metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(meso-5,5,7,12,12,14-Hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) bis­­[O,O′-(1,2-phenyl­ene) di­thio­phosphate]

aCollege of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, 643000 Zigong, People's Republic of China
*Correspondence e-mail: zoulike@yahoo.com.cn

(Received 25 November 2011; accepted 27 November 2011; online 30 November 2011)

In the crystal structure of the title compound, [Ni(C16H36N4)](C6H4O2PS2)2, the NiII cation is located on a center of inversion and is chelated by the folded tetra­amine macrocycle ligand in a slightly distorted NiN4 square-planar geometry. Two symmetry-related O,O′-(1,2-phenyl­ene)dithio­phosphate anions are located on either side of the NiII cation, with Ni⋯S of 3.9558 (5) Å, and link to the tetra­amine macrocycle ligand via N—H⋯S hydrogen bonding.

Related literature

For general background to tetra­amine macrocycle compounds, see: Aoki & Kimura (2002[Aoki, S. & Kimura, E. (2002). Rev. Mol. Biotechnol. 90, 129-155.]). For the structures of analogous adducts, see: Feng et al. (2010[Feng, J.-S., Zou, L.-K., Xie, B., Xiang, Y.-G. & Lai, C. (2010). Acta Cryst. E66, m1593.]); Lai et al. (2011[Lai, C., Xie, B., Zou, L.-K. & Feng, J.-S. (2011). Acta Cryst. E67, m17.]); Zou et al. (2010[Zou, L.-K., Xie, B., Feng, J.-S. & Lai, C. (2010). Acta Cryst. E66, m1592.]). For the synthesis of [Et3NH][(o-C6H4O2)PS2], see: Feng et al. (2010[Feng, J.-S., Zou, L.-K., Xie, B., Xiang, Y.-G. & Lai, C. (2010). Acta Cryst. E66, m1593.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H36N4)](C6H4O2PS2)2

  • Mr = 749.56

  • Monoclinic, P 21 /n

  • a = 9.0012 (15) Å

  • b = 20.500 (3) Å

  • c = 9.6682 (17) Å

  • β = 101.029 (3)°

  • V = 1751.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 103 K

  • 0.24 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.809, Tmax = 0.852

  • 9094 measured reflections

  • 3103 independent reflections

  • 2504 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 1.04

  • 3103 reflections

  • 197 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 1.9332 (19)
Ni1—N2 1.9410 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2 0.86 2.63 3.444 (2) 158
N2—H2⋯S1i 0.86 2.55 3.386 (2) 166
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Much attentions have been atracted to tetraamine macrocycles as a result of their resemblance to naturally occurring macrocyclic systems (Aoki & Kimura, 2002). In our quest for the potential applications of tetramine macrocycles transition metal complexes as mimetic hydrolases, we have systermly studied their ternary adducts with O,O'-dialkyldithiophosphate (Feng et al., 2010; Lai et al., 2011; Zou et al., 2010). Herein, we report the structure of an analogue, [Ni(Me6[14]aneN4)][(o-C6H4O2)PS2]2, where Me6[14]aneN4 is meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane.

The molecular structure of the title adduct is remarkably similar to its analogue, [Cu(Me6[14]aneN4)][(o-C6H4O2)PS2]2 (Feng et al., 2010). The asymmetric unit consits a centrosymmetric [Ni(Me6[14]aneN4)]2+ dication and two uncoordinated O,O'-(1,2-phenylene)dithiophosphate anions. The NiII ion is located on a center of inversion and is chelated by the folded tetraamine macrocycle ligand within slightly distorted NiN4 square-plan (Fig.1). Two symmetry related O,O'-(1,2-phenylene) dithiophosphate anions occupies at psuedo-axial positions with the much longer Ni···S distances of 3.9558 (5) Å. Intermolecular N—H···S hydrogen bondings link the complex cation and pair of anions into three compoment clusters (Table 1). The distorted tetrahedral angles of P atoms range between 93.95 (10) and 121.35 (5)°, illustrating the existence of strain in the O,O'-(1,2-phenylene)dithiophosphate anions. Two P—S bond lengths are of 1.9383 (12) and 1.9332 (12) Å respectively, which suggests the negative charge is delocalizated over the S1—P1—S2 fragment.

Related literature top

For general background to tetraamine macrocycle compounds, see: Aoki & Kimura (2002). For the structures of analogous adducts, see: Feng et al. (2010); Lai et al. (2011); Zou et al. (2010). For the synthesis of [Et3NH][(o-C6H4O2)PS2], see: Feng et al. (2010).

Experimental top

[Et3NH][(o-C6H4O2)PS2] was prepared according to the procedure reported by Feng et al. (2010).

A solution of meso-5,5,7,12,12,14- hexamethyl-1,4,8,11- tetraazacyclotetradecane dihydrate (0.32 g, 1 mmol) and Ni(Ac)2.4H2O (0.249 g, 1 mmol) in 25 ml methanol was quickly added to a solution of [Et3NH][(o-C6H4O2)PS2] (0.71 g, 2 mmol) in 25 ml methanol under stirring and refluxed for 6 h. After cooling to room temperature, the precipitate was filtered off, washed successively with methanol and diethyl ether. The obtained orange solid was dissolved in hot methanol and filtered. The filtrate was slowly evaporated at room temperature and orange block crystals suitable for X-ray diffraction studies were obtained after two weeks.

Refinement top

H atoms were placed in calculated positions and treated as riding, with C—H = 0.93–0.98 Å and N—H = 0.86 Å, and refined in a riding mode with Uiso(H) = 1.5Ueq(C,N) for methyl H atoms and imine H atoms and 1.2Ueq(C) for the others.

Structure description top

Much attentions have been atracted to tetraamine macrocycles as a result of their resemblance to naturally occurring macrocyclic systems (Aoki & Kimura, 2002). In our quest for the potential applications of tetramine macrocycles transition metal complexes as mimetic hydrolases, we have systermly studied their ternary adducts with O,O'-dialkyldithiophosphate (Feng et al., 2010; Lai et al., 2011; Zou et al., 2010). Herein, we report the structure of an analogue, [Ni(Me6[14]aneN4)][(o-C6H4O2)PS2]2, where Me6[14]aneN4 is meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane.

The molecular structure of the title adduct is remarkably similar to its analogue, [Cu(Me6[14]aneN4)][(o-C6H4O2)PS2]2 (Feng et al., 2010). The asymmetric unit consits a centrosymmetric [Ni(Me6[14]aneN4)]2+ dication and two uncoordinated O,O'-(1,2-phenylene)dithiophosphate anions. The NiII ion is located on a center of inversion and is chelated by the folded tetraamine macrocycle ligand within slightly distorted NiN4 square-plan (Fig.1). Two symmetry related O,O'-(1,2-phenylene) dithiophosphate anions occupies at psuedo-axial positions with the much longer Ni···S distances of 3.9558 (5) Å. Intermolecular N—H···S hydrogen bondings link the complex cation and pair of anions into three compoment clusters (Table 1). The distorted tetrahedral angles of P atoms range between 93.95 (10) and 121.35 (5)°, illustrating the existence of strain in the O,O'-(1,2-phenylene)dithiophosphate anions. Two P—S bond lengths are of 1.9383 (12) and 1.9332 (12) Å respectively, which suggests the negative charge is delocalizated over the S1—P1—S2 fragment.

For general background to tetraamine macrocycle compounds, see: Aoki & Kimura (2002). For the structures of analogous adducts, see: Feng et al. (2010); Lai et al. (2011); Zou et al. (2010). For the synthesis of [Et3NH][(o-C6H4O2)PS2], see: Feng et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-numbering scheme with displacement ellipsoids at 30% probability level. H atoms are represented as small spheres of arbitrary radii and hydrogen-bonds are shown as dashed lines. Atoms with the superscript i are generated by the symmetry operation (-x + 1, -y,-z + 1).
(meso-5,5,7,12,12,14-Hexamethyl-1,4,8,11- tetraazacyclotetradecane)nickel(II) bis[O,O'-(1,2-phenylene) dithiophosphate] top
Crystal data top
[Ni(C16H36N4)](C6H4O2PS2)2F(000) = 788
Mr = 749.56Dx = 1.422 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2892 reflections
a = 9.0012 (15) Åθ = 2.4–24.5°
b = 20.500 (3) ŵ = 0.92 mm1
c = 9.6682 (17) ÅT = 103 K
β = 101.029 (3)°Block, orange
V = 1751.1 (5) Å30.24 × 0.21 × 0.18 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3103 independent reflections
Radiation source: fine-focus sealed tube2504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.809, Tmax = 0.852k = 2421
9094 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.6628P]
where P = (Fo2 + 2Fc2)/3
3103 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Ni(C16H36N4)](C6H4O2PS2)2V = 1751.1 (5) Å3
Mr = 749.56Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.0012 (15) ŵ = 0.92 mm1
b = 20.500 (3) ÅT = 103 K
c = 9.6682 (17) Å0.24 × 0.21 × 0.18 mm
β = 101.029 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3103 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2504 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.852Rint = 0.026
9094 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.40 e Å3
3103 reflectionsΔρmin = 0.27 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.03286 (14)
S10.84141 (10)0.04903 (4)0.31736 (11)0.0756 (3)
S20.57109 (9)0.16238 (5)0.21370 (10)0.0726 (3)
P10.78079 (8)0.13550 (4)0.24736 (8)0.0500 (2)
O10.8895 (2)0.18987 (10)0.34393 (19)0.0570 (5)
O20.8521 (2)0.14989 (10)0.10467 (19)0.0585 (5)
N10.3804 (2)0.03328 (10)0.3268 (2)0.0399 (5)
H10.44500.05650.29350.060*
N20.3989 (2)0.06439 (9)0.5965 (2)0.0382 (5)
H20.32560.04110.61480.057*
C10.3140 (3)0.01378 (13)0.2112 (3)0.0480 (7)
C20.2676 (3)0.08059 (14)0.3600 (3)0.0586 (8)
H2A0.24070.11160.28360.070*
H2B0.17660.05800.37290.070*
C30.3369 (4)0.11486 (13)0.4913 (3)0.0557 (8)
H3A0.26150.14090.52550.067*
H3B0.41720.14350.47410.067*
C40.4665 (3)0.09635 (12)0.7326 (3)0.0446 (6)
H40.53710.13000.71310.054*
C50.5544 (3)0.04792 (14)0.8347 (3)0.0519 (7)
H5A0.48440.01480.85460.062*
H5B0.59270.07060.92230.062*
C60.2265 (4)0.02438 (17)0.0854 (3)0.0718 (10)
H6A0.13770.04330.11040.108*
H6B0.19720.00460.00690.108*
H6C0.28970.05830.06000.108*
C70.2087 (3)0.06079 (15)0.2663 (4)0.0655 (9)
H7A0.26090.08030.35220.098*
H7B0.17690.09420.19750.098*
H7C0.12170.03750.28410.098*
C80.3449 (4)0.12954 (15)0.7982 (3)0.0619 (8)
H8A0.29890.16400.73760.093*
H8B0.39020.14730.88830.093*
H8C0.26920.09820.81020.093*
C90.9811 (3)0.18714 (13)0.1402 (3)0.0471 (7)
C101.0029 (3)0.20927 (12)0.2761 (3)0.0468 (7)
C111.1268 (3)0.24600 (14)0.3339 (4)0.0624 (9)
H111.14220.26080.42650.075*
C121.2278 (4)0.25961 (15)0.2455 (5)0.0791 (12)
H121.31410.28390.28070.095*
C131.2051 (4)0.23869 (18)0.1089 (5)0.0787 (11)
H131.27430.24970.05270.094*
C141.0806 (3)0.20142 (16)0.0538 (4)0.0641 (9)
H141.06470.18650.03870.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0389 (3)0.0275 (2)0.0334 (2)0.00032 (19)0.00984 (18)0.00063 (18)
S10.0628 (5)0.0595 (5)0.1091 (7)0.0099 (4)0.0279 (5)0.0137 (5)
S20.0503 (5)0.0852 (7)0.0857 (6)0.0006 (4)0.0217 (4)0.0079 (5)
P10.0474 (4)0.0560 (5)0.0498 (4)0.0123 (4)0.0176 (3)0.0053 (3)
O10.0628 (12)0.0608 (13)0.0503 (11)0.0129 (10)0.0184 (10)0.0141 (9)
O20.0536 (11)0.0802 (14)0.0446 (11)0.0208 (11)0.0167 (9)0.0084 (10)
N10.0484 (12)0.0350 (12)0.0364 (11)0.0004 (10)0.0083 (9)0.0002 (9)
N20.0435 (12)0.0317 (11)0.0410 (12)0.0022 (9)0.0126 (9)0.0001 (9)
C10.0514 (16)0.0494 (17)0.0402 (15)0.0020 (13)0.0014 (12)0.0059 (12)
C20.0638 (19)0.0555 (18)0.0521 (17)0.0238 (15)0.0002 (14)0.0023 (14)
C30.073 (2)0.0432 (16)0.0505 (17)0.0183 (14)0.0106 (15)0.0000 (13)
C40.0549 (16)0.0376 (14)0.0432 (15)0.0049 (12)0.0138 (12)0.0072 (12)
C50.0651 (18)0.0538 (17)0.0369 (15)0.0001 (15)0.0100 (13)0.0087 (13)
C60.083 (2)0.079 (2)0.0445 (18)0.0131 (19)0.0088 (16)0.0060 (16)
C70.0553 (19)0.0515 (18)0.090 (2)0.0115 (15)0.0137 (17)0.0112 (17)
C80.081 (2)0.0542 (18)0.0559 (18)0.0109 (16)0.0270 (16)0.0090 (14)
C90.0394 (15)0.0453 (16)0.0571 (17)0.0003 (12)0.0103 (13)0.0099 (13)
C100.0436 (15)0.0351 (14)0.0619 (18)0.0019 (12)0.0109 (13)0.0032 (13)
C110.0501 (17)0.0376 (16)0.091 (2)0.0022 (14)0.0069 (17)0.0060 (15)
C120.0405 (18)0.0412 (19)0.152 (4)0.0033 (15)0.010 (2)0.015 (2)
C130.050 (2)0.069 (2)0.123 (3)0.0075 (18)0.031 (2)0.040 (2)
C140.0521 (19)0.075 (2)0.070 (2)0.0051 (17)0.0218 (16)0.0247 (17)
Geometric parameters (Å, º) top
Ni1—N11.9332 (19)C4—C81.526 (4)
Ni1—N1i1.9332 (19)C4—H40.9800
Ni1—N2i1.9410 (19)C5—C1i1.514 (4)
Ni1—N21.9410 (19)C5—H5A0.9700
S1—P11.9383 (12)C5—H5B0.9700
S2—P11.9332 (12)C6—H6A0.9600
P1—O11.6497 (19)C6—H6B0.9600
P1—O21.6554 (19)C6—H6C0.9600
O1—C101.374 (3)C7—H7A0.9600
O2—C91.377 (3)C7—H7B0.9600
N1—C21.483 (3)C7—H7C0.9600
N1—C11.511 (3)C8—H8A0.9600
N1—H10.8600C8—H8B0.9600
N2—C31.483 (3)C8—H8C0.9600
N2—C41.491 (3)C9—C101.368 (4)
N2—H20.8600C9—C141.368 (4)
C1—C5i1.514 (4)C10—C111.373 (4)
C1—C71.518 (4)C11—C121.390 (5)
C1—C61.532 (4)C11—H110.9300
C2—C31.480 (4)C12—C131.366 (5)
C2—H2A0.9700C12—H120.9300
C2—H2B0.9700C13—C141.377 (5)
C3—H3A0.9700C13—H130.9300
C3—H3B0.9700C14—H140.9300
C4—C51.512 (4)
N1—Ni1—N1i180.00 (13)C5—C4—C8110.4 (2)
N1—Ni1—N2i93.33 (8)N2—C4—H4108.0
N1i—Ni1—N2i86.67 (8)C5—C4—H4108.0
N1—Ni1—N286.67 (8)C8—C4—H4108.0
N1i—Ni1—N293.33 (8)C4—C5—C1i117.0 (2)
N2i—Ni1—N2180.00 (9)C4—C5—H5A108.1
O1—P1—O293.95 (10)C1i—C5—H5A108.1
O1—P1—S2110.90 (9)C4—C5—H5B108.1
O2—P1—S2109.30 (9)C1i—C5—H5B108.1
O1—P1—S1108.88 (9)H5A—C5—H5B107.3
O2—P1—S1109.02 (9)C1—C6—H6A109.5
S2—P1—S1121.33 (5)C1—C6—H6B109.5
C10—O1—P1109.87 (17)H6A—C6—H6B109.5
C9—O2—P1109.47 (16)C1—C6—H6C109.5
C2—N1—C1112.8 (2)H6A—C6—H6C109.5
C2—N1—Ni1109.51 (16)H6B—C6—H6C109.5
C1—N1—Ni1119.43 (16)C1—C7—H7A109.5
C2—N1—H1105.0C1—C7—H7B109.5
C1—N1—H1106.1H7A—C7—H7B109.5
Ni1—N1—H1102.4C1—C7—H7C109.5
C3—N2—C4109.58 (19)H7A—C7—H7C109.5
C3—N2—Ni1107.08 (15)H7B—C7—H7C109.5
C4—N2—Ni1124.98 (15)C4—C8—H8A109.5
C3—N2—H2109.1C4—C8—H8B109.5
C4—N2—H2105.2H8A—C8—H8B109.5
Ni1—N2—H299.7C4—C8—H8C109.5
N1—C1—C5i106.9 (2)H8A—C8—H8C109.5
N1—C1—C7109.4 (2)H8B—C8—H8C109.5
C5i—C1—C7112.7 (2)C10—C9—C14121.7 (3)
N1—C1—C6109.4 (2)C10—C9—O2112.5 (2)
C5i—C1—C6108.4 (2)C14—C9—O2125.8 (3)
C7—C1—C6110.0 (2)C9—C10—C11121.9 (3)
C3—C2—N1107.6 (2)C9—C10—O1112.3 (2)
C3—C2—H2A110.2C11—C10—O1125.8 (3)
N1—C2—H2A110.2C10—C11—C12115.8 (3)
C3—C2—H2B110.2C10—C11—H11122.1
N1—C2—H2B110.2C12—C11—H11122.1
H2A—C2—H2B108.5C13—C12—C11122.5 (3)
C2—C3—N2107.4 (2)C13—C12—H12118.8
C2—C3—H3A110.2C11—C12—H12118.8
N2—C3—H3A110.2C12—C13—C14120.6 (3)
C2—C3—H3B110.2C12—C13—H13119.7
N2—C3—H3B110.2C14—C13—H13119.7
H3A—C3—H3B108.5C9—C14—C13117.5 (3)
N2—C4—C5111.2 (2)C9—C14—H14121.3
N2—C4—C8111.0 (2)C13—C14—H14121.3
O2—P1—O1—C1012.84 (19)C4—N2—C3—C2178.4 (2)
S2—P1—O1—C10125.24 (16)Ni1—N2—C3—C243.3 (3)
S1—P1—O1—C1098.80 (17)C3—N2—C4—C5170.2 (2)
O1—P1—O2—C912.24 (19)Ni1—N2—C4—C541.2 (3)
S2—P1—O2—C9126.01 (16)C3—N2—C4—C866.5 (3)
S1—P1—O2—C999.28 (17)Ni1—N2—C4—C8164.52 (18)
N2i—Ni1—N1—C2172.52 (18)N2—C4—C5—C1i60.0 (3)
N2—Ni1—N1—C27.48 (18)C8—C4—C5—C1i176.3 (2)
N2i—Ni1—N1—C140.32 (19)P1—O2—C9—C108.4 (3)
N2—Ni1—N1—C1139.68 (19)P1—O2—C9—C14171.1 (2)
N1—Ni1—N2—C319.90 (17)C14—C9—C10—C111.1 (4)
N1i—Ni1—N2—C3160.10 (17)O2—C9—C10—C11178.4 (2)
N1—Ni1—N2—C4149.9 (2)C14—C9—C10—O1179.5 (2)
N1i—Ni1—N2—C430.1 (2)O2—C9—C10—O11.0 (3)
C2—N1—C1—C5i167.1 (2)P1—O1—C10—C910.0 (3)
Ni1—N1—C1—C5i62.1 (3)P1—O1—C10—C11169.3 (2)
C2—N1—C1—C770.6 (3)C9—C10—C11—C120.4 (4)
Ni1—N1—C1—C760.1 (3)O1—C10—C11—C12179.7 (3)
C2—N1—C1—C649.9 (3)C10—C11—C12—C130.8 (5)
Ni1—N1—C1—C6179.32 (19)C11—C12—C13—C141.5 (5)
C1—N1—C2—C3169.0 (2)C10—C9—C14—C130.5 (4)
Ni1—N1—C2—C333.5 (3)O2—C9—C14—C13179.0 (3)
N1—C2—C3—N250.3 (3)C12—C13—C14—C90.8 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S20.862.633.444 (2)158
N2—H2···S1i0.862.553.386 (2)166
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C16H36N4)](C6H4O2PS2)2
Mr749.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)103
a, b, c (Å)9.0012 (15), 20.500 (3), 9.6682 (17)
β (°) 101.029 (3)
V3)1751.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.24 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.809, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
9094, 3103, 2504
Rint0.026
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.04
No. of reflections3103
No. of parameters197
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.27

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997).

Selected bond lengths (Å) top
Ni1—N11.9332 (19)Ni1—N21.9410 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S20.862.633.444 (2)158
N2—H2···S1i0.862.553.386 (2)166
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Education Committee (No. 09ZA057) and the Science and Technology Committee (Nos. 2010GZ0130 and 2011JY0052) of Sichuan Province and the Science and Technology Office of Zigong City, China (No. 10X05).

References

First citationAoki, S. & Kimura, E. (2002). Rev. Mol. Biotechnol. 90, 129–155.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeng, J.-S., Zou, L.-K., Xie, B., Xiang, Y.-G. & Lai, C. (2010). Acta Cryst. E66, m1593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLai, C., Xie, B., Zou, L.-K. & Feng, J.-S. (2011). Acta Cryst. E67, m17.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, L.-K., Xie, B., Feng, J.-S. & Lai, C. (2010). Acta Cryst. E66, m1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds