metal-organic compounds
catena-Poly[[[triaquacopper(II)]-μ-2,2′-bipyridine-3,3′-dicarboxylato-κ3N,N′:O] monohydrate]
aDepartment of Materials and Chemical Engineering, Ministry of Education Key Laboratory of Application Technology of Hainan Superior Resources Chemical Materials, Hainan University, Haikou 570228, Hainan Province, People's Republic of China
*Correspondence e-mail: panqinhe@163.com
The title compound, {[Cu(C12H6N2O4)(H2O)3]·H2O}n, was synthesized under hydrothermal conditions. The Cu2+ ion is six-coordinated by three water O atoms, and two N atoms and one O atom of the 2,2′-bipyridine-3,3′-dicarboxylate bridging ligand in a sligthly distorted octahedral environment. The 2,2-bipyridine-3,3′-dicarboxylate bridges link the Cu2+ ions into chains along the b-axis direction. These chains are further linked by O—H⋯O hydrogen bonds involving the water solvent molecules, forming a three-dimensional framework.
Related literature
For potential applications of coordination polymers in drug delivery, shape-selective sorption/separation and catalysis, see: Chen & Tong (2007); Zeng et al. (2009). Their structures vary from one-dimensional to three-dimensional architectures, see: Du & Bu (2009); Qiu & Zhu (2009). For our recent research on the synthesis of coordination polymers, see: Pan et al. (2010a,b,c, 2011).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536811046423/yk2027sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811046423/yk2027Isup2.hkl
In a typical synthesis, a mixture of CuSO4 (0.032 g), bpdc (0.026 g), NaOH (0.008 g), 2,2'-bipyridine (0.016 g) and H2O (10 ml), was placed into a 25 ml Teflon-lined reactor under autogenous pressure at 100 °C for 3 days.
All H atoms were positioned geometrically (C—H = 0.93 Å and O—H = 0.85 Å) and allowed to ride on their parent atoms with Uĩso~(H) = 1.2Ueq(parent atom).
The design and synthesis of coordination polymers have attracted increasing attention in recent years because of their potential applications in drug delivery, shape-selective sorption/separation, and catalysis (Chen et al., 2007 and Zeng et al., 2009). Their structures vary from one-dimensional to three-dimensional architectures (Qiu et al., 2009 and Du et al., 2009). In our recent works, our research interest has been focused on the synthesis of coordination polymers (Pan et al., 2010a,b,c and 2011). Here we present a Cu-containing coordination polymer with one-dimensional chain structure.
As shown in Fig. 1, the asymmetric part of
of the title compound consists of an Cu atoms, a 2,2'-bipyridine-3,3'-dicarboxylate (bpdc) unit, three coordinated water molecules and one solvate water molecules. The Cu center is six-coordinated by four O atoms and two N atoms. Three of the four O atoms are from three coordination water molecules and the last one is from the carboxylate of the bpdc unit, whereas both N atoms are from the bridging bpdc unit. By this way, the Cu centers and the bpdc units form a chain-like structure, and these chains are further linked by hrydrogen bonds involving the solvent water molecules to from a three-dimensional superamolecular framework (see Table 1).For potential applications of coordination polymers in drug delivery, shape-selective sorption/separation and catalysis, see: Chen & Tong (2007); Zeng et al. (2009). Their structures vary from one-dimensional to three-dimensional architectures, see: Du & Bu (2009); Qiu & Zhu (2009). For our recent research on the synthesis of coordination polymers, see: Pan et al. (2010a,b,c, 2011).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of the structure of complex. Ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1/2 - x, -1/2 + y, 1/2 - z; (ii) 1/2 - x, 1/2 - y, 1/2 - z.] |
[Cu(C12H6N2O4)(H2O)3]·H2O | Z = 4 |
Mr = 377.79 | F(000) = 772 |
Monoclinic, P21/n | Dx = 1.736 Mg m−3 |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 9.950 (4) Å | θ = 1.0–28.4° |
b = 9.161 (4) Å | µ = 1.56 mm−1 |
c = 15.974 (7) Å | T = 296 K |
β = 96.848 (8)° | Rod-like, blue |
V = 1445.7 (10) Å3 | 0.3 × 0.18 × 0.15 mm |
Bruker APEXII CCD area-detector diffractometer | 3585 independent reflections |
Radiation source: fine-focus sealed tube | 2268 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
Detector resolution: 5.00 pixels mm-1 | θmax = 28.4°, θmin = 2.3° |
phi and ω scans | h = −10→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −12→12 |
Tmin = 0.722, Tmax = 0.792 | l = −21→21 |
10263 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0663P)2 + 0.4177P] where P = (Fo2 + 2Fc2)/3 |
3585 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 1.02 e Å−3 |
0 restraints | Δρmin = −1.13 e Å−3 |
[Cu(C12H6N2O4)(H2O)3]·H2O | V = 1445.7 (10) Å3 |
Mr = 377.79 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.950 (4) Å | µ = 1.56 mm−1 |
b = 9.161 (4) Å | T = 296 K |
c = 15.974 (7) Å | 0.3 × 0.18 × 0.15 mm |
β = 96.848 (8)° |
Bruker APEXII CCD area-detector diffractometer | 3585 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2268 reflections with I > 2σ(I) |
Tmin = 0.722, Tmax = 0.792 | Rint = 0.062 |
10263 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.08 | Δρmax = 1.02 e Å−3 |
3585 reflections | Δρmin = −1.13 e Å−3 |
208 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | −0.03139 (5) | 0.32126 (5) | 0.24233 (3) | 0.02945 (18) | |
O1 | 0.5391 (3) | 0.5386 (4) | 0.1205 (3) | 0.0636 (12) | |
O2 | 0.4238 (3) | 0.6377 (3) | 0.21712 (17) | 0.0274 (6) | |
O3 | 0.4864 (3) | 0.2420 (4) | 0.2535 (2) | 0.0508 (9) | |
O4 | 0.6054 (3) | 0.4033 (3) | 0.3363 (2) | 0.0453 (9) | |
O5 | −0.1561 (3) | 0.1917 (3) | 0.1632 (2) | 0.0487 (9) | |
H5A | −0.2390 | 0.2119 | 0.1489 | 0.058* | |
H5 | −0.1267 | 0.1045 | 0.1642 | 0.058* | |
O6 | −0.1426 (3) | 0.5059 (3) | 0.19990 (19) | 0.0373 (7) | |
H6A | −0.1026 | 0.5863 | 0.2126 | 0.045* | |
H6 | −0.2252 | 0.5142 | 0.1795 | 0.045* | |
O7 | −0.1432 (3) | 0.3074 (3) | 0.3421 (2) | 0.0375 (7) | |
H7A | −0.2269 | 0.3278 | 0.3398 | 0.045* | |
H7 | −0.1294 | 0.2276 | 0.3689 | 0.045* | |
N1 | 0.1256 (3) | 0.4331 (3) | 0.31322 (19) | 0.0232 (7) | |
N2 | 0.1029 (3) | 0.3501 (3) | 0.1547 (2) | 0.0243 (7) | |
C1 | 0.0730 (4) | 0.3334 (5) | 0.0718 (3) | 0.0346 (10) | |
H1 | −0.0109 | 0.2945 | 0.0514 | 0.042* | |
C2 | 0.1597 (5) | 0.3706 (6) | 0.0152 (3) | 0.0438 (12) | |
H2 | 0.1373 | 0.3541 | −0.0422 | 0.053* | |
C3 | 0.2821 (5) | 0.4335 (5) | 0.0460 (3) | 0.0399 (11) | |
H3 | 0.3430 | 0.4599 | 0.0088 | 0.048* | |
C4 | 0.3149 (4) | 0.4575 (4) | 0.1313 (2) | 0.0264 (8) | |
C5 | 0.2231 (4) | 0.4074 (4) | 0.1854 (2) | 0.0225 (8) | |
C6 | 0.2437 (4) | 0.4159 (4) | 0.2795 (2) | 0.0230 (8) | |
C7 | 0.3662 (4) | 0.4059 (4) | 0.3308 (2) | 0.0261 (9) | |
C8 | 0.3664 (4) | 0.4325 (5) | 0.4164 (3) | 0.0370 (10) | |
H8 | 0.4477 | 0.4297 | 0.4517 | 0.044* | |
C9 | 0.2479 (5) | 0.4629 (6) | 0.4497 (3) | 0.0420 (11) | |
H9 | 0.2483 | 0.4865 | 0.5063 | 0.050* | |
C10 | 0.1292 (4) | 0.4572 (5) | 0.3962 (3) | 0.0336 (10) | |
H10 | 0.0479 | 0.4707 | 0.4186 | 0.040* | |
C11 | 0.4367 (4) | 0.5507 (5) | 0.1593 (3) | 0.0335 (10) | |
C12 | 0.4963 (4) | 0.3469 (4) | 0.3029 (3) | 0.0304 (9) | |
O1W | 0.5895 (3) | 0.2368 (4) | 0.0943 (3) | 0.0610 (11) | |
H1WA | 0.5835 | 0.3265 | 0.0808 | 0.073* | |
H1W | 0.5492 | 0.2392 | 0.1383 | 0.073* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0221 (3) | 0.0281 (3) | 0.0382 (3) | −0.0002 (2) | 0.0039 (2) | 0.0025 (2) |
O1 | 0.054 (2) | 0.065 (2) | 0.082 (3) | −0.0323 (19) | 0.051 (2) | −0.039 (2) |
O2 | 0.0259 (14) | 0.0270 (14) | 0.0306 (15) | −0.0058 (12) | 0.0086 (11) | −0.0046 (12) |
O3 | 0.0329 (17) | 0.044 (2) | 0.076 (3) | 0.0054 (15) | 0.0063 (17) | −0.0190 (19) |
O4 | 0.0202 (15) | 0.0339 (17) | 0.079 (3) | 0.0038 (13) | −0.0036 (15) | −0.0010 (17) |
O5 | 0.0301 (17) | 0.0296 (17) | 0.081 (3) | −0.0008 (13) | −0.0178 (16) | −0.0044 (16) |
O6 | 0.0261 (15) | 0.0325 (16) | 0.0517 (19) | 0.0042 (12) | −0.0018 (13) | 0.0067 (14) |
O7 | 0.0219 (14) | 0.0347 (17) | 0.058 (2) | 0.0061 (12) | 0.0150 (13) | 0.0121 (14) |
N1 | 0.0223 (16) | 0.0232 (16) | 0.0243 (17) | 0.0012 (13) | 0.0033 (13) | 0.0001 (13) |
N2 | 0.0232 (16) | 0.0259 (17) | 0.0237 (17) | −0.0036 (13) | 0.0018 (13) | −0.0011 (13) |
C1 | 0.034 (2) | 0.038 (2) | 0.031 (2) | −0.0079 (19) | 0.0003 (18) | −0.0036 (19) |
C2 | 0.057 (3) | 0.049 (3) | 0.026 (2) | −0.006 (2) | 0.002 (2) | −0.006 (2) |
C3 | 0.049 (3) | 0.043 (3) | 0.030 (2) | −0.008 (2) | 0.016 (2) | −0.003 (2) |
C4 | 0.027 (2) | 0.026 (2) | 0.028 (2) | −0.0050 (16) | 0.0089 (16) | −0.0048 (16) |
C5 | 0.0226 (18) | 0.0193 (18) | 0.026 (2) | 0.0027 (15) | 0.0040 (15) | −0.0014 (15) |
C6 | 0.0201 (18) | 0.0187 (18) | 0.030 (2) | −0.0027 (15) | 0.0026 (15) | −0.0003 (15) |
C7 | 0.0236 (19) | 0.0221 (19) | 0.031 (2) | −0.0005 (15) | −0.0016 (16) | −0.0004 (16) |
C8 | 0.033 (2) | 0.040 (3) | 0.034 (2) | −0.003 (2) | −0.0097 (19) | −0.001 (2) |
C9 | 0.045 (3) | 0.060 (3) | 0.021 (2) | −0.007 (2) | 0.0029 (19) | −0.003 (2) |
C10 | 0.034 (2) | 0.038 (2) | 0.031 (2) | −0.0007 (19) | 0.0101 (18) | −0.0053 (19) |
C11 | 0.030 (2) | 0.032 (2) | 0.040 (3) | −0.0075 (18) | 0.0146 (18) | −0.0015 (19) |
C12 | 0.0213 (19) | 0.025 (2) | 0.044 (3) | 0.0033 (16) | 0.0005 (17) | 0.0032 (18) |
O1W | 0.040 (2) | 0.056 (2) | 0.086 (3) | 0.0137 (18) | 0.0043 (19) | −0.014 (2) |
Cu1—O5 | 2.043 (3) | N2—C5 | 1.344 (5) |
Cu1—O7 | 2.053 (3) | C1—C2 | 1.365 (6) |
Cu1—O2i | 2.056 (3) | C1—H1 | 0.9300 |
Cu1—N2 | 2.064 (3) | C2—C3 | 1.383 (6) |
Cu1—N1 | 2.085 (3) | C2—H2 | 0.9300 |
Cu1—O6 | 2.090 (3) | C3—C4 | 1.380 (6) |
O1—C11 | 1.259 (5) | C3—H3 | 0.9300 |
O2—C11 | 1.239 (5) | C4—C5 | 1.408 (5) |
O2—Cu1ii | 2.056 (3) | C4—C11 | 1.506 (5) |
O3—C12 | 1.241 (5) | C5—C6 | 1.495 (5) |
O4—C12 | 1.261 (5) | C6—C7 | 1.388 (5) |
O5—H5A | 0.8500 | C7—C8 | 1.389 (6) |
O5—H5 | 0.8500 | C7—C12 | 1.518 (5) |
O6—H6A | 0.8501 | C8—C9 | 1.379 (6) |
O6—H6 | 0.8509 | C8—H8 | 0.9300 |
O7—H7A | 0.8500 | C9—C10 | 1.373 (6) |
O7—H7 | 0.8499 | C9—H9 | 0.9300 |
N1—C10 | 1.341 (5) | C10—H10 | 0.9300 |
N1—C6 | 1.359 (5) | O1W—H1WA | 0.8500 |
N2—C1 | 1.332 (5) | O1W—H1W | 0.8500 |
O5—Cu1—O7 | 95.69 (14) | C1—C2—C3 | 117.9 (4) |
O5—Cu1—O2i | 88.56 (12) | C1—C2—H2 | 121.1 |
O7—Cu1—O2i | 90.86 (11) | C3—C2—H2 | 121.1 |
O5—Cu1—N2 | 92.82 (14) | C4—C3—C2 | 120.8 (4) |
O7—Cu1—N2 | 171.37 (12) | C4—C3—H3 | 119.6 |
O2i—Cu1—N2 | 87.91 (12) | C2—C3—H3 | 119.6 |
O5—Cu1—N1 | 169.05 (13) | C3—C4—C5 | 117.4 (4) |
O7—Cu1—N1 | 92.80 (12) | C3—C4—C11 | 118.1 (4) |
O2i—Cu1—N1 | 84.41 (12) | C5—C4—C11 | 124.1 (3) |
N2—Cu1—N1 | 78.58 (12) | N2—C5—C4 | 121.2 (3) |
O5—Cu1—O6 | 90.61 (12) | N2—C5—C6 | 113.4 (3) |
O7—Cu1—O6 | 89.24 (11) | C4—C5—C6 | 125.4 (3) |
O2i—Cu1—O6 | 179.16 (12) | N1—C6—C7 | 121.0 (4) |
N2—Cu1—O6 | 92.12 (12) | N1—C6—C5 | 112.5 (3) |
N1—Cu1—O6 | 96.42 (12) | C7—C6—C5 | 126.5 (3) |
C11—O2—Cu1ii | 131.7 (3) | C6—C7—C8 | 117.8 (4) |
Cu1—O5—H5A | 122.6 | C6—C7—C12 | 124.8 (4) |
Cu1—O5—H5 | 110.6 | C8—C7—C12 | 116.7 (4) |
H5A—O5—H5 | 122.0 | C9—C8—C7 | 121.0 (4) |
Cu1—O6—H6A | 114.2 | C9—C8—H8 | 119.5 |
Cu1—O6—H6 | 130.3 | C7—C8—H8 | 119.5 |
H6A—O6—H6 | 114.7 | C10—C9—C8 | 117.7 (4) |
Cu1—O7—H7A | 124.9 | C10—C9—H9 | 121.2 |
Cu1—O7—H7 | 111.9 | C8—C9—H9 | 121.2 |
H7A—O7—H7 | 108.0 | N1—C10—C9 | 122.8 (4) |
C10—N1—C6 | 119.2 (3) | N1—C10—H10 | 118.6 |
C10—N1—Cu1 | 123.3 (3) | C9—C10—H10 | 118.6 |
C6—N1—Cu1 | 110.8 (2) | O2—C11—O1 | 125.8 (4) |
C1—N2—C5 | 119.4 (3) | O2—C11—C4 | 115.8 (3) |
C1—N2—Cu1 | 125.1 (3) | O1—C11—C4 | 118.3 (4) |
C5—N2—Cu1 | 115.0 (2) | O3—C12—O4 | 125.9 (4) |
N2—C1—C2 | 123.1 (4) | O3—C12—C7 | 117.1 (4) |
N2—C1—H1 | 118.4 | O4—C12—C7 | 116.8 (4) |
C2—C1—H1 | 118.4 | H1WA—O1W—H1W | 99.2 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O1Wiii | 0.85 | 1.84 | 2.669 (5) | 167 |
O5—H5···O4i | 0.85 | 1.86 | 2.689 (4) | 167 |
O6—H6A···O3ii | 0.85 | 1.88 | 2.715 (5) | 169 |
O6—H6···O1iii | 0.85 | 2.43 | 3.282 (5) | 180 |
O7—H7A···O4iii | 0.85 | 1.80 | 2.642 (4) | 170 |
O7—H7···O1i | 0.85 | 1.95 | 2.711 (4) | 149 |
O1W—H1WA···O1 | 0.85 | 2.11 | 2.850 (5) | 146 |
O1W—H1W···O3 | 0.85 | 2.01 | 2.854 (6) | 170 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C12H6N2O4)(H2O)3]·H2O |
Mr | 377.79 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 9.950 (4), 9.161 (4), 15.974 (7) |
β (°) | 96.848 (8) |
V (Å3) | 1445.7 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.56 |
Crystal size (mm) | 0.3 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.722, 0.792 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10263, 3585, 2268 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.153, 1.08 |
No. of reflections | 3585 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.02, −1.13 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O1Wi | 0.85 | 1.84 | 2.669 (5) | 166.5 |
O5—H5···O4ii | 0.85 | 1.86 | 2.689 (4) | 166.5 |
O6—H6A···O3iii | 0.85 | 1.88 | 2.715 (5) | 169.4 |
O6—H6···O1i | 0.85 | 2.43 | 3.282 (5) | 179.7 |
O7—H7A···O4i | 0.85 | 1.80 | 2.642 (4) | 170.0 |
O7—H7···O1ii | 0.85 | 1.95 | 2.711 (4) | 148.6 |
O1W—H1WA···O1 | 0.85 | 2.11 | 2.850 (5) | 145.7 |
O1W—H1W···O3 | 0.85 | 2.01 | 2.854 (6) | 170.0 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 21101047), the Natural Science Foundation of Hainan Province (No. 211010) and the Priming Scientific Research Foundation of Hainan University (No. kyqd1051).
References
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, X.-M. & Tong, M.-L. (2007). Acc. Chem. Res. 40, 162–170. Web of Science CrossRef PubMed CAS Google Scholar
Du, M. & Bu, X.-H. (2009). Bull. Chem. Soc. Jpn, 80, 539–554. Web of Science CrossRef Google Scholar
Pan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198–4204. Web of Science CSD CrossRef CAS Google Scholar
Pan, Q. H., Cheng, Q. & Bu, X.-H. (2010c). Chin. J. Inorg. Chem. 26, 2299–2302. CAS Google Scholar
Pan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527–531. CAS Google Scholar
Pan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Microporous Mesoporous Mater. 132, 453–457. Web of Science CSD CrossRef CAS Google Scholar
Qiu, S.-L. & Zhu, G.-S. (2009). Coord. Chem. Rev. 253, 2891–2911. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zeng, T.-F., Hu, X. & Bu, X.-H. (2009). Chem. Soc. Rev. 38, 469–480. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and synthesis of coordination polymers have attracted increasing attention in recent years because of their potential applications in drug delivery, shape-selective sorption/separation, and catalysis (Chen et al., 2007 and Zeng et al., 2009). Their structures vary from one-dimensional to three-dimensional architectures (Qiu et al., 2009 and Du et al., 2009). In our recent works, our research interest has been focused on the synthesis of coordination polymers (Pan et al., 2010a,b,c and 2011). Here we present a Cu-containing coordination polymer with one-dimensional chain structure.
As shown in Fig. 1, the asymmetric part of crystal structure of the title compound consists of an Cu atoms, a 2,2'-bipyridine-3,3'-dicarboxylate (bpdc) unit, three coordinated water molecules and one solvate water molecules. The Cu center is six-coordinated by four O atoms and two N atoms. Three of the four O atoms are from three coordination water molecules and the last one is from the carboxylate of the bpdc unit, whereas both N atoms are from the bridging bpdc unit. By this way, the Cu centers and the bpdc units form a chain-like structure, and these chains are further linked by hrydrogen bonds involving the solvent water molecules to from a three-dimensional superamolecular framework (see Table 1).