organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new polymorph of 2,6-dimeth­­oxy­benzoic acid

aChemistry Department, "Sapienza" University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy
*Correspondence e-mail: g.portalone@caspur.it

(Received 14 November 2011; accepted 17 November 2011; online 23 November 2011)

A new crystalline form of 2,6-dimeth­oxy­benzoic acid, C9H10O4, crystallizing in a tetra­gonal unit cell has been identified during screening for co-crystals. The asymmetric unit comprises a non-planar independent mol­ecule with a synplanar conformation of the carb­oxy group. The sterically bulky o-meth­oxy substituents force the carb­oxy group to be twisted away from the plane of the benzene ring by 65.72 (15)°. The carb­oxy group is disordered over two sites about the C—C bond [as indicated by the almost equal C—O distances of 1.254 (3) and 1.250 (3) Å], the occupancies of the disordered carboxym H atoms being 0.53 (5) and 0.47 (5). In the known ortho­rhom­bic form reported by Swaminathan et al. [Acta Cryst. (1976), B32, 1897–1900], due to the anti­planar conformation adopted by the OH group, the mol­ecular components are associated in the crystal in chains stabilized by linear O—H⋯O hydrogen bonds. However, in the new tetra­gonal polymorph, mol­ecules form dimeric units via pairs of O—H⋯O hydrogen bonds between the carb­oxy groups.

Related literature

For the ortho­rhom­bic polymorph of 2,6-dimeth­oxy­benzoic acid, see: Swaminathan et al. (1976[Swaminathan, S., Vimala, T. M. & Lotter, H. (1976). Acta Cryst. B32, 1897-1900.]); Bryan & White (1982[Bryan, R. F. & White, D. H. (1982). Acta Cryst. B38, 1014-1016.]); Portalone (2009[Portalone, G. (2009). Acta Cryst. E65, o327-o328.]). For mol­ecular packing modes of carb­oxy­lic acids, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]); Kanters et al. (1991[Kanters, J. A., Kroon, J., Hooft, R., Schouten, A., van Scijndel, J. A. M. & Brandsen, J. (1991). Croat. Chem. Acta, 64, 353-370.]); Moorthy et al. (2002[Moorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530-6531.]). For analysis of benzene ring deformations induced by substitution, see: Schultz et al. (1993[Schultz, Gy., Nagy, T., Portalone, G., Ramondo, F., Hargittai, I. & Domenicano, A. (1993). Struct. Chem. 4, 183-190.]); Portalone et al. (1998[Portalone, G., Ramondo, F., Domenicano, A. & Hargittai, I. (1998). J. Organomet. Chem. 560, 183-190.]); For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Motherwell et al. (1999[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044-1056.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10O4

  • Mr = 182.17

  • Tetragonal, P 41 21 2

  • a = 8.1423 (3) Å

  • c = 27.6814 (18) Å

  • V = 1835.20 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.21 mm

Data collection
  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]). Tmin = 0.878, Tmax = 0.999

  • 11616 measured reflections

  • 1653 independent reflections

  • 1332 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.147

  • S = 1.19

  • 1653 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.77 (4) 1.87 (4) 2.632 (4) 168 (5)
O2—H2⋯O2i 0.79 (5) 1.83 (5) 2.618 (4) 173 (5)
Symmetry code: (i) [-y+1, -x+1, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In this paper it is reported the crystal structure of a new polymorph, (I), of 2,6-dimethoxybenzoic acid, produced unexpectedly during an attempt to synthesize cocrystals of boronic acid with of 2,6-dimethoxybenzoic acid. The known form, (II) (Fig. 3), of of 2,6-dimethoxybenzoic acid is orthorhombic in the space group P212121 and crystallizes with one molecule in the asymmetric unit (Swaminathan et al., 1976; Bryan & White, 1982; Portalone, 2009). In (II), due to the antiplanar conformation adopted by the OH group, the molecular components are associated in the crystal in chains stabilized by linear O—H···O hydrogen bonds.

The title new polymorph (I) is tetragonal in the space group P41212. The asymmetric unit of (I) comprises a non-planar independent molecule, as the o-methoxy substituents force the carboxy group to be twisted away from the plane of the phenyl ring by 65.72 (15)° (Fig. 1). The carboxy group, which adopts a synplanar conformation, is almost completely disordered, as indicated by the equal C—O distances, 1.254 (3) and 1.250 (3) Å, the C—C—O angles, 118.9 (2) and 117.8 (2)°, and by the presence of disordered H atoms with occupancy factors of 0.53 (5) and 0.47 (5) in the O···O intermolecular hydrogen bond. The pattern of bond lengths and bond angles of the phenyl ring is consistent with that reported in the structure determination of (II), and a comparison of the present results with those obtained for similar benzene derivatives in the gas phase (Schultz et al., 1993; Portalone et al., 1998) shows no appreciable effects of the crystal environment on the ring deformation induced by substituents. Analysis of the crystal packing of (I), (Fig. 2), shows that the molecular components form the conventional dimeric units observed in benzoic acids (Leiserowitz, 1976; Kanters et al., 1991; Moorthy et al., 2002). Indeed, the structure is stabilized by usual intermolecular C22(8) O—H···O interactions (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999) (Table 1) which link the molecules into dimers through the disordered carboxy moieties [symmetry code: (i) -y + 1, -x + 1, -z + 3/2].

Related literature top

For the orthorhombic polymorph of 2,6-dimethoxybenzoic acid, see: Swaminathan et al. (1976); Bryan & White (1982); Portalone (2009). For molecular packing modes of carboxylic acids, see: Leiserowitz (1976); Kanters et al. (1991); Moorthy et al. (2002). For analysis of benzene ring deformations induced by substitution, see: Schultz et al. (1993); Portalone et al. (1998); For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999).

Experimental top

Polymorph (I) was formed during cocrystallization in a 1:1 molar ratio of 2,6-dimethoxybenzoic acid (1 mmol, Sigma Aldrich at 99% purity) and phenylboronic acid (1 mmol, Sigma Aldrich at 97% purity). The two components were dissolved in water (10 ml) and gently heated under reflux for 3 h. After cooling the solution to an ambient temperature, only one crystal suitable for single-crystal X-ray diffraction was grown by slow evaporation of the solvent after two weeks. Unfortunately, any attempts to produce more crystals of polymorph (I) by repeating the crystallization conditions were unsuccessful. Crystallization of 2,6-dimethoxybenzoic acid carried out under a wide range of different sets of conditions (different solvents, different molar ratio, different cosolute molecules) led systematically to the orthorhombic polymorph.

Refinement top

All H atoms were identified in difference Fourier maps, but for refinement all C-bound H atoms were placed in calculated positions, with C—H = 0.97 Å (phenyl) and 0.97–0.98 Å (methyl), and refined as riding on their carrier atoms. The Uiso values were kept equal to 1.2Ueq(C, phenyl). and to 1.5Ueq(C, methyl). The remaining two half H atoms of the carboxy group were freely refined and their occupancy factors constrained to sum to unity. In the absence of significant anomalous scattering in this light-atom study, Friedel pairs were merged.

Structure description top

In this paper it is reported the crystal structure of a new polymorph, (I), of 2,6-dimethoxybenzoic acid, produced unexpectedly during an attempt to synthesize cocrystals of boronic acid with of 2,6-dimethoxybenzoic acid. The known form, (II) (Fig. 3), of of 2,6-dimethoxybenzoic acid is orthorhombic in the space group P212121 and crystallizes with one molecule in the asymmetric unit (Swaminathan et al., 1976; Bryan & White, 1982; Portalone, 2009). In (II), due to the antiplanar conformation adopted by the OH group, the molecular components are associated in the crystal in chains stabilized by linear O—H···O hydrogen bonds.

The title new polymorph (I) is tetragonal in the space group P41212. The asymmetric unit of (I) comprises a non-planar independent molecule, as the o-methoxy substituents force the carboxy group to be twisted away from the plane of the phenyl ring by 65.72 (15)° (Fig. 1). The carboxy group, which adopts a synplanar conformation, is almost completely disordered, as indicated by the equal C—O distances, 1.254 (3) and 1.250 (3) Å, the C—C—O angles, 118.9 (2) and 117.8 (2)°, and by the presence of disordered H atoms with occupancy factors of 0.53 (5) and 0.47 (5) in the O···O intermolecular hydrogen bond. The pattern of bond lengths and bond angles of the phenyl ring is consistent with that reported in the structure determination of (II), and a comparison of the present results with those obtained for similar benzene derivatives in the gas phase (Schultz et al., 1993; Portalone et al., 1998) shows no appreciable effects of the crystal environment on the ring deformation induced by substituents. Analysis of the crystal packing of (I), (Fig. 2), shows that the molecular components form the conventional dimeric units observed in benzoic acids (Leiserowitz, 1976; Kanters et al., 1991; Moorthy et al., 2002). Indeed, the structure is stabilized by usual intermolecular C22(8) O—H···O interactions (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999) (Table 1) which link the molecules into dimers through the disordered carboxy moieties [symmetry code: (i) -y + 1, -x + 1, -z + 3/2].

For the orthorhombic polymorph of 2,6-dimethoxybenzoic acid, see: Swaminathan et al. (1976); Bryan & White (1982); Portalone (2009). For molecular packing modes of carboxylic acids, see: Leiserowitz (1976); Kanters et al. (1991); Moorthy et al. (2002). For analysis of benzene ring deformations induced by substitution, see: Schultz et al. (1993); Portalone et al. (1998); For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacements ellipsoids are at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing diagram for (I) viewed approximately down a. All atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonding is indicated by dashed lines.
[Figure 3] Fig. 3. A scheme showing antiplanar and synplanar conformations of the carboxy group.
2,6-dimethoxybenzoic acid top
Crystal data top
C9H10O4Dx = 1.319 Mg m3
Mr = 182.17Mo Kα radiation, λ = 0.71069 Å
Tetragonal, P41212Cell parameters from 4278 reflections
Hall symbol: P 4abw 2nwθ = 2.9–32.3°
a = 8.1423 (3) ŵ = 0.11 mm1
c = 27.6814 (18) ÅT = 298 K
V = 1835.20 (15) Å3Tablets, colourless
Z = 80.30 × 0.25 × 0.21 mm
F(000) = 768
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
1653 independent reflections
Radiation source: Enhance (Mo) X-ray source1332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.0696 pixels mm-1θmax = 30.0°, θmin = 2.9°
ω and φ scansh = 1110
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006).
k = 811
Tmin = 0.878, Tmax = 0.999l = 3838
11616 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0659P)2 + 0.2634P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
1653 reflectionsΔρmax = 0.18 e Å3
133 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)
Crystal data top
C9H10O4Z = 8
Mr = 182.17Mo Kα radiation
Tetragonal, P41212µ = 0.11 mm1
a = 8.1423 (3) ÅT = 298 K
c = 27.6814 (18) Å0.30 × 0.25 × 0.21 mm
V = 1835.20 (15) Å3
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
1653 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006).
1332 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.999Rint = 0.042
11616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.18 e Å3
1653 reflectionsΔρmin = 0.17 e Å3
133 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7090 (3)0.1661 (3)0.71019 (8)0.0558 (6)
H10.733 (5)0.209 (5)0.7340 (15)0.023 (14)*0.53 (5)
O20.5271 (3)0.3665 (2)0.70822 (7)0.0508 (6)
H20.566 (7)0.393 (7)0.7333 (17)0.031 (18)*0.47 (5)
O30.7742 (3)0.2435 (3)0.60828 (6)0.0652 (7)
O40.2838 (3)0.1176 (3)0.68526 (7)0.0618 (6)
C10.5250 (3)0.1775 (3)0.64409 (7)0.0362 (6)
C20.6221 (4)0.1801 (3)0.60276 (8)0.0456 (7)
C30.5579 (5)0.1225 (4)0.55922 (9)0.0644 (9)
H30.62300.12450.52990.077*
C40.3993 (6)0.0628 (5)0.55889 (11)0.0749 (11)
H40.35470.02200.52870.090*
C50.3025 (5)0.0583 (4)0.59895 (12)0.0653 (9)
H50.19170.01470.59720.078*
C60.3652 (4)0.1176 (3)0.64256 (9)0.0447 (7)
C70.5920 (3)0.2410 (3)0.69057 (7)0.0329 (5)
C80.8729 (5)0.2678 (4)0.56701 (12)0.0722 (11)
H8A0.889 (3)0.164 (2)0.5507 (7)0.108*
H8B0.978 (3)0.312 (3)0.5767 (3)0.108*
H8C0.819 (2)0.344 (3)0.5453 (7)0.108*
C90.1147 (5)0.0710 (6)0.68556 (15)0.0917 (14)
H9A0.0518 (15)0.147 (3)0.6655 (11)0.138*
H9B0.0730 (16)0.074 (4)0.7186 (7)0.138*
H9C0.1036 (7)0.040 (3)0.6728 (11)0.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0679 (14)0.0562 (13)0.0432 (9)0.0162 (11)0.0267 (10)0.0181 (9)
O20.0616 (13)0.0497 (12)0.0412 (9)0.0118 (10)0.0217 (10)0.0159 (9)
O30.0665 (15)0.0862 (17)0.0428 (10)0.0139 (13)0.0104 (10)0.0077 (11)
O40.0504 (13)0.0836 (16)0.0513 (10)0.0242 (12)0.0085 (10)0.0041 (11)
C10.0506 (15)0.0330 (12)0.0251 (9)0.0008 (11)0.0133 (10)0.0031 (9)
C20.0618 (18)0.0448 (15)0.0302 (10)0.0038 (14)0.0069 (12)0.0045 (11)
C30.094 (3)0.069 (2)0.0306 (12)0.014 (2)0.0103 (15)0.0175 (14)
C40.095 (3)0.083 (2)0.0461 (16)0.007 (2)0.0347 (18)0.0298 (17)
C50.068 (2)0.064 (2)0.0636 (17)0.0076 (16)0.0356 (17)0.0177 (17)
C60.0530 (17)0.0412 (14)0.0400 (12)0.0028 (13)0.0173 (12)0.0035 (11)
C70.0373 (13)0.0370 (13)0.0242 (8)0.0047 (10)0.0050 (9)0.0023 (9)
C80.095 (3)0.057 (2)0.0641 (18)0.0006 (19)0.0319 (19)0.0022 (17)
C90.063 (3)0.123 (4)0.089 (3)0.034 (2)0.007 (2)0.003 (3)
Geometric parameters (Å, º) top
O1—C71.254 (3)C3—C41.380 (6)
O1—H10.77 (4)C3—H30.9700
O2—C71.250 (3)C4—C51.361 (5)
O2—H20.79 (5)C4—H40.9700
O3—C21.350 (4)C5—C61.397 (4)
O3—C81.411 (4)C5—H50.9700
O4—C61.355 (4)C8—H8A0.9684
O4—C91.428 (5)C8—H8B0.9684
C1—C21.391 (4)C8—H8C0.9684
C1—C61.391 (4)C9—H9A0.9766
C1—C71.490 (3)C9—H9B0.9766
C2—C31.395 (4)C9—H9C0.9766
C7—O1—H1110 (3)O4—C6—C1115.5 (2)
C7—O2—H2113 (4)O4—C6—C5125.1 (3)
C2—O3—C8119.0 (2)C1—C6—C5119.3 (3)
C6—O4—C9118.5 (3)O2—C7—O1123.3 (2)
C2—C1—C6120.8 (2)O2—C7—C1117.8 (2)
C2—C1—C7119.8 (2)O1—C7—C1118.9 (2)
C6—C1—C7119.4 (2)O3—C8—H8A109.5
O3—C2—C1115.7 (2)O3—C8—H8B109.5
O3—C2—C3124.8 (3)H8A—C8—H8B109.5
C1—C2—C3119.5 (3)O3—C8—H8C109.5
C4—C3—C2118.4 (3)H8A—C8—H8C109.5
C4—C3—H3120.8H8B—C8—H8C109.5
C2—C3—H3120.8O4—C9—H9A109.5
C5—C4—C3123.1 (3)O4—C9—H9B109.5
C5—C4—H4118.5H9A—C9—H9B109.5
C3—C4—H4118.5O4—C9—H9C109.5
C4—C5—C6118.9 (3)H9A—C9—H9C109.5
C4—C5—H5120.6H9B—C9—H9C109.5
C6—C5—H5120.6
C8—O3—C2—C1172.8 (3)C9—O4—C6—C57.4 (5)
C8—O3—C2—C35.7 (5)C2—C1—C6—O4178.5 (3)
C6—C1—C2—O3178.9 (2)C7—C1—C6—O42.0 (4)
C7—C1—C2—O30.6 (4)C2—C1—C6—C50.4 (4)
C6—C1—C2—C30.3 (4)C7—C1—C6—C5179.9 (3)
C7—C1—C2—C3179.2 (3)C4—C5—C6—O4178.6 (3)
O3—C2—C3—C4179.2 (3)C4—C5—C6—C10.8 (5)
C1—C2—C3—C40.8 (5)C2—C1—C7—O2114.4 (3)
C2—C3—C4—C50.4 (6)C6—C1—C7—O265.0 (3)
C3—C4—C5—C60.3 (6)C2—C1—C7—O166.0 (3)
C9—O4—C6—C1174.7 (3)C6—C1—C7—O1114.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.77 (4)1.87 (4)2.632 (4)168 (5)
O2—H2···O2i0.79 (5)1.83 (5)2.618 (4)173 (5)
Symmetry code: (i) y+1, x+1, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H10O4
Mr182.17
Crystal system, space groupTetragonal, P41212
Temperature (K)298
a, c (Å)8.1423 (3), 27.6814 (18)
V3)1835.20 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur S CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006).
Tmin, Tmax0.878, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
11616, 1653, 1332
Rint0.042
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.147, 1.19
No. of reflections1653
No. of parameters133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.77 (4)1.87 (4)2.632 (4)168 (5)
O2—H2···O2i0.79 (5)1.83 (5)2.618 (4)173 (5)
Symmetry code: (i) y+1, x+1, z+3/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBryan, R. F. & White, D. H. (1982). Acta Cryst. B38, 1014–1016.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKanters, J. A., Kroon, J., Hooft, R., Schouten, A., van Scijndel, J. A. M. & Brandsen, J. (1991). Croat. Chem. Acta, 64, 353–370.  CAS Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMoorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530–6531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPortalone, G. (2009). Acta Cryst. E65, o327–o328.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPortalone, G., Ramondo, F., Domenicano, A. & Hargittai, I. (1998). J. Organomet. Chem. 560, 183–190.  Web of Science CrossRef CAS Google Scholar
First citationSchultz, Gy., Nagy, T., Portalone, G., Ramondo, F., Hargittai, I. & Domenicano, A. (1993). Struct. Chem. 4, 183–190.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwaminathan, S., Vimala, T. M. & Lotter, H. (1976). Acta Cryst. B32, 1897–1900.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds