199 (12)
V3)1405.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.07
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerAgilent Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.565, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11524, 5752, 3142
Rint0.042
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.085, 0.94
No. of reflections5752
No. of parameters329
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.86

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.012.800 (4)161.3
O6—H6···O4ii0.821.942.739 (3)164.1
Symmetry codes: (i) x+3, y+1, z+2; (ii) x+2, y, z+1.
 

Acknowledgements

This work was supported by the Applied Basic Research Program of Sichuan Provincial Science and Technology Department, China (No. 2009JY0113). The authors thank Mr Z.-H. Mao and Mr D.-B. Luo of the Analytical & Testing Center, Sichuan University, for assistance with the data collection.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWuitschik, G., Rogers-Evans, M., Buckl, A., Bernasconi, M., Märki, M., Godel, T., Fischer, H., Wagner, B., Parrilla, I., Schuler, F., Schneider, J., Alker, A., Schweizer, W. B., Müller, K. & Carreira, E. M. (2008). Angew. Chem. Int. Ed. 47, 4512–4515.  Web of Science CSD CrossRef CAS Google Scholar
First citationWuitschik, G., Rogers-Evans, M., Müller, K., Fischer, H., Wagner, B., Schuler, F., Polonchuk, L. & Carreira, E. M. (2006). Angew. Chem. Int. Ed. 45, 7736–7739.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds