metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,2′-(1,1′-Bi­naphthyl-2,2′-diyldi­imino)­di­ethanol-κ3N,N′,O]di­chloridocopper(II)

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
*Correspondence e-mail: fliangoffice@yahoo.com

(Received 19 November 2011; accepted 21 November 2011; online 25 November 2011)

In the title complex, [CuCl2(C24H24N2O2)], the CuII cation is N,N′,O-chelated by a 2,2′-(1,1′-binaphthyl-2,2′-diyldiimino)­diethanol ligand and coordinated by two chloride anions in a distorted square-pyramidal geometry. In the diethanol ligand, the two naphthalene ring systems are twisted with respect to each other at a dihedral angle of 68.30 (9)°. The uncoord­inated hy­droxy group links with a coordinated chloride anion via an intra­molecular O—H⋯Cl hydrogen bond. Inter­molecular N—H⋯O and N—H⋯Cl hydrogen bonds occur in the crystal structure.

Related literature

For background to metal complexes containing N-substituted diethano­lamine ligands, see: Saalfrank et al. (2008[Saalfrank, R. W., Maid, H. & Scheurer, A. (2008). Angew. Chem. Int. Ed. 47, 8794-8824.]); Ferguson et al. (2011[Ferguson, A., Schmidtmann, M., Brechin, E. K. & Murrie, M. (2011). Dalton Trans. 40, 334-336.]); Alley et al. (2008[Alley, K. G., Mukherjee, A., Clerac, R. & Boskovic, C. (2008). Dalton Trans. pp. 59-63.]). For the synthesis of the ligand, see: Yan et al. (2008[Yan, Y.-E., Hu, Y., Zhao, G.-P. & Kou, X.-M. (2008). Dyes Pigments, 79, 210-215.]). For related structures, see: Thob et al. (2010[Thob, M., Seidel, R. W., Oppel, I. M. & Feigel, M. (2010). J. Mol. Struct. 980, 245-249.]); Telfer et al. (2004[Telfer, Sh. G., Sato, T., Harada, T., Kuroda, R., Lefebvre, J. & Leznoff, D. B. (2004). Inorg. Chem. 43, 6168-6176.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C24H24N2O2)]

  • Mr = 506.89

  • Triclinic, [P \overline 1]

  • a = 7.4816 (8) Å

  • b = 10.4211 (11) Å

  • c = 15.2116 (16) Å

  • α = 94.130 (2)°

  • β = 103.633 (2)°

  • γ = 106.912 (2)°

  • V = 1090.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 185 K

  • 0.31 × 0.17 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.694, Tmax = 0.883

  • 5452 measured reflections

  • 3758 independent reflections

  • 3363 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.04

  • 3758 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.052 (2)
Cu1—N2 2.106 (2)
Cu1—O2 1.965 (2)
Cu1—Cl1 2.6190 (7)
Cu1—Cl2 2.2272 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1 0.84 2.41 3.039 (2) 132
O2—H2B⋯Cl1i 0.84 2.33 2.996 (2) 137
N2—H2A⋯O1ii 0.93 2.00 2.889 (3) 158
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-substituted diethanolamine ligands have been proven to be fruitful in the construction of fascinating functional metal complexes (Saalfrank et al., 2008; Ferguson et al., 2011; Alley et al., 2008). But the ligand which contains two or more N-substituted diethanolamine has received much less attention. we designed and synthesized successfully a racemic ligand of N, N'-Bis-(2-hydroxy-ethyl)-(1,1'-Binaphthyl-2,2'-diamine) (BHEBA), herein we report the crystal structure of a CuII complex about it. The single-crystal X-ray structural analysis reveals that asymmetric unit contains one five-coordinated CuII ion, a new ligand N,N'-(2-hydroxy-ethyl)-(1,1'-binaphthyl-2,2'-diamine) (HEBA), namely partly decomposed of the parent ligand and two Cl- ions as shown in Fig. 1. Due to the Jahn-Teller effect, the distance of the Cu—Cl(1) bond is elongated to 2.6188 (Å), which is consistent with the reported copper complexes (Telfer et al., 2004). Two adjacent polymeric H-bonded chains of opposite chirality (Thob et al., 2010) by the hydrogen bond N(2)—H(2 A)···O(1) and O(1)—H (1 A)···Cl(1) extend along a direction, and these chains are interconnected by the repeating weak O(2)—H(2B)···Cl(1) (symmetry code: -x + 1, -y + 1, -z + 1) hydrogen bonds (Fig. 2.), which further stabilize the structure. The corresponding lengths and angles of hydrogen bonds are listed in Table 1.

Related literature top

For background to metal complexes containing N-substituted diethanolamine ligands, see: Saalfrank et al. (2008); Ferguson et al. (2011); Alley et al. (2008). For the synthesis of the ligand, see: Yan et al. (2008). For related structures, see: Thob et al. (2010); Telfer et al. (2004).

Experimental top

The target ligand of racemic N,N'-Bis-(2-hydroxy-ethyl)-(1,1'-Binaphthyl-2,2'- diamine) (BHEBA) were synthesized by the reported procedure (Yan et al., 2008) in 55% yield using racemic 1,1'-binaphthyl-2,2'-diamine as materials.

CuCl2 (25.5 mg, 0.15 mmol), NMe4OH 18.1 mg (0.10 mmol), and BHEBA (46.1 mg, 0.10 mmol) were mixed in a CH3OH /iPrOH (10 ml, v/v 3:2) solution with vigorous stirring for 10 h. The resulting solution was filtered and left to stand at room temperature. Brown block crystals suitable for X-ray analysis were obtained in 30% yield by slow evaporation of the solvent over a period of two week. Analysis, calculated for C24H24N2O2Cl2Cu: C 56.86, H 4.77, N 5.53%; found: C 56.45, H 4.43, N 5.62%.

Refinement top

H atoms were placed in geometrically calculated positions and refined as riding atoms, with C—H = 0.95 (aromatic) or 0.99 Å (CH2) and O—H = 0.84 and N—H = 0.93 Å, Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Structure description top

N-substituted diethanolamine ligands have been proven to be fruitful in the construction of fascinating functional metal complexes (Saalfrank et al., 2008; Ferguson et al., 2011; Alley et al., 2008). But the ligand which contains two or more N-substituted diethanolamine has received much less attention. we designed and synthesized successfully a racemic ligand of N, N'-Bis-(2-hydroxy-ethyl)-(1,1'-Binaphthyl-2,2'-diamine) (BHEBA), herein we report the crystal structure of a CuII complex about it. The single-crystal X-ray structural analysis reveals that asymmetric unit contains one five-coordinated CuII ion, a new ligand N,N'-(2-hydroxy-ethyl)-(1,1'-binaphthyl-2,2'-diamine) (HEBA), namely partly decomposed of the parent ligand and two Cl- ions as shown in Fig. 1. Due to the Jahn-Teller effect, the distance of the Cu—Cl(1) bond is elongated to 2.6188 (Å), which is consistent with the reported copper complexes (Telfer et al., 2004). Two adjacent polymeric H-bonded chains of opposite chirality (Thob et al., 2010) by the hydrogen bond N(2)—H(2 A)···O(1) and O(1)—H (1 A)···Cl(1) extend along a direction, and these chains are interconnected by the repeating weak O(2)—H(2B)···Cl(1) (symmetry code: -x + 1, -y + 1, -z + 1) hydrogen bonds (Fig. 2.), which further stabilize the structure. The corresponding lengths and angles of hydrogen bonds are listed in Table 1.

For background to metal complexes containing N-substituted diethanolamine ligands, see: Saalfrank et al. (2008); Ferguson et al. (2011); Alley et al. (2008). For the synthesis of the ligand, see: Yan et al. (2008). For related structures, see: Thob et al. (2010); Telfer et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and 30% displacement ellipsoids. H atoms of the Aryl group are omitted for clarity.
[Figure 2] Fig. 2. Two adjacent polymeric H-bonded chains of opposite chirality in the crystal structure, viewed along the a direction. H atoms of the Aryl group are omitted for clarity. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 1].
[2,2'-(1,1'-Binaphthyl-2,2'-diyldiimino)diethanol- κ3N,N',O]dichloridocopper(II) top
Crystal data top
[CuCl2(C24H24N2O2)]Z = 2
Mr = 506.89F(000) = 522
Triclinic, P1Dx = 1.544 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4816 (8) ÅCell parameters from 3367 reflections
b = 10.4211 (11) Åθ = 2.7–26.0°
c = 15.2116 (16) ŵ = 1.27 mm1
α = 94.130 (2)°T = 185 K
β = 103.633 (2)°Block, brown
γ = 106.912 (2)°0.31 × 0.17 × 0.10 mm
V = 1090.1 (2) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3758 independent reflections
Radiation source: fine-focus sealed tube3363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.694, Tmax = 0.883k = 1212
5452 measured reflectionsl = 1811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.070P)2 + 0.7465P]
where P = (Fo2 + 2Fc2)/3
3758 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[CuCl2(C24H24N2O2)]γ = 106.912 (2)°
Mr = 506.89V = 1090.1 (2) Å3
Triclinic, P1Z = 2
a = 7.4816 (8) ÅMo Kα radiation
b = 10.4211 (11) ŵ = 1.27 mm1
c = 15.2116 (16) ÅT = 185 K
α = 94.130 (2)°0.31 × 0.17 × 0.10 mm
β = 103.633 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3758 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3363 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 0.883Rint = 0.012
5452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.53 e Å3
3758 reflectionsΔρmin = 0.40 e Å3
280 parameters
Special details top

Experimental. The elemental analysis, Ms, IR and 1H NMR, 13C NMR of the ligand are all in good agreement with the assumed structure. Analysis calculated (%) for C28H32N2O4: C, 73.02; H, 7.00; N, 6.08; Found: C, 73.53; H, 7.62; N, 5.76. IR (KBr, cm-1): 3369(s), 3055(w), 2936(m), 1617(s), 1594(s), 1504(s), 1468(m), 1424(m), 1358(s), 1199(w), 1147(m), 1046(s), 817(s), 750(s). 1H NMR (DMSO, 500 MHz) σ: 7.93–6.85 (m, 12H, ArH), 4.26 (m, 4H, CH2OH), 3.09 (M, 8H, CH2OH), 2.96 (M, 8H, NCH2CH2OH); 13C NMR (DMSO, 125.77 MHz) σ: 148.24, 134.54, 130.03, 128.80, 128.37, 126.51, 126.45, 125.88, 124.09, 122.93, 59.86, 55.67. ESI-Ms: M—H- peak at m/z 458.53.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.45715 (5)0.32140 (3)0.60514 (2)0.02338 (13)
Cl10.78869 (9)0.51803 (6)0.65550 (5)0.02669 (18)
Cl20.43545 (12)0.20440 (8)0.47249 (5)0.0382 (2)
C10.3922 (4)0.1142 (3)0.71308 (18)0.0228 (6)
C20.2759 (4)0.0126 (3)0.6591 (2)0.0299 (6)
H20.31040.04500.60760.036*
C30.1151 (4)0.0876 (3)0.6810 (2)0.0307 (6)
H30.03980.17320.64520.037*
C40.0582 (4)0.0404 (3)0.75604 (19)0.0248 (6)
C50.1103 (4)0.1166 (3)0.7790 (2)0.0312 (6)
H50.18580.20290.74420.037*
C60.1658 (4)0.0684 (3)0.8502 (2)0.0355 (7)
H60.27830.12100.86530.043*
C70.0546 (4)0.0606 (3)0.9013 (2)0.0348 (7)
H70.09440.09530.95030.042*
C80.1083 (4)0.1355 (3)0.8814 (2)0.0277 (6)
H80.18090.22180.91680.033*
C90.1722 (4)0.0877 (3)0.80891 (18)0.0221 (5)
C100.3443 (4)0.1644 (3)0.78723 (17)0.0205 (5)
C110.4725 (4)0.2994 (3)0.84286 (18)0.0210 (5)
C120.5856 (4)0.3070 (3)0.93434 (18)0.0222 (6)
C130.5791 (4)0.1920 (3)0.9794 (2)0.0310 (6)
H130.49580.10520.94830.037*
C140.6904 (5)0.2038 (3)1.0668 (2)0.0363 (7)
H140.68350.12511.09540.044*
C150.8152 (4)0.3313 (3)1.1149 (2)0.0351 (7)
H150.89170.33851.17560.042*
C160.8251 (4)0.4438 (3)1.0737 (2)0.0313 (7)
H160.90920.52961.10640.038*
C170.7126 (4)0.4358 (3)0.98322 (18)0.0248 (6)
C180.7260 (4)0.5509 (3)0.9390 (2)0.0277 (6)
H180.81350.63630.97050.033*
C190.6176 (4)0.5433 (3)0.85272 (19)0.0252 (6)
H190.62880.62300.82490.030*
C200.4873 (4)0.4167 (3)0.80370 (18)0.0208 (5)
N10.5583 (3)0.1950 (2)0.68647 (15)0.0225 (5)
H10.64060.25110.73970.027*
N20.3739 (3)0.4081 (2)0.71187 (15)0.0211 (5)
H2A0.24940.35270.70870.025*
C230.3526 (4)0.5384 (3)0.6829 (2)0.0278 (6)
H23A0.48150.60320.68650.033*
H23B0.29250.57970.72390.033*
C210.6734 (4)0.1155 (3)0.6551 (2)0.0297 (6)
H21A0.59280.05300.59830.036*
H21B0.70910.06000.70220.036*
C240.2268 (4)0.5076 (3)0.5865 (2)0.0314 (6)
H24A0.09010.46030.58460.038*
H24B0.23350.59230.56000.038*
C220.8557 (4)0.2057 (3)0.6372 (2)0.0340 (7)
H22A0.93130.14890.62000.041*
H22B0.81970.25320.58500.041*
O10.9733 (3)0.3032 (2)0.71480 (15)0.0362 (5)
H1A0.90980.35180.72950.054*
O20.3005 (4)0.4224 (3)0.53688 (15)0.0452 (6)
H2B0.22960.39830.48290.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0258 (2)0.0231 (2)0.0227 (2)0.00924 (14)0.00696 (14)0.00440 (13)
Cl10.0260 (3)0.0260 (3)0.0274 (4)0.0071 (3)0.0073 (3)0.0045 (3)
Cl20.0523 (5)0.0344 (4)0.0266 (4)0.0175 (3)0.0057 (3)0.0017 (3)
C10.0228 (13)0.0192 (12)0.0251 (14)0.0044 (10)0.0060 (11)0.0062 (10)
C20.0351 (16)0.0236 (14)0.0288 (15)0.0053 (12)0.0108 (13)0.0005 (11)
C30.0311 (15)0.0207 (13)0.0325 (16)0.0002 (11)0.0054 (13)0.0021 (12)
C40.0244 (14)0.0208 (13)0.0256 (14)0.0045 (11)0.0024 (11)0.0073 (11)
C50.0277 (15)0.0236 (14)0.0384 (17)0.0022 (11)0.0082 (13)0.0086 (12)
C60.0301 (15)0.0339 (16)0.0445 (18)0.0061 (13)0.0159 (14)0.0160 (14)
C70.0376 (17)0.0400 (17)0.0335 (16)0.0154 (14)0.0168 (14)0.0102 (13)
C80.0283 (14)0.0254 (14)0.0277 (15)0.0066 (11)0.0069 (12)0.0022 (11)
C90.0239 (13)0.0205 (13)0.0211 (13)0.0072 (10)0.0027 (11)0.0079 (10)
C100.0219 (13)0.0181 (12)0.0185 (13)0.0052 (10)0.0002 (11)0.0060 (10)
C110.0193 (12)0.0194 (12)0.0229 (13)0.0048 (10)0.0058 (11)0.0001 (10)
C120.0188 (12)0.0252 (14)0.0219 (13)0.0069 (10)0.0053 (11)0.0007 (11)
C130.0319 (15)0.0269 (14)0.0302 (15)0.0091 (12)0.0016 (13)0.0034 (12)
C140.0408 (18)0.0399 (17)0.0295 (16)0.0174 (14)0.0045 (14)0.0098 (13)
C150.0295 (15)0.0516 (19)0.0222 (15)0.0170 (14)0.0005 (12)0.0002 (13)
C160.0227 (14)0.0403 (17)0.0253 (15)0.0069 (12)0.0035 (12)0.0072 (13)
C170.0209 (13)0.0283 (14)0.0239 (14)0.0057 (11)0.0086 (11)0.0028 (11)
C180.0243 (14)0.0230 (13)0.0310 (15)0.0006 (11)0.0100 (12)0.0063 (11)
C190.0260 (14)0.0187 (13)0.0316 (15)0.0043 (11)0.0125 (12)0.0039 (11)
C200.0189 (12)0.0202 (12)0.0243 (14)0.0061 (10)0.0085 (11)0.0002 (10)
N10.0224 (11)0.0198 (11)0.0235 (11)0.0039 (9)0.0071 (9)0.0011 (9)
N20.0210 (11)0.0171 (10)0.0259 (12)0.0056 (9)0.0075 (9)0.0049 (9)
C230.0338 (15)0.0235 (14)0.0329 (15)0.0146 (12)0.0136 (13)0.0086 (12)
C210.0301 (15)0.0256 (14)0.0349 (16)0.0116 (12)0.0078 (13)0.0052 (12)
C240.0334 (15)0.0361 (16)0.0350 (16)0.0191 (13)0.0152 (13)0.0153 (13)
C220.0344 (16)0.0339 (16)0.0395 (17)0.0158 (13)0.0142 (14)0.0086 (13)
O10.0247 (10)0.0354 (12)0.0463 (13)0.0095 (9)0.0047 (10)0.0092 (10)
O20.0670 (16)0.0607 (15)0.0265 (11)0.0464 (13)0.0133 (11)0.0121 (10)
Geometric parameters (Å, º) top
Cu1—N12.052 (2)C14—C151.410 (4)
Cu1—N22.106 (2)C14—H140.9500
Cu1—O21.965 (2)C15—C161.360 (5)
Cu1—Cl12.6190 (7)C15—H150.9500
Cu1—Cl22.2272 (8)C16—C171.417 (4)
C1—C101.374 (4)C16—H160.9500
C1—C21.419 (4)C17—C181.407 (4)
C1—N11.447 (3)C18—C191.353 (4)
C2—C31.359 (4)C18—H180.9500
C2—H20.9500C19—C201.419 (4)
C3—C41.413 (4)C19—H190.9500
C3—H30.9500C20—N21.435 (3)
C4—C51.417 (4)N1—C211.486 (3)
C4—C91.420 (4)N1—H10.9300
C5—C61.361 (5)N2—C231.497 (3)
C5—H50.9500N2—H2A0.9300
C6—C71.413 (4)C23—C241.499 (4)
C6—H60.9500C23—H23A0.9900
C7—C81.357 (4)C23—H23B0.9900
C7—H70.9500C21—C221.511 (4)
C8—C91.414 (4)C21—H21A0.9900
C8—H80.9500C21—H21B0.9900
C9—C101.430 (4)C24—O21.430 (4)
C10—C111.509 (3)C24—H24A0.9900
C11—C201.385 (4)C24—H24B0.9900
C11—C121.431 (4)C22—O11.420 (4)
C12—C131.417 (4)C22—H22A0.9900
C12—C171.428 (4)C22—H22B0.9900
C13—C141.368 (4)O1—H1A0.8400
C13—H130.9500O2—H2B0.8400
O2—Cu1—N1165.49 (10)C15—C16—C17121.4 (3)
O2—Cu1—N279.76 (9)C15—C16—H16119.3
N1—Cu1—N291.66 (8)C17—C16—H16119.3
O2—Cu1—Cl288.68 (7)C18—C17—C16121.8 (3)
N1—Cu1—Cl296.06 (7)C18—C17—C12118.8 (2)
N2—Cu1—Cl2160.29 (7)C16—C17—C12119.3 (3)
O2—Cu1—Cl197.74 (8)C19—C18—C17121.8 (2)
N1—Cu1—Cl193.68 (6)C19—C18—H18119.1
N2—Cu1—Cl188.52 (6)C17—C18—H18119.1
Cl2—Cu1—Cl1108.97 (3)C18—C19—C20120.2 (3)
C10—C1—C2121.2 (2)C18—C19—H19119.9
C10—C1—N1119.5 (2)C20—C19—H19119.9
C2—C1—N1119.2 (2)C11—C20—C19120.4 (2)
C3—C2—C1120.1 (3)C11—C20—N2119.2 (2)
C3—C2—H2120.0C19—C20—N2120.3 (2)
C1—C2—H2120.0C1—N1—C21114.2 (2)
C2—C3—C4121.1 (3)C1—N1—Cu1105.29 (16)
C2—C3—H3119.4C21—N1—Cu1120.05 (18)
C4—C3—H3119.4C1—N1—H1105.4
C3—C4—C5121.8 (3)C21—N1—H1105.4
C3—C4—C9118.8 (2)Cu1—N1—H1105.4
C5—C4—C9119.4 (3)C20—N2—C23116.3 (2)
C6—C5—C4121.1 (3)C20—N2—Cu1117.44 (16)
C6—C5—H5119.4C23—N2—Cu1104.06 (16)
C4—C5—H5119.4C20—N2—H2A106.0
C5—C6—C7119.4 (3)C23—N2—H2A106.0
C5—C6—H6120.3Cu1—N2—H2A106.0
C7—C6—H6120.3N2—C23—C24108.1 (2)
C8—C7—C6120.9 (3)N2—C23—H23A110.1
C8—C7—H7119.6C24—C23—H23A110.1
C6—C7—H7119.6N2—C23—H23B110.1
C7—C8—C9121.3 (3)C24—C23—H23B110.1
C7—C8—H8119.3H23A—C23—H23B108.4
C9—C8—H8119.3N1—C21—C22112.1 (2)
C8—C9—C4117.9 (2)N1—C21—H21A109.2
C8—C9—C10122.3 (2)C22—C21—H21A109.2
C4—C9—C10119.8 (2)N1—C21—H21B109.2
C1—C10—C9118.9 (2)C22—C21—H21B109.2
C1—C10—C11119.4 (2)H21A—C21—H21B107.9
C9—C10—C11121.7 (2)O2—C24—C23106.1 (2)
C20—C11—C12119.6 (2)O2—C24—H24A110.5
C20—C11—C10119.7 (2)C23—C24—H24A110.5
C12—C11—C10120.7 (2)O2—C24—H24B110.5
C13—C12—C17117.7 (2)C23—C24—H24B110.5
C13—C12—C11123.2 (2)H24A—C24—H24B108.7
C17—C12—C11119.1 (2)O1—C22—C21112.1 (2)
C14—C13—C12121.2 (3)O1—C22—H22A109.2
C14—C13—H13119.4C21—C22—H22A109.2
C12—C13—H13119.4O1—C22—H22B109.2
C13—C14—C15120.8 (3)C21—C22—H22B109.2
C13—C14—H14119.6H22A—C22—H22B107.9
C15—C14—H14119.6C22—O1—H1A109.5
C16—C15—C14119.5 (3)C24—O2—Cu1118.73 (18)
C16—C15—H15120.2C24—O2—H2B109.5
C14—C15—H15120.2Cu1—O2—H2B126.1
C10—C1—C2—C30.9 (4)C12—C17—C18—C192.1 (4)
N1—C1—C2—C3177.5 (3)C17—C18—C19—C200.7 (4)
C1—C2—C3—C41.4 (5)C12—C11—C20—C191.8 (4)
C2—C3—C4—C5179.2 (3)C10—C11—C20—C19175.5 (2)
C2—C3—C4—C90.0 (4)C12—C11—C20—N2179.8 (2)
C3—C4—C5—C6178.4 (3)C10—C11—C20—N22.6 (4)
C9—C4—C5—C60.8 (4)C18—C19—C20—C111.3 (4)
C4—C5—C6—C70.7 (5)C18—C19—C20—N2179.3 (2)
C5—C6—C7—C81.2 (5)C10—C1—N1—C21141.6 (3)
C6—C7—C8—C90.2 (5)C2—C1—N1—C2141.7 (3)
C7—C8—C9—C41.3 (4)C10—C1—N1—Cu184.7 (2)
C7—C8—C9—C10179.4 (3)C2—C1—N1—Cu192.0 (3)
C3—C4—C9—C8177.4 (3)O2—Cu1—N1—C16.6 (4)
C5—C4—C9—C81.8 (4)N2—Cu1—N1—C159.88 (16)
C3—C4—C9—C101.8 (4)Cl2—Cu1—N1—C1101.97 (15)
C5—C4—C9—C10179.0 (2)Cl1—Cu1—N1—C1148.49 (15)
C2—C1—C10—C91.0 (4)O2—Cu1—N1—C21137.0 (3)
N1—C1—C10—C9175.7 (2)N2—Cu1—N1—C21169.67 (19)
C2—C1—C10—C11179.9 (2)Cl2—Cu1—N1—C2128.49 (19)
N1—C1—C10—C113.5 (4)Cl1—Cu1—N1—C2181.05 (19)
C8—C9—C10—C1176.9 (2)C11—C20—N2—C23163.4 (2)
C4—C9—C10—C12.3 (4)C19—C20—N2—C2318.6 (3)
C8—C9—C10—C112.2 (4)C11—C20—N2—Cu172.4 (3)
C4—C9—C10—C11178.5 (2)C19—C20—N2—Cu1105.6 (2)
C1—C10—C11—C2066.2 (3)O2—Cu1—N2—C20160.18 (19)
C9—C10—C11—C20112.9 (3)N1—Cu1—N2—C2031.60 (18)
C1—C10—C11—C12111.0 (3)Cl2—Cu1—N2—C20144.81 (17)
C9—C10—C11—C1269.9 (3)Cl1—Cu1—N2—C2062.04 (17)
C20—C11—C12—C13180.0 (3)O2—Cu1—N2—C2330.02 (17)
C10—C11—C12—C132.8 (4)N1—Cu1—N2—C23161.76 (17)
C20—C11—C12—C170.4 (4)Cl2—Cu1—N2—C2385.0 (2)
C10—C11—C12—C17176.8 (2)Cl1—Cu1—N2—C2368.12 (16)
C17—C12—C13—C140.1 (4)C20—N2—C23—C24178.8 (2)
C11—C12—C13—C14179.7 (3)Cu1—N2—C23—C2450.4 (2)
C12—C13—C14—C150.1 (5)C1—N1—C21—C22174.3 (2)
C13—C14—C15—C160.1 (5)Cu1—N1—C21—C2259.3 (3)
C14—C15—C16—C170.0 (4)N2—C23—C24—O247.2 (3)
C15—C16—C17—C18178.1 (3)N1—C21—C22—O155.6 (3)
C15—C16—C17—C120.2 (4)C23—C24—O2—Cu121.4 (3)
C13—C12—C17—C18178.1 (3)N1—Cu1—O2—C2459.7 (5)
C11—C12—C17—C181.5 (4)N2—Cu1—O2—C245.2 (2)
C13—C12—C17—C160.3 (4)Cl2—Cu1—O2—C24169.1 (2)
C11—C12—C17—C16179.9 (2)Cl1—Cu1—O2—C2481.9 (2)
C16—C17—C18—C19179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.842.413.039 (2)132
O2—H2B···Cl1i0.842.332.996 (2)137
N2—H2A···O1ii0.932.002.889 (3)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[CuCl2(C24H24N2O2)]
Mr506.89
Crystal system, space groupTriclinic, P1
Temperature (K)185
a, b, c (Å)7.4816 (8), 10.4211 (11), 15.2116 (16)
α, β, γ (°)94.130 (2), 103.633 (2), 106.912 (2)
V3)1090.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.31 × 0.17 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.694, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
5452, 3758, 3363
Rint0.012
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.04
No. of reflections3758
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.40

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N12.052 (2)Cu1—Cl12.6190 (7)
Cu1—N22.106 (2)Cu1—Cl22.2272 (8)
Cu1—O21.965 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.842.413.039 (2)132
O2—H2B···Cl1i0.842.332.996 (2)137
N2—H2A···O1ii0.932.002.889 (3)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20971029) and the Guangxi Natural Science Foundation of China (No. 2010GXNSFD013018).

References

First citationAlley, K. G., Mukherjee, A., Clerac, R. & Boskovic, C. (2008). Dalton Trans. pp. 59–63.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerguson, A., Schmidtmann, M., Brechin, E. K. & Murrie, M. (2011). Dalton Trans. 40, 334–336.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaalfrank, R. W., Maid, H. & Scheurer, A. (2008). Angew. Chem. Int. Ed. 47, 8794–8824.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTelfer, Sh. G., Sato, T., Harada, T., Kuroda, R., Lefebvre, J. & Leznoff, D. B. (2004). Inorg. Chem. 43, 6168–6176.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationThob, M., Seidel, R. W., Oppel, I. M. & Feigel, M. (2010). J. Mol. Struct. 980, 245–249.  Google Scholar
First citationYan, Y.-E., Hu, Y., Zhao, G.-P. & Kou, X.-M. (2008). Dyes Pigments, 79, 210–215.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds