metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(3-methyl­anilinium) penta­chlorido­anti­monate(III) chloride

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com

(Received 16 November 2011; accepted 17 November 2011; online 23 November 2011)

In the title compound, (C7H10N)3[SbCl5]Cl, the SbIII cation is coordinated by five Cl anions in a distorted square-pyramidal geometry, in which the longest Sb—Cl distance of 3.0319 (14) Å indicates a weak coordination bond. In the crystal, the 3-methyl­anilinium cations link with the complex antimonate anions and Cl anions via N—H⋯Cl hydrogen bonds.

Related literature

For background to the title compound, see: Fu et al. (2011[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2011). J. Am. Chem. Soc. 133, 12780-12786.]); Zhang et al. (2010[Zhang, W., Chen, L.-Z., Gou, M., Li, Y.-H., Fu, D.-W. & Xiong, R.-G. (2010). Cryst. Growth Des. 10, 1025-1027.]). For related structures, see: Chen (2009a[Chen, L.-Z. (2009a). Acta Cryst. E65, m683.],b[Chen, L. Z. (2009b). Acta Cryst. E65, m689.]); Vijjulatha et al. (1997[Vijjulatha, M., Kumara Swamy, K. C., Huch, V. & Veith, M. (1997). Acta Cryst. C53, 1789-1791.]); Wei et al. (2008[Wei, W. X., Feng, W.-J., Zheng, B.-J., Chen, Y. & Jin, Z.-M. (2008). Acta Cryst. E64, m167.]); Zhai et al. (2007[Zhai, J., Yin, H., Li, F. & Wang, D. (2007). Acta Cryst. E63, m2165.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H10N)3[SbCl5]Cl

  • Mr = 658.93

  • Monoclinic, P 21 /c

  • a = 17.171 (3) Å

  • b = 9.4065 (19) Å

  • c = 20.958 (8) Å

  • β = 122.36 (2)°

  • V = 2859.4 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 293 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.566, Tmax = 0.640

  • 23714 measured reflections

  • 5029 independent reflections

  • 3776 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.085

  • S = 1.07

  • 5029 reflections

  • 286 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected bond lengths (Å)

Sb1—Cl2 3.0319 (14)
Sb1—Cl3 2.5325 (14)
Sb1—Cl4 2.4182 (15)
Sb1—Cl5 2.4043 (13)
Sb1—Cl6 2.7779 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯Cl1 0.89 2.72 3.602 (4) 169
N1—H1E⋯Cl6i 0.89 2.67 3.513 (4) 158
N1—H1F⋯Cl2ii 0.89 2.59 3.455 (4) 163
N2—H2A⋯Cl1 0.89 2.37 3.240 (4) 166
N2—H2B⋯Cl1iii 0.89 2.40 3.249 (4) 160
N2—H2C⋯Cl2iv 0.89 2.41 3.238 (4) 155
N3—H3A⋯Cl1v 0.89 2.47 3.344 (5) 167
N3—H3B⋯Cl2iii 0.89 2.56 3.366 (5) 151
N3—H3C⋯Cl1iii 0.89 2.55 3.355 (5) 151
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z+1; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been devoted to crystals containing organic ions and inorganic ions due to the tunebility of their special structural features and their potential ferroelectrics property (Fu et al., 2011; Zhang et al., 2010). In our laboratory, the title compound has been synthesized and its crystal structure is herein reported.

The title compound, [(C7H10N)3SbCl5]+.Cl-, has an asymmetric unit that consists of three C7H10N cations, one antimony(III) pentachloride anion and one chloride anion all in general positions (Fig 1). The non-hydrgen atoms of C7H10N cation are nearly coplanar, the antimony(III) atom is coordinated by five chlorine atoms, forming a distorted square-pyramid, the Sb—Cl bond distances range from 2.4043 (13) to 3.0319 (14) Å (Table 1). This range of values is compared to those observed in dimorpholinium pentachloridoantimonate(III) (2.045 (8)–2.92230 (9) Å; Chen et al., 2009a) and that reported for diisonicotinium pentachloridoantimonate(III) monohydrate (2.3642 (12) to 2.9002 (14) Å; Chen et al., 2009b). The existence of N—H···Cl hydrogen-bonding interactions gives rise a three-dimensional structure (Fig. 2).

Related literature top

For background to the title compound, see: Fu et al. (2011); Zhang et al. (2010). For related structures, see: Chen (2009a,b); Vijjulatha et al. (1997); Wei et al. (2008); Zhai et al. (2007).

Experimental top

3.21 g (0.03 mol) of 3-methylbenzenamine was firstly dissolved in 30 ml ethanol, to which 1.1 g (0.03 mol) of hydrochloric acid was then added to afford the solution, then the 2.28 g (0.01 mol) antimony chloride was dissolved in 20 ml ethanol which was added hydrochloric acid, at last, mixed the above solution without any precipitation under stirring at the ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 4 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature within the measured temperature (below the melting point).

Refinement top

H atoms were placed in calculated positions (N—H = 0.89 Å; C—H = 0.93–0.97 Å, and refined in a riding mode with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C,N).

Structure description top

Recently much attention has been devoted to crystals containing organic ions and inorganic ions due to the tunebility of their special structural features and their potential ferroelectrics property (Fu et al., 2011; Zhang et al., 2010). In our laboratory, the title compound has been synthesized and its crystal structure is herein reported.

The title compound, [(C7H10N)3SbCl5]+.Cl-, has an asymmetric unit that consists of three C7H10N cations, one antimony(III) pentachloride anion and one chloride anion all in general positions (Fig 1). The non-hydrgen atoms of C7H10N cation are nearly coplanar, the antimony(III) atom is coordinated by five chlorine atoms, forming a distorted square-pyramid, the Sb—Cl bond distances range from 2.4043 (13) to 3.0319 (14) Å (Table 1). This range of values is compared to those observed in dimorpholinium pentachloridoantimonate(III) (2.045 (8)–2.92230 (9) Å; Chen et al., 2009a) and that reported for diisonicotinium pentachloridoantimonate(III) monohydrate (2.3642 (12) to 2.9002 (14) Å; Chen et al., 2009b). The existence of N—H···Cl hydrogen-bonding interactions gives rise a three-dimensional structure (Fig. 2).

For background to the title compound, see: Fu et al. (2011); Zhang et al. (2010). For related structures, see: Chen (2009a,b); Vijjulatha et al. (1997); Wei et al. (2008); Zhai et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the b axis. Intermolecular interactions are shown as dashed lines.
Tris(3-methylanilinium) pentachloridoantimonate(III) chloride top
Crystal data top
(C7H10N)3[SbCl5]ClF(000) = 1320
Mr = 658.93Dx = 1.531 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5029 reflections
a = 17.171 (3) Åθ = 3.1–27.6°
b = 9.4065 (19) ŵ = 1.54 mm1
c = 20.958 (8) ÅT = 293 K
β = 122.36 (2)°Block, colorless
V = 2859.4 (13) Å30.36 × 0.32 × 0.28 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
5029 independent reflections
Radiation source: fine-focus sealed tube3776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
CCD_Profile_fitting scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 2020
Tmin = 0.566, Tmax = 0.640k = 1111
23714 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0238P)2 + 3.2828P]
where P = (Fo2 + 2Fc2)/3
5029 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
(C7H10N)3[SbCl5]ClV = 2859.4 (13) Å3
Mr = 658.93Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.171 (3) ŵ = 1.54 mm1
b = 9.4065 (19) ÅT = 293 K
c = 20.958 (8) Å0.36 × 0.32 × 0.28 mm
β = 122.36 (2)°
Data collection top
Rigaku SCXmini
diffractometer
5029 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3776 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 0.640Rint = 0.061
23714 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.07Δρmax = 0.45 e Å3
5029 reflectionsΔρmin = 0.57 e Å3
286 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5562 (4)0.3197 (7)0.3106 (4)0.109 (2)
H1A0.55710.41660.29670.164*
H1B0.58210.31420.36400.164*
H1C0.49370.28610.28420.164*
C60.7590 (3)0.1338 (5)0.3223 (3)0.0463 (11)
N10.8598 (2)0.1246 (4)0.3760 (2)0.0598 (11)
H1D0.88810.13320.35100.090*
H1E0.87390.04090.39940.090*
H1F0.87810.19410.40990.090*
C30.5726 (3)0.1547 (5)0.2232 (3)0.0597 (14)
H30.50930.16080.18900.072*
C70.7080 (3)0.2161 (5)0.3400 (3)0.0564 (13)
H70.73700.26460.38580.068*
C50.7193 (3)0.0606 (5)0.2556 (3)0.0544 (13)
H50.75470.00490.24390.065*
C20.6120 (3)0.2288 (5)0.2900 (3)0.0574 (14)
C40.6246 (4)0.0718 (6)0.2059 (3)0.0645 (15)
H40.59610.02250.16040.077*
C150.6589 (5)0.6670 (8)0.1612 (4)0.109 (2)
H15A0.59310.65970.13580.163*
H15B0.68330.70870.21010.163*
H15C0.68480.57400.16680.163*
N30.8982 (3)0.8778 (5)0.1259 (3)0.0741 (13)
H3A0.92560.93220.16700.111*
H3B0.90280.91880.08980.111*
H3C0.92540.79310.13680.111*
C180.7989 (4)0.8600 (6)0.0991 (3)0.0604 (14)
C160.6829 (4)0.7576 (6)0.1162 (3)0.0653 (16)
C170.7770 (4)0.7709 (6)0.1383 (3)0.0669 (15)
H170.82280.71920.17910.080*
C190.7337 (4)0.9369 (6)0.0383 (3)0.0748 (17)
H190.75090.99670.01260.090*
C200.6404 (5)0.9249 (7)0.0149 (4)0.091 (2)
H200.59480.97530.02650.109*
C210.6195 (4)0.8376 (7)0.0548 (4)0.0789 (18)
H210.55790.83090.03980.095*
C80.6102 (4)0.5583 (6)0.0837 (3)0.092 (2)
H8A0.54450.54760.10930.139*
H8B0.63010.52950.11660.139*
H8C0.62650.65600.06960.139*
C130.7928 (3)0.3667 (5)0.0939 (3)0.0463 (11)
N20.8939 (2)0.3478 (4)0.1373 (2)0.0596 (11)
H2A0.91080.29250.17710.089*
H2B0.92120.43210.15290.089*
H2C0.91070.30730.10800.089*
C100.6068 (4)0.3990 (6)0.0117 (4)0.0782 (17)
H100.54290.40850.01540.094*
C120.7431 (4)0.3015 (6)0.1186 (3)0.0657 (15)
H120.77180.24770.16260.079*
C90.6563 (4)0.4669 (5)0.0139 (3)0.0589 (14)
C140.7512 (4)0.4478 (5)0.0293 (3)0.0538 (13)
H140.78750.49090.01410.065*
C110.6489 (4)0.3181 (7)0.0760 (4)0.0848 (19)
H110.61310.27340.09110.102*
Sb10.89514 (2)0.62601 (3)0.415711 (17)0.04348 (11)
Cl30.88469 (9)0.44094 (13)0.32367 (8)0.0642 (4)
Cl40.72983 (9)0.63871 (17)0.35705 (8)0.0752 (4)
Cl50.89748 (9)0.80416 (12)0.33449 (7)0.0545 (3)
Cl60.91678 (9)0.85259 (14)0.50888 (7)0.0625 (4)
Cl10.96680 (9)0.10773 (12)0.26801 (7)0.0559 (3)
Cl21.10143 (8)0.63935 (13)0.48357 (7)0.0537 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.082 (5)0.112 (6)0.139 (7)0.027 (4)0.063 (5)0.020 (5)
C60.035 (2)0.035 (2)0.057 (3)0.002 (2)0.017 (2)0.006 (2)
N10.046 (2)0.044 (2)0.070 (3)0.002 (2)0.019 (2)0.007 (2)
C30.042 (3)0.054 (3)0.068 (4)0.002 (3)0.019 (3)0.013 (3)
C70.052 (3)0.050 (3)0.058 (3)0.004 (2)0.023 (3)0.016 (3)
C50.054 (3)0.048 (3)0.056 (3)0.008 (2)0.026 (3)0.006 (3)
C20.048 (3)0.049 (3)0.081 (4)0.006 (2)0.038 (3)0.002 (3)
C40.056 (4)0.064 (3)0.051 (3)0.002 (3)0.014 (3)0.009 (3)
C150.105 (6)0.131 (7)0.092 (5)0.017 (5)0.054 (5)0.001 (5)
N30.060 (3)0.077 (3)0.091 (3)0.003 (3)0.044 (3)0.005 (3)
C180.059 (3)0.063 (3)0.074 (4)0.014 (3)0.045 (3)0.023 (3)
C160.077 (4)0.073 (4)0.067 (4)0.029 (3)0.053 (4)0.028 (3)
C170.075 (4)0.068 (4)0.064 (4)0.005 (3)0.041 (3)0.023 (3)
C190.061 (4)0.076 (4)0.089 (5)0.003 (3)0.041 (4)0.000 (4)
C200.073 (5)0.098 (5)0.105 (5)0.008 (4)0.050 (4)0.005 (4)
C210.057 (4)0.099 (5)0.077 (5)0.013 (4)0.033 (4)0.025 (4)
C80.100 (5)0.077 (4)0.083 (5)0.019 (4)0.036 (4)0.017 (4)
C130.039 (3)0.039 (3)0.054 (3)0.006 (2)0.021 (2)0.011 (2)
N20.049 (3)0.052 (3)0.071 (3)0.004 (2)0.028 (2)0.009 (2)
C100.048 (3)0.083 (4)0.086 (5)0.006 (3)0.025 (3)0.005 (4)
C120.065 (4)0.072 (4)0.061 (4)0.003 (3)0.034 (3)0.011 (3)
C90.063 (4)0.045 (3)0.058 (3)0.006 (3)0.025 (3)0.001 (3)
C140.062 (4)0.040 (3)0.065 (4)0.010 (2)0.038 (3)0.003 (3)
C110.056 (4)0.106 (5)0.107 (5)0.003 (3)0.054 (4)0.025 (4)
Sb10.04486 (19)0.03558 (17)0.0501 (2)0.00541 (15)0.02546 (15)0.00729 (15)
Cl30.0684 (9)0.0456 (7)0.0781 (10)0.0013 (6)0.0388 (8)0.0083 (7)
Cl40.0484 (8)0.0886 (11)0.0848 (10)0.0051 (8)0.0331 (8)0.0039 (9)
Cl50.0633 (8)0.0436 (7)0.0570 (8)0.0114 (6)0.0325 (7)0.0160 (6)
Cl60.0567 (8)0.0648 (9)0.0676 (9)0.0076 (7)0.0343 (7)0.0057 (7)
Cl10.0608 (8)0.0441 (7)0.0609 (8)0.0055 (6)0.0312 (7)0.0050 (6)
Cl20.0490 (7)0.0505 (7)0.0526 (7)0.0027 (6)0.0212 (6)0.0055 (6)
Geometric parameters (Å, º) top
C1—C21.510 (7)C17—H170.9300
C1—H1A0.9600C19—C201.406 (8)
C1—H1B0.9600C19—H190.9300
C1—H1C0.9600C20—C211.350 (8)
C6—C71.360 (6)C20—H200.9300
C6—C51.369 (6)C21—H210.9300
C6—N11.478 (5)C8—C91.504 (7)
N1—H1D0.8900C8—H8A0.9600
N1—H1E0.8900C8—H8B0.9600
N1—H1F0.8900C8—H8C0.9600
C3—C41.373 (7)C13—C121.357 (6)
C3—C21.375 (7)C13—C141.375 (6)
C3—H30.9300C13—N21.478 (5)
C7—C21.408 (7)N2—H2A0.8900
C7—H70.9300N2—H2B0.8900
C5—C41.388 (6)N2—H2C0.8900
C5—H50.9300C10—C111.368 (8)
C4—H40.9300C10—C91.382 (7)
C15—C161.484 (8)C10—H100.9300
C15—H15A0.9600C12—C111.376 (7)
C15—H15B0.9600C12—H120.9300
C15—H15C0.9600C9—C141.390 (7)
N3—C181.492 (6)C14—H140.9300
N3—H3A0.8900C11—H110.9300
N3—H3B0.8900Sb1—Cl23.0319 (14)
N3—H3C0.8900Sb1—Cl32.5325 (14)
C18—C171.360 (7)Sb1—Cl42.4182 (15)
C18—C191.369 (7)Sb1—Cl52.4043 (13)
C16—C211.381 (8)Sb1—Cl62.7779 (14)
C16—C171.428 (7)
C2—C1—H1A109.5C16—C17—H17120.4
C2—C1—H1B109.5C18—C19—C20119.6 (6)
H1A—C1—H1B109.5C18—C19—H19120.2
C2—C1—H1C109.5C20—C19—H19120.2
H1A—C1—H1C109.5C21—C20—C19117.6 (6)
H1B—C1—H1C109.5C21—C20—H20121.2
C7—C6—C5121.5 (4)C19—C20—H20121.2
C7—C6—N1119.3 (4)C20—C21—C16124.7 (6)
C5—C6—N1119.2 (4)C20—C21—H21117.6
C6—N1—H1D109.5C16—C21—H21117.6
C6—N1—H1E109.5C9—C8—H8A109.5
H1D—N1—H1E109.5C9—C8—H8B109.5
C6—N1—H1F109.5H8A—C8—H8B109.5
H1D—N1—H1F109.5C9—C8—H8C109.5
H1E—N1—H1F109.5H8A—C8—H8C109.5
C4—C3—C2121.4 (5)H8B—C8—H8C109.5
C4—C3—H3119.3C12—C13—C14121.7 (5)
C2—C3—H3119.3C12—C13—N2118.8 (5)
C6—C7—C2120.9 (5)C14—C13—N2119.5 (4)
C6—C7—H7119.5C13—N2—H2A109.5
C2—C7—H7119.5C13—N2—H2B109.5
C6—C5—C4118.2 (5)H2A—N2—H2B109.5
C6—C5—H5120.9C13—N2—H2C109.5
C4—C5—H5120.9H2A—N2—H2C109.5
C3—C2—C7117.2 (5)H2B—N2—H2C109.5
C3—C2—C1122.4 (5)C11—C10—C9121.9 (5)
C7—C2—C1120.4 (5)C11—C10—H10119.1
C3—C4—C5120.7 (5)C9—C10—H10119.1
C3—C4—H4119.6C13—C12—C11117.5 (5)
C5—C4—H4119.6C13—C12—H12121.3
C16—C15—H15A109.5C11—C12—H12121.3
C16—C15—H15B109.5C10—C9—C14116.0 (5)
H15A—C15—H15B109.5C10—C9—C8121.9 (5)
C16—C15—H15C109.5C14—C9—C8122.0 (5)
H15A—C15—H15C109.5C13—C14—C9121.5 (5)
H15B—C15—H15C109.5C13—C14—H14119.3
C18—N3—H3A109.5C9—C14—H14119.3
C18—N3—H3B109.5C10—C11—C12121.4 (5)
H3A—N3—H3B109.5C10—C11—H11119.3
C18—N3—H3C109.5C12—C11—H11119.3
H3A—N3—H3C109.5Cl5—Sb1—Cl493.76 (5)
H3B—N3—H3C109.5Cl5—Sb1—Cl387.77 (5)
C17—C18—C19122.3 (5)Cl4—Sb1—Cl393.52 (5)
C17—C18—N3118.2 (5)Cl5—Sb1—Cl685.20 (5)
C19—C18—N3119.4 (5)Cl4—Sb1—Cl689.91 (5)
C21—C16—C17116.5 (5)Cl3—Sb1—Cl6172.36 (4)
C21—C16—C15123.8 (6)Cl5—Sb1—Cl281.10 (4)
C17—C16—C15119.6 (6)Cl4—Sb1—Cl2174.39 (4)
C18—C17—C16119.2 (6)Cl3—Sb1—Cl288.54 (4)
C18—C17—H17120.4Cl6—Sb1—Cl287.44 (4)
C5—C6—C7—C20.0 (8)N3—C18—C19—C20177.3 (5)
N1—C6—C7—C2179.3 (4)C18—C19—C20—C210.7 (9)
C7—C6—C5—C40.3 (7)C19—C20—C21—C161.0 (10)
N1—C6—C5—C4179.6 (4)C17—C16—C21—C200.5 (9)
C4—C3—C2—C70.1 (8)C15—C16—C21—C20177.3 (6)
C4—C3—C2—C1179.5 (5)C14—C13—C12—C110.7 (8)
C6—C7—C2—C30.2 (7)N2—C13—C12—C11178.4 (5)
C6—C7—C2—C1179.5 (5)C11—C10—C9—C140.1 (9)
C2—C3—C4—C50.2 (8)C11—C10—C9—C8178.7 (6)
C6—C5—C4—C30.3 (8)C12—C13—C14—C90.1 (7)
C19—C18—C17—C160.7 (8)N2—C13—C14—C9179.1 (4)
N3—C18—C17—C16176.8 (4)C10—C9—C14—C130.4 (7)
C21—C16—C17—C180.3 (7)C8—C9—C14—C13178.5 (5)
C15—C16—C17—C18176.6 (5)C9—C10—C11—C120.6 (10)
C17—C18—C19—C200.2 (9)C13—C12—C11—C101.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl10.892.723.602 (4)169
N1—H1E···Cl6i0.892.673.513 (4)158
N1—H1F···Cl2ii0.892.593.455 (4)163
N2—H2A···Cl10.892.373.240 (4)166
N2—H2B···Cl1iii0.892.403.249 (4)160
N2—H2C···Cl2iv0.892.413.238 (4)155
N3—H3A···Cl1v0.892.473.344 (5)167
N3—H3B···Cl2iii0.892.563.366 (5)151
N3—H3C···Cl1iii0.892.553.355 (5)151
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C7H10N)3[SbCl5]Cl
Mr658.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.171 (3), 9.4065 (19), 20.958 (8)
β (°) 122.36 (2)
V3)2859.4 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.566, 0.640
No. of measured, independent and
observed [I > 2σ(I)] reflections
23714, 5029, 3776
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.085, 1.07
No. of reflections5029
No. of parameters286
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.57

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sb1—Cl23.0319 (14)Sb1—Cl52.4043 (13)
Sb1—Cl32.5325 (14)Sb1—Cl62.7779 (14)
Sb1—Cl42.4182 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl10.892.723.602 (4)169
N1—H1E···Cl6i0.892.673.513 (4)158
N1—H1F···Cl2ii0.892.593.455 (4)163
N2—H2A···Cl10.892.373.240 (4)166
N2—H2B···Cl1iii0.892.403.249 (4)160
N2—H2C···Cl2iv0.892.413.238 (4)155
N3—H3A···Cl1v0.892.473.344 (5)167
N3—H3B···Cl2iii0.892.563.366 (5)151
N3—H3C···Cl1iii0.892.553.355 (5)151
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x, y+1, z.
 

Acknowledgements

The author thanks an anonymous advisor from the Ordered Matter Science Research Centre, Southeast University, for great help with the revision of this paper.

References

First citationChen, L.-Z. (2009a). Acta Cryst. E65, m683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, L. Z. (2009b). Acta Cryst. E65, m689.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2011). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijjulatha, M., Kumara Swamy, K. C., Huch, V. & Veith, M. (1997). Acta Cryst. C53, 1789–1791.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWei, W. X., Feng, W.-J., Zheng, B.-J., Chen, Y. & Jin, Z.-M. (2008). Acta Cryst. E64, m167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhai, J., Yin, H., Li, F. & Wang, D. (2007). Acta Cryst. E63, m2165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W., Chen, L.-Z., Gou, M., Li, Y.-H., Fu, D.-W. & Xiong, R.-G. (2010). Cryst. Growth Des. 10, 1025–1027.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds