metal-organic compounds
(meso-5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis[O,O′-(1,2-phenylene) dithiophosphate]
aCollege of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, 643000 Zigong, People's Republic of China
*Correspondence e-mail: zoulike@yahoo.com.cn
In the 16H36N4)](C6H4O2PS2)2, the NiII cation is located on a center of inversion and is chelated by the folded tetraamine macrocycle ligand in a slightly distorted NiN4 square-planar geometry. Two symmetry-related O,O′-(1,2-phenylene)dithiophosphate anions are located on either side of the NiII cation, with Ni⋯S of 3.9558 (5) Å, and link to the tetraamine macrocycle ligand via N—H⋯S hydrogen bonding.
of the title compound, [Ni(CRelated literature
For general background to tetraamine macrocycle compounds, see: Aoki & Kimura (2002). For the structures of analogous adducts, see: Feng et al. (2010); Lai et al. (2011); Zou et al. (2010). For the synthesis of [Et3NH][(o-C6H4O2)PS2], see: Feng et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536811050951/xu5399sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811050951/xu5399Isup2.hkl
[Et3NH][(o-C6H4O2)PS2] was prepared according to the procedure reported by Feng et al. (2010).
A solution of meso-5,5,7,12,12,14- hexamethyl-1,4,8,11- tetraazacyclotetradecane dihydrate (0.32 g, 1 mmol) and Ni(Ac)2.4H2O (0.249 g, 1 mmol) in 25 ml methanol was quickly added to a solution of [Et3NH][(o-C6H4O2)PS2] (0.71 g, 2 mmol) in 25 ml methanol under stirring and refluxed for 6 h. After cooling to room temperature, the precipitate was filtered off, washed successively with methanol and diethyl ether. The obtained orange solid was dissolved in hot methanol and filtered. The filtrate was slowly evaporated at room temperature and orange block crystals suitable for X-ray diffraction studies were obtained after two weeks.
H atoms were placed in calculated positions and treated as riding, with C—H = 0.93–0.98 Å and N—H = 0.86 Å, and refined in a riding mode with Uiso(H) = 1.5Ueq(C,N) for methyl H atoms and imine H atoms and 1.2Ueq(C) for the others.
Much attentions have been atracted to tetraamine macrocycles as a result of their resemblance to naturally occurring macrocyclic systems (Aoki & Kimura, 2002). In our quest for the potential applications of tetramine macrocycles transition metal complexes as mimetic
we have systermly studied their ternary adducts with O,O'-dialkyldithiophosphate (Feng et al., 2010; Lai et al., 2011; Zou et al., 2010). Herein, we report the structure of an analogue, [Ni(Me6[14]aneN4)][(o-C6H4O2)PS2]2, where Me6[14]aneN4 is meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane.The molecular structure of the title adduct is remarkably similar to its analogue, [Cu(Me6[14]aneN4)][(o-C6H4O2)PS2]2 (Feng et al., 2010). The
consits a centrosymmetric [Ni(Me6[14]aneN4)]2+ dication and two uncoordinated O,O'-(1,2-phenylene)dithiophosphate anions. The NiII ion is located on a center of inversion and is chelated by the folded tetraamine macrocycle ligand within slightly distorted NiN4 square-plan (Fig.1). Two symmetry related O,O'-(1,2-phenylene) dithiophosphate anions occupies at psuedo-axial positions with the much longer Ni···S distances of 3.9558 (5) Å. Intermolecular N—H···S hydrogen bondings link the complex cation and pair of anions into three compoment clusters (Table 1). The distorted tetrahedral angles of P atoms range between 93.95 (10) and 121.35 (5)°, illustrating the existence of strain in the O,O'-(1,2-phenylene)dithiophosphate anions. Two P—S bond lengths are of 1.9383 (12) and 1.9332 (12) Å respectively, which suggests the negative charge is delocalizated over the S1—P1—S2 fragment.For general background to tetraamine macrocycle compounds, see: Aoki & Kimura (2002). For the structures of analogous adducts, see: Feng et al. (2010); Lai et al. (2011); Zou et al. (2010). For the synthesis of [Et3NH][(o-C6H4O2)PS2], see: Feng et al. (2010).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(C16H36N4)](C6H4O2PS2)2 | F(000) = 788 |
Mr = 749.56 | Dx = 1.422 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2892 reflections |
a = 9.0012 (15) Å | θ = 2.4–24.5° |
b = 20.500 (3) Å | µ = 0.92 mm−1 |
c = 9.6682 (17) Å | T = 103 K |
β = 101.029 (3)° | Block, orange |
V = 1751.1 (5) Å3 | 0.24 × 0.21 × 0.18 mm |
Z = 2 |
Bruker SMART 1000 CCD area-detector diffractometer | 3103 independent reflections |
Radiation source: fine-focus sealed tube | 2504 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
φ and ω scans | θmax = 25.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −10→10 |
Tmin = 0.809, Tmax = 0.852 | k = −24→21 |
9094 measured reflections | l = −10→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0391P)2 + 0.6628P] where P = (Fo2 + 2Fc2)/3 |
3103 reflections | (Δ/σ)max < 0.001 |
197 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
[Ni(C16H36N4)](C6H4O2PS2)2 | V = 1751.1 (5) Å3 |
Mr = 749.56 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.0012 (15) Å | µ = 0.92 mm−1 |
b = 20.500 (3) Å | T = 103 K |
c = 9.6682 (17) Å | 0.24 × 0.21 × 0.18 mm |
β = 101.029 (3)° |
Bruker SMART 1000 CCD area-detector diffractometer | 3103 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2504 reflections with I > 2σ(I) |
Tmin = 0.809, Tmax = 0.852 | Rint = 0.026 |
9094 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.40 e Å−3 |
3103 reflections | Δρmin = −0.27 e Å−3 |
197 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.0000 | 0.5000 | 0.03286 (14) | |
S1 | 0.84141 (10) | 0.04903 (4) | 0.31736 (11) | 0.0756 (3) | |
S2 | 0.57109 (9) | 0.16238 (5) | 0.21370 (10) | 0.0726 (3) | |
P1 | 0.78079 (8) | 0.13550 (4) | 0.24736 (8) | 0.0500 (2) | |
O1 | 0.8895 (2) | 0.18987 (10) | 0.34393 (19) | 0.0570 (5) | |
O2 | 0.8521 (2) | 0.14989 (10) | 0.10467 (19) | 0.0585 (5) | |
N1 | 0.3804 (2) | 0.03328 (10) | 0.3268 (2) | 0.0399 (5) | |
H1 | 0.4450 | 0.0565 | 0.2935 | 0.060* | |
N2 | 0.3989 (2) | 0.06439 (9) | 0.5965 (2) | 0.0382 (5) | |
H2 | 0.3256 | 0.0411 | 0.6148 | 0.057* | |
C1 | 0.3140 (3) | −0.01378 (13) | 0.2112 (3) | 0.0480 (7) | |
C2 | 0.2676 (3) | 0.08059 (14) | 0.3600 (3) | 0.0586 (8) | |
H2A | 0.2407 | 0.1116 | 0.2836 | 0.070* | |
H2B | 0.1766 | 0.0580 | 0.3729 | 0.070* | |
C3 | 0.3369 (4) | 0.11486 (13) | 0.4913 (3) | 0.0557 (8) | |
H3A | 0.2615 | 0.1409 | 0.5255 | 0.067* | |
H3B | 0.4172 | 0.1435 | 0.4741 | 0.067* | |
C4 | 0.4665 (3) | 0.09635 (12) | 0.7326 (3) | 0.0446 (6) | |
H4 | 0.5371 | 0.1300 | 0.7131 | 0.054* | |
C5 | 0.5544 (3) | 0.04792 (14) | 0.8347 (3) | 0.0519 (7) | |
H5A | 0.4844 | 0.0148 | 0.8546 | 0.062* | |
H5B | 0.5927 | 0.0706 | 0.9223 | 0.062* | |
C6 | 0.2265 (4) | 0.02438 (17) | 0.0854 (3) | 0.0718 (10) | |
H6A | 0.1377 | 0.0433 | 0.1104 | 0.108* | |
H6B | 0.1972 | −0.0046 | 0.0069 | 0.108* | |
H6C | 0.2897 | 0.0583 | 0.0600 | 0.108* | |
C7 | 0.2087 (3) | −0.06079 (15) | 0.2663 (4) | 0.0655 (9) | |
H7A | 0.2609 | −0.0803 | 0.3522 | 0.098* | |
H7B | 0.1769 | −0.0942 | 0.1975 | 0.098* | |
H7C | 0.1217 | −0.0375 | 0.2841 | 0.098* | |
C8 | 0.3449 (4) | 0.12954 (15) | 0.7982 (3) | 0.0619 (8) | |
H8A | 0.2989 | 0.1640 | 0.7376 | 0.093* | |
H8B | 0.3902 | 0.1473 | 0.8883 | 0.093* | |
H8C | 0.2692 | 0.0982 | 0.8102 | 0.093* | |
C9 | 0.9811 (3) | 0.18714 (13) | 0.1402 (3) | 0.0471 (7) | |
C10 | 1.0029 (3) | 0.20927 (12) | 0.2761 (3) | 0.0468 (7) | |
C11 | 1.1268 (3) | 0.24600 (14) | 0.3339 (4) | 0.0624 (9) | |
H11 | 1.1422 | 0.2608 | 0.4265 | 0.075* | |
C12 | 1.2278 (4) | 0.25961 (15) | 0.2455 (5) | 0.0791 (12) | |
H12 | 1.3141 | 0.2839 | 0.2807 | 0.095* | |
C13 | 1.2051 (4) | 0.23869 (18) | 0.1089 (5) | 0.0787 (11) | |
H13 | 1.2743 | 0.2497 | 0.0527 | 0.094* | |
C14 | 1.0806 (3) | 0.20142 (16) | 0.0538 (4) | 0.0641 (9) | |
H14 | 1.0647 | 0.1865 | −0.0387 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0389 (3) | 0.0275 (2) | 0.0334 (2) | −0.00032 (19) | 0.00984 (18) | 0.00063 (18) |
S1 | 0.0628 (5) | 0.0595 (5) | 0.1091 (7) | −0.0099 (4) | 0.0279 (5) | 0.0137 (5) |
S2 | 0.0503 (5) | 0.0852 (7) | 0.0857 (6) | −0.0006 (4) | 0.0217 (4) | 0.0079 (5) |
P1 | 0.0474 (4) | 0.0560 (5) | 0.0498 (4) | −0.0123 (4) | 0.0176 (3) | −0.0053 (3) |
O1 | 0.0628 (12) | 0.0608 (13) | 0.0503 (11) | −0.0129 (10) | 0.0184 (10) | −0.0141 (9) |
O2 | 0.0536 (11) | 0.0802 (14) | 0.0446 (11) | −0.0208 (11) | 0.0167 (9) | −0.0084 (10) |
N1 | 0.0484 (12) | 0.0350 (12) | 0.0364 (11) | 0.0004 (10) | 0.0083 (9) | −0.0002 (9) |
N2 | 0.0435 (12) | 0.0317 (11) | 0.0410 (12) | −0.0022 (9) | 0.0126 (9) | −0.0001 (9) |
C1 | 0.0514 (16) | 0.0494 (17) | 0.0402 (15) | −0.0020 (13) | 0.0014 (12) | −0.0059 (12) |
C2 | 0.0638 (19) | 0.0555 (18) | 0.0521 (17) | 0.0238 (15) | −0.0002 (14) | −0.0023 (14) |
C3 | 0.073 (2) | 0.0432 (16) | 0.0505 (17) | 0.0183 (14) | 0.0106 (15) | 0.0000 (13) |
C4 | 0.0549 (16) | 0.0376 (14) | 0.0432 (15) | −0.0049 (12) | 0.0138 (12) | −0.0072 (12) |
C5 | 0.0651 (18) | 0.0538 (17) | 0.0369 (15) | −0.0001 (15) | 0.0100 (13) | −0.0087 (13) |
C6 | 0.083 (2) | 0.079 (2) | 0.0445 (18) | 0.0131 (19) | −0.0088 (16) | −0.0060 (16) |
C7 | 0.0553 (19) | 0.0515 (18) | 0.090 (2) | −0.0115 (15) | 0.0137 (17) | −0.0112 (17) |
C8 | 0.081 (2) | 0.0542 (18) | 0.0559 (18) | 0.0109 (16) | 0.0270 (16) | −0.0090 (14) |
C9 | 0.0394 (15) | 0.0453 (16) | 0.0571 (17) | 0.0003 (12) | 0.0103 (13) | 0.0099 (13) |
C10 | 0.0436 (15) | 0.0351 (14) | 0.0619 (18) | 0.0019 (12) | 0.0109 (13) | 0.0032 (13) |
C11 | 0.0501 (17) | 0.0376 (16) | 0.091 (2) | 0.0022 (14) | −0.0069 (17) | −0.0060 (15) |
C12 | 0.0405 (18) | 0.0412 (19) | 0.152 (4) | −0.0033 (15) | 0.010 (2) | 0.015 (2) |
C13 | 0.050 (2) | 0.069 (2) | 0.123 (3) | 0.0075 (18) | 0.031 (2) | 0.040 (2) |
C14 | 0.0521 (19) | 0.075 (2) | 0.070 (2) | 0.0051 (17) | 0.0218 (16) | 0.0247 (17) |
Ni1—N1 | 1.9332 (19) | C4—C8 | 1.526 (4) |
Ni1—N1i | 1.9332 (19) | C4—H4 | 0.9800 |
Ni1—N2i | 1.9410 (19) | C5—C1i | 1.514 (4) |
Ni1—N2 | 1.9410 (19) | C5—H5A | 0.9700 |
S1—P1 | 1.9383 (12) | C5—H5B | 0.9700 |
S2—P1 | 1.9332 (12) | C6—H6A | 0.9600 |
P1—O1 | 1.6497 (19) | C6—H6B | 0.9600 |
P1—O2 | 1.6554 (19) | C6—H6C | 0.9600 |
O1—C10 | 1.374 (3) | C7—H7A | 0.9600 |
O2—C9 | 1.377 (3) | C7—H7B | 0.9600 |
N1—C2 | 1.483 (3) | C7—H7C | 0.9600 |
N1—C1 | 1.511 (3) | C8—H8A | 0.9600 |
N1—H1 | 0.8600 | C8—H8B | 0.9600 |
N2—C3 | 1.483 (3) | C8—H8C | 0.9600 |
N2—C4 | 1.491 (3) | C9—C10 | 1.368 (4) |
N2—H2 | 0.8600 | C9—C14 | 1.368 (4) |
C1—C5i | 1.514 (4) | C10—C11 | 1.373 (4) |
C1—C7 | 1.518 (4) | C11—C12 | 1.390 (5) |
C1—C6 | 1.532 (4) | C11—H11 | 0.9300 |
C2—C3 | 1.480 (4) | C12—C13 | 1.366 (5) |
C2—H2A | 0.9700 | C12—H12 | 0.9300 |
C2—H2B | 0.9700 | C13—C14 | 1.377 (5) |
C3—H3A | 0.9700 | C13—H13 | 0.9300 |
C3—H3B | 0.9700 | C14—H14 | 0.9300 |
C4—C5 | 1.512 (4) | ||
N1—Ni1—N1i | 180.00 (13) | C5—C4—C8 | 110.4 (2) |
N1—Ni1—N2i | 93.33 (8) | N2—C4—H4 | 108.0 |
N1i—Ni1—N2i | 86.67 (8) | C5—C4—H4 | 108.0 |
N1—Ni1—N2 | 86.67 (8) | C8—C4—H4 | 108.0 |
N1i—Ni1—N2 | 93.33 (8) | C4—C5—C1i | 117.0 (2) |
N2i—Ni1—N2 | 180.00 (9) | C4—C5—H5A | 108.1 |
O1—P1—O2 | 93.95 (10) | C1i—C5—H5A | 108.1 |
O1—P1—S2 | 110.90 (9) | C4—C5—H5B | 108.1 |
O2—P1—S2 | 109.30 (9) | C1i—C5—H5B | 108.1 |
O1—P1—S1 | 108.88 (9) | H5A—C5—H5B | 107.3 |
O2—P1—S1 | 109.02 (9) | C1—C6—H6A | 109.5 |
S2—P1—S1 | 121.33 (5) | C1—C6—H6B | 109.5 |
C10—O1—P1 | 109.87 (17) | H6A—C6—H6B | 109.5 |
C9—O2—P1 | 109.47 (16) | C1—C6—H6C | 109.5 |
C2—N1—C1 | 112.8 (2) | H6A—C6—H6C | 109.5 |
C2—N1—Ni1 | 109.51 (16) | H6B—C6—H6C | 109.5 |
C1—N1—Ni1 | 119.43 (16) | C1—C7—H7A | 109.5 |
C2—N1—H1 | 105.0 | C1—C7—H7B | 109.5 |
C1—N1—H1 | 106.1 | H7A—C7—H7B | 109.5 |
Ni1—N1—H1 | 102.4 | C1—C7—H7C | 109.5 |
C3—N2—C4 | 109.58 (19) | H7A—C7—H7C | 109.5 |
C3—N2—Ni1 | 107.08 (15) | H7B—C7—H7C | 109.5 |
C4—N2—Ni1 | 124.98 (15) | C4—C8—H8A | 109.5 |
C3—N2—H2 | 109.1 | C4—C8—H8B | 109.5 |
C4—N2—H2 | 105.2 | H8A—C8—H8B | 109.5 |
Ni1—N2—H2 | 99.7 | C4—C8—H8C | 109.5 |
N1—C1—C5i | 106.9 (2) | H8A—C8—H8C | 109.5 |
N1—C1—C7 | 109.4 (2) | H8B—C8—H8C | 109.5 |
C5i—C1—C7 | 112.7 (2) | C10—C9—C14 | 121.7 (3) |
N1—C1—C6 | 109.4 (2) | C10—C9—O2 | 112.5 (2) |
C5i—C1—C6 | 108.4 (2) | C14—C9—O2 | 125.8 (3) |
C7—C1—C6 | 110.0 (2) | C9—C10—C11 | 121.9 (3) |
C3—C2—N1 | 107.6 (2) | C9—C10—O1 | 112.3 (2) |
C3—C2—H2A | 110.2 | C11—C10—O1 | 125.8 (3) |
N1—C2—H2A | 110.2 | C10—C11—C12 | 115.8 (3) |
C3—C2—H2B | 110.2 | C10—C11—H11 | 122.1 |
N1—C2—H2B | 110.2 | C12—C11—H11 | 122.1 |
H2A—C2—H2B | 108.5 | C13—C12—C11 | 122.5 (3) |
C2—C3—N2 | 107.4 (2) | C13—C12—H12 | 118.8 |
C2—C3—H3A | 110.2 | C11—C12—H12 | 118.8 |
N2—C3—H3A | 110.2 | C12—C13—C14 | 120.6 (3) |
C2—C3—H3B | 110.2 | C12—C13—H13 | 119.7 |
N2—C3—H3B | 110.2 | C14—C13—H13 | 119.7 |
H3A—C3—H3B | 108.5 | C9—C14—C13 | 117.5 (3) |
N2—C4—C5 | 111.2 (2) | C9—C14—H14 | 121.3 |
N2—C4—C8 | 111.0 (2) | C13—C14—H14 | 121.3 |
O2—P1—O1—C10 | −12.84 (19) | C4—N2—C3—C2 | −178.4 (2) |
S2—P1—O1—C10 | −125.24 (16) | Ni1—N2—C3—C2 | 43.3 (3) |
S1—P1—O1—C10 | 98.80 (17) | C3—N2—C4—C5 | −170.2 (2) |
O1—P1—O2—C9 | 12.24 (19) | Ni1—N2—C4—C5 | −41.2 (3) |
S2—P1—O2—C9 | 126.01 (16) | C3—N2—C4—C8 | 66.5 (3) |
S1—P1—O2—C9 | −99.28 (17) | Ni1—N2—C4—C8 | −164.52 (18) |
N2i—Ni1—N1—C2 | 172.52 (18) | N2—C4—C5—C1i | 60.0 (3) |
N2—Ni1—N1—C2 | −7.48 (18) | C8—C4—C5—C1i | −176.3 (2) |
N2i—Ni1—N1—C1 | 40.32 (19) | P1—O2—C9—C10 | −8.4 (3) |
N2—Ni1—N1—C1 | −139.68 (19) | P1—O2—C9—C14 | 171.1 (2) |
N1—Ni1—N2—C3 | −19.90 (17) | C14—C9—C10—C11 | −1.1 (4) |
N1i—Ni1—N2—C3 | 160.10 (17) | O2—C9—C10—C11 | 178.4 (2) |
N1—Ni1—N2—C4 | −149.9 (2) | C14—C9—C10—O1 | 179.5 (2) |
N1i—Ni1—N2—C4 | 30.1 (2) | O2—C9—C10—O1 | −1.0 (3) |
C2—N1—C1—C5i | 167.1 (2) | P1—O1—C10—C9 | 10.0 (3) |
Ni1—N1—C1—C5i | −62.1 (3) | P1—O1—C10—C11 | −169.3 (2) |
C2—N1—C1—C7 | −70.6 (3) | C9—C10—C11—C12 | 0.4 (4) |
Ni1—N1—C1—C7 | 60.1 (3) | O1—C10—C11—C12 | 179.7 (3) |
C2—N1—C1—C6 | 49.9 (3) | C10—C11—C12—C13 | 0.8 (5) |
Ni1—N1—C1—C6 | −179.32 (19) | C11—C12—C13—C14 | −1.5 (5) |
C1—N1—C2—C3 | 169.0 (2) | C10—C9—C14—C13 | 0.5 (4) |
Ni1—N1—C2—C3 | 33.5 (3) | O2—C9—C14—C13 | −179.0 (3) |
N1—C2—C3—N2 | −50.3 (3) | C12—C13—C14—C9 | 0.8 (5) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S2 | 0.86 | 2.63 | 3.444 (2) | 158 |
N2—H2···S1i | 0.86 | 2.55 | 3.386 (2) | 166 |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C16H36N4)](C6H4O2PS2)2 |
Mr | 749.56 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 103 |
a, b, c (Å) | 9.0012 (15), 20.500 (3), 9.6682 (17) |
β (°) | 101.029 (3) |
V (Å3) | 1751.1 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.92 |
Crystal size (mm) | 0.24 × 0.21 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.809, 0.852 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9094, 3103, 2504 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.087, 1.04 |
No. of reflections | 3103 |
No. of parameters | 197 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.27 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S2 | 0.86 | 2.63 | 3.444 (2) | 158 |
N2—H2···S1i | 0.86 | 2.55 | 3.386 (2) | 166 |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
This work was supported by the Education Committee (No. 09ZA057) and the Science and Technology Committee (Nos. 2010GZ0130 and 2011JY0052) of Sichuan Province and the Science and Technology Office of Zigong City, China (No. 10X05).
References
Aoki, S. & Kimura, E. (2002). Rev. Mol. Biotechnol. 90, 129–155. CrossRef CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Feng, J.-S., Zou, L.-K., Xie, B., Xiang, Y.-G. & Lai, C. (2010). Acta Cryst. E66, m1593. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lai, C., Xie, B., Zou, L.-K. & Feng, J.-S. (2011). Acta Cryst. E67, m17. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zou, L.-K., Xie, B., Feng, J.-S. & Lai, C. (2010). Acta Cryst. E66, m1592. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Much attentions have been atracted to tetraamine macrocycles as a result of their resemblance to naturally occurring macrocyclic systems (Aoki & Kimura, 2002). In our quest for the potential applications of tetramine macrocycles transition metal complexes as mimetic hydrolases, we have systermly studied their ternary adducts with O,O'-dialkyldithiophosphate (Feng et al., 2010; Lai et al., 2011; Zou et al., 2010). Herein, we report the structure of an analogue, [Ni(Me6[14]aneN4)][(o-C6H4O2)PS2]2, where Me6[14]aneN4 is meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane.
The molecular structure of the title adduct is remarkably similar to its analogue, [Cu(Me6[14]aneN4)][(o-C6H4O2)PS2]2 (Feng et al., 2010). The asymmetric unit consits a centrosymmetric [Ni(Me6[14]aneN4)]2+ dication and two uncoordinated O,O'-(1,2-phenylene)dithiophosphate anions. The NiII ion is located on a center of inversion and is chelated by the folded tetraamine macrocycle ligand within slightly distorted NiN4 square-plan (Fig.1). Two symmetry related O,O'-(1,2-phenylene) dithiophosphate anions occupies at psuedo-axial positions with the much longer Ni···S distances of 3.9558 (5) Å. Intermolecular N—H···S hydrogen bondings link the complex cation and pair of anions into three compoment clusters (Table 1). The distorted tetrahedral angles of P atoms range between 93.95 (10) and 121.35 (5)°, illustrating the existence of strain in the O,O'-(1,2-phenylene)dithiophosphate anions. Two P—S bond lengths are of 1.9383 (12) and 1.9332 (12) Å respectively, which suggests the negative charge is delocalizated over the S1—P1—S2 fragment.