organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,4-Phenyl­enebis(methyl­ene)]bis­­(tri­phenyl­phospho­nium) bis­­(tetra­fluoro­borate)

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, and bSchool of Chemical Engineering, University of KwaZulu-Natal, Private Bag X54001 , Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 17 October 2011; accepted 17 November 2011; online 23 November 2011)

The crystal structure of the title salt, C44H38P22+2BF4, consists of discrete dications inter­laced with the BF4 counter-ions. In each cation, both phospho­nium groups lie on the same side of the plane of the central benzene ring. The tetra­fluoro­borate anions are involved in intensive thermal motion, thus some B—F bond lengths [range 1.329 (6) to 1.391 (6) Å] deviate significantly from their standard values.

Related literature

For a related synthetic strategy, see: Ganesan & Alias (2008[Ganesan, K. & Alias, Y. (2008). Int. J. Mol. Sci. 9, 1207-1213.]). For salts containing the triphenyl­phospho­nium cation, see: Kariuki et al. (2009[Kariuki, B. M., Bonnet, L. G. & Warren, J. E. (2009). J. Chem. Crystallogr. 39, 693-697.]). For applications of phospho­nium salts as ionic liquids, see: Cieniecka-Roslonkiewicz et al. (2005[Cieniecka-Roslonkiewicz, A., Pernak, J., Kubis-Feder, J., Ramani, A., Robertson, A. J. & Seddon, K. R. (2005). Green Chem. 7, 855-862.]). For a similar mono-phospho­nium compound, see: Hafiz (2008[Hafiz, A. A. (2008). J. Iran. Chem. Soc. 5, 106-114.]).

[Scheme 1]

Experimental

Crystal data
  • C44H38P22+·2BF4

  • Mr = 802.30

  • Monoclinic, C c

  • a = 21.8874 (5) Å

  • b = 14.4610 (3) Å

  • c = 15.2818 (3) Å

  • β = 123.898 (1)°

  • V = 4014.78 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 173 K

  • 0.52 × 0.22 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 25162 measured reflections

  • 4853 independent reflections

  • 3786 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.113

  • S = 1.10

  • 4853 reflections

  • 506 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was obtained in our effort to develop fluorinated anti microbial compounds. Preliminary investigation of related compounds, like linear phosphonium ionic liquids, has indicated activities against some strains of bacteria and fungi (Candida albicans) as reported by Cieniecka-Roslonkiewicz et al. (2005).

The compound (I) crystallizes as white block crystals in the monoclinic space group Cc with one dication and two BF4- anions in the asymmetric unit. Bond lengths for C(7) – P(1) and C(8) – P(2) linking the methylene carbon atoms with the phosphorus atoms are 1.811 (3) and 1.817 (3) Å respectively, which is comparable with the 1.817 (2) Å reported by Hafiz (2008) for a related mono-phosphonium compound.

Related literature top

For a related synthetic strategy, see: Ganesan & Alias (2008). For salts containing the triphenylphosphonium cation, see: Kariuki et al. (2009). For applications of phosphonium salts as ionic liquids, see: Cieniecka-Roslonkiewicz et al. (2005). For a similar mono-phosphonium compound, see: Hafiz (2008).

Experimental top

The compound was synthesized according to the slightly modified method reported by Ganesan & Alias (2008). α,α-Dibromo-p-xylene (0.528 g, 0.002 moles) was dissolved in distilled anhydrous dichloromethane. Triphenylphosphine (1.049 g, 0.004 moles) was added to this solution, and the mixture was stirred for 24 hrs at room temperature to afford the quaternized salt. The solvent was removed in vacuo, the residue washed with acetone to remove unreacted material. The washed residue was filtered and dried, yielding white precipitate of the dicationic phosphonium salt. The salt was then dissolved in a mixture of water and ethanol (1:4) and the salt NaBF4 was added (1:2). The mixture was stirred for 4 hrs at room temperature, dried with MgSO4 and concentrated. The solid residue was extracted with ethanol, and the solvent was evaporated. The yield of (I) was 79.8%. X-ray quality crystals were grown from ethanol solution, m.p. 295 °C (decomp).

1H-NMR (600 MHz, DMSO-d6, 323 K), (δH, p.p.m.): 5.08 (d, J = 14.69 Hz, 4H, Ar—CH2), 6.76 (s, 4H, Ar—H), 7.68 (m, 24H, Ar—H), and 7.90 (m, 6H, Ar—H).

13C-NMR (400 MHz, DMSO-d6, 323 K), (δc, p.p.m.): 27.66 (d, J = 50.26 Hz, (methylene)), 117.51 (d, J =85.90 Hz, C-1'), 128.12 (d, J = 4.04 Hz, C-1/4), 130.02 (d, J = 6.29 Hz, C-3'/5')*, 130.09 (d, J = 6.29 Hz, C-3'/5')*, 131.11 (s, C-2/3/5/6/), 133.86 (d, J = 4.89 Hz, C-2'/6')*, 133.91 (d, J = 4.89 Hz, C-2'/6')*, 135.13 (s, C-4'). *The two triphenylphosphine groups are not exactly equivalent and hence two sets of resonances are seen for C-2'/6') and C-3'/5').

19F NMR (400 MHz, DMSO-d6, 298 K), (δF, p.p.m.): -148.22 (10BF4-), -148.27 (11BF4-).

31P NMR (162 MHz, DMSO-D6, 298 K), (δp, p.p.m.): 23.07.

FT—IR (cm-1): 3062, 2977, 2935, 1438, 1111, 1046.

Refinement top

All H-atoms were refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2.

In the absence of significant anomalous scattering effects Friedel pairs have been merged.

Structure description top

The title compound was obtained in our effort to develop fluorinated anti microbial compounds. Preliminary investigation of related compounds, like linear phosphonium ionic liquids, has indicated activities against some strains of bacteria and fungi (Candida albicans) as reported by Cieniecka-Roslonkiewicz et al. (2005).

The compound (I) crystallizes as white block crystals in the monoclinic space group Cc with one dication and two BF4- anions in the asymmetric unit. Bond lengths for C(7) – P(1) and C(8) – P(2) linking the methylene carbon atoms with the phosphorus atoms are 1.811 (3) and 1.817 (3) Å respectively, which is comparable with the 1.817 (2) Å reported by Hafiz (2008) for a related mono-phosphonium compound.

For a related synthetic strategy, see: Ganesan & Alias (2008). For salts containing the triphenylphosphonium cation, see: Kariuki et al. (2009). For applications of phosphonium salts as ionic liquids, see: Cieniecka-Roslonkiewicz et al. (2005). For a similar mono-phosphonium compound, see: Hafiz (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom numbering scheme and the displacement ellipsoids drawn at the 50% probability level. H atoms are omitted for clarity.
[1,4-Phenylenebis(methylene)]bis(triphenylphosphonium) bis(tetrafluoroborate) top
Crystal data top
C44H38P22+·2BF4F(000) = 1656
Mr = 802.30Dx = 1.327 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5943 reflections
a = 21.8874 (5) Åθ = 2.7–24.0°
b = 14.4610 (3) ŵ = 0.18 mm1
c = 15.2818 (3) ÅT = 173 K
β = 123.898 (1)°Needle, colourless
V = 4014.78 (15) Å30.52 × 0.22 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3786 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 28.0°, θmin = 1.8°
φ and ω scansh = 2828
25162 measured reflectionsk = 1918
4853 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0571P)2]
where P = (Fo2 + 2Fc2)/3
4853 reflections(Δ/σ)max = 0.032
506 parametersΔρmax = 0.43 e Å3
2 restraintsΔρmin = 0.33 e Å3
Crystal data top
C44H38P22+·2BF4V = 4014.78 (15) Å3
Mr = 802.30Z = 4
Monoclinic, CcMo Kα radiation
a = 21.8874 (5) ŵ = 0.18 mm1
b = 14.4610 (3) ÅT = 173 K
c = 15.2818 (3) Å0.52 × 0.22 × 0.13 mm
β = 123.898 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3786 reflections with I > 2σ(I)
25162 measured reflectionsRint = 0.058
4853 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.10Δρmax = 0.43 e Å3
4853 reflectionsΔρmin = 0.33 e Å3
506 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29567 (19)0.8761 (2)0.3995 (3)0.0254 (7)
C20.35338 (19)0.8962 (2)0.3896 (3)0.0278 (7)
H20.40010.91180.45070.033*
C30.34422 (19)0.8942 (2)0.2920 (3)0.0290 (7)
H30.38450.90850.28680.035*
C40.2764 (2)0.8712 (2)0.2019 (3)0.0271 (8)
C50.2178 (2)0.8531 (3)0.2112 (3)0.0328 (8)
H50.17070.83930.14980.039*
C60.22707 (19)0.8549 (3)0.3082 (3)0.0314 (8)
H60.18660.84160.31310.038*
C70.3067 (2)0.8733 (2)0.5052 (3)0.0291 (8)
H7A0.26260.89900.49920.035*
H7B0.34930.91280.55480.035*
C80.2650 (2)0.8716 (2)0.0939 (3)0.0303 (8)
H8A0.30840.90130.10140.036*
H8B0.22180.91100.04630.036*
C110.2368 (2)0.6952 (2)0.4900 (3)0.0318 (8)
C120.2281 (2)0.6090 (3)0.4461 (4)0.0579 (13)
H120.26840.57950.45000.069*
C130.1602 (3)0.5654 (3)0.3962 (4)0.0693 (16)
H130.15350.50720.36320.083*
C140.1027 (3)0.6053 (3)0.3939 (4)0.0546 (12)
H140.05740.57320.36380.066*
C150.1109 (3)0.6928 (3)0.4358 (4)0.0609 (13)
H150.07050.72220.43140.073*
C160.1782 (2)0.7373 (3)0.4840 (4)0.0545 (12)
H160.18400.79720.51320.065*
C210.3574 (2)0.7610 (3)0.6955 (3)0.0334 (9)
C220.3793 (3)0.8412 (3)0.7521 (3)0.0498 (11)
H220.37680.89780.71870.060*
C230.4056 (3)0.8405 (4)0.8588 (3)0.0586 (13)
H230.42010.89670.89750.070*
C240.4103 (3)0.7607 (4)0.9069 (3)0.0543 (12)
H240.42600.76080.97880.065*
C250.3925 (4)0.6795 (4)0.8526 (4)0.093 (2)
H250.39980.62290.88880.112*
C260.3641 (4)0.6779 (4)0.7460 (4)0.0770 (18)
H260.34940.62130.70800.092*
C310.3883 (2)0.6991 (2)0.5404 (3)0.0309 (8)
C320.4589 (2)0.6802 (3)0.6277 (3)0.0391 (9)
H320.47270.69700.69650.047*
C330.5089 (2)0.6361 (3)0.6123 (4)0.0492 (11)
H330.55680.62150.67140.059*
C340.4900 (3)0.6137 (3)0.5133 (4)0.0516 (12)
H340.52480.58440.50400.062*
C350.4212 (3)0.6332 (3)0.4280 (4)0.0510 (11)
H350.40860.61730.35950.061*
C360.3697 (2)0.6759 (3)0.4396 (3)0.0400 (9)
H360.32200.68940.37950.048*
C410.3354 (2)0.6988 (2)0.0830 (3)0.0287 (8)
C420.4020 (2)0.7307 (3)0.1686 (3)0.0385 (9)
H420.40430.78780.20110.046*
C430.4653 (2)0.6789 (3)0.2064 (3)0.0521 (12)
H430.51080.70060.26550.062*
C440.4634 (2)0.5968 (3)0.1599 (3)0.0438 (10)
H440.50710.56170.18720.053*
C450.3975 (2)0.5654 (3)0.0733 (3)0.0483 (11)
H450.39580.50890.04020.058*
C460.3340 (2)0.6168 (3)0.0349 (3)0.0452 (10)
H460.28890.59560.02530.054*
C510.21135 (19)0.7844 (2)0.1065 (3)0.0257 (7)
C520.2345 (2)0.8608 (3)0.1341 (3)0.0384 (9)
H520.27230.89920.08090.046*
C530.2026 (2)0.8817 (3)0.2394 (3)0.0453 (10)
H530.21820.93490.25840.054*
C540.1484 (2)0.8259 (3)0.3166 (3)0.0447 (10)
H540.12570.84170.38870.054*
C550.1271 (2)0.7475 (3)0.2899 (3)0.0482 (11)
H550.09120.70770.34360.058*
C560.1577 (2)0.7263 (3)0.1851 (3)0.0368 (8)
H560.14250.67240.16660.044*
C610.1912 (2)0.6890 (3)0.0463 (3)0.0327 (8)
C620.1165 (2)0.7106 (3)0.0065 (3)0.0401 (9)
H620.09670.76080.05480.048*
C630.0715 (3)0.6593 (4)0.0112 (4)0.0577 (13)
H630.02050.67340.02560.069*
C640.1005 (3)0.5871 (4)0.0827 (5)0.0771 (18)
H640.06930.55190.09500.093*
C650.1740 (3)0.5657 (4)0.1361 (5)0.0755 (16)
H650.19340.51610.18520.091*
C660.2201 (3)0.6165 (3)0.1186 (4)0.0533 (11)
H660.27100.60190.15580.064*
B10.1000 (3)0.9769 (3)0.4235 (4)0.0422 (11)
B20.4719 (2)1.0386 (3)0.6578 (3)0.0331 (10)
F10.16257 (17)0.95422 (19)0.5214 (2)0.0692 (8)
F20.1130 (2)0.9491 (3)0.3495 (3)0.0983 (12)
F30.0411 (2)0.9335 (3)0.4089 (4)0.1183 (16)
F40.09095 (14)1.07117 (18)0.4166 (2)0.0594 (7)
F50.40535 (15)1.0708 (2)0.5748 (2)0.0770 (10)
F60.4802 (3)1.0623 (3)0.7481 (3)0.144 (2)
F70.5246 (3)1.0771 (3)0.6519 (5)0.143 (2)
F80.47676 (13)0.94392 (17)0.6507 (2)0.0544 (7)
P10.32289 (5)0.75698 (6)0.55775 (6)0.0273 (2)
P20.25107 (5)0.76029 (6)0.03033 (6)0.0247 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0266 (18)0.0248 (17)0.0266 (18)0.0027 (14)0.0160 (16)0.0003 (13)
C20.0271 (17)0.0296 (17)0.0226 (17)0.0056 (14)0.0113 (14)0.0037 (14)
C30.0296 (18)0.0264 (17)0.036 (2)0.0058 (14)0.0215 (16)0.0030 (14)
C40.033 (2)0.0223 (17)0.0261 (18)0.0062 (14)0.0167 (16)0.0025 (13)
C50.0236 (17)0.045 (2)0.0272 (18)0.0038 (16)0.0126 (15)0.0030 (16)
C60.0271 (18)0.036 (2)0.0316 (19)0.0000 (15)0.0166 (16)0.0050 (16)
C70.0310 (19)0.0296 (19)0.0286 (19)0.0041 (15)0.0178 (16)0.0046 (14)
C80.037 (2)0.0280 (19)0.0283 (19)0.0034 (15)0.0193 (17)0.0001 (15)
C110.033 (2)0.0305 (19)0.0281 (19)0.0064 (16)0.0143 (17)0.0025 (15)
C120.038 (2)0.038 (2)0.080 (3)0.0002 (19)0.022 (2)0.016 (2)
C130.057 (3)0.044 (3)0.090 (4)0.015 (2)0.031 (3)0.029 (3)
C140.041 (2)0.056 (3)0.056 (3)0.020 (2)0.021 (2)0.012 (2)
C150.048 (3)0.064 (3)0.081 (4)0.017 (2)0.042 (3)0.015 (3)
C160.051 (3)0.053 (3)0.078 (3)0.018 (2)0.048 (3)0.029 (2)
C210.041 (2)0.039 (2)0.0264 (19)0.0021 (17)0.0219 (17)0.0015 (15)
C220.072 (3)0.047 (2)0.031 (2)0.007 (2)0.029 (2)0.0030 (18)
C230.074 (3)0.066 (3)0.034 (2)0.010 (3)0.029 (2)0.013 (2)
C240.054 (3)0.085 (4)0.025 (2)0.006 (2)0.023 (2)0.003 (2)
C250.171 (7)0.071 (4)0.054 (3)0.014 (4)0.073 (4)0.020 (3)
C260.142 (5)0.048 (3)0.054 (3)0.007 (3)0.062 (4)0.002 (2)
C310.036 (2)0.0264 (18)0.032 (2)0.0013 (15)0.0197 (17)0.0016 (15)
C320.037 (2)0.046 (2)0.040 (2)0.0042 (18)0.0249 (19)0.0035 (18)
C330.033 (2)0.048 (3)0.069 (3)0.0001 (18)0.030 (2)0.003 (2)
C340.061 (3)0.044 (2)0.078 (3)0.003 (2)0.056 (3)0.002 (2)
C350.083 (3)0.039 (2)0.055 (3)0.006 (2)0.053 (3)0.002 (2)
C360.055 (2)0.0337 (19)0.035 (2)0.0070 (18)0.0278 (19)0.0019 (15)
C410.033 (2)0.0256 (17)0.0287 (19)0.0011 (15)0.0183 (17)0.0024 (14)
C420.033 (2)0.038 (2)0.034 (2)0.0044 (16)0.0113 (17)0.0027 (16)
C430.031 (2)0.061 (3)0.039 (2)0.0088 (19)0.0042 (19)0.006 (2)
C440.033 (2)0.046 (2)0.047 (2)0.0119 (19)0.0190 (19)0.0058 (19)
C450.042 (2)0.036 (2)0.057 (3)0.0065 (18)0.022 (2)0.0081 (19)
C460.036 (2)0.038 (2)0.053 (3)0.0011 (17)0.0190 (19)0.0121 (18)
C510.0268 (18)0.0290 (17)0.0237 (17)0.0011 (14)0.0156 (15)0.0022 (14)
C520.050 (2)0.041 (2)0.0285 (19)0.0148 (18)0.0248 (19)0.0074 (16)
C530.062 (3)0.045 (2)0.037 (2)0.009 (2)0.033 (2)0.0044 (17)
C540.047 (2)0.059 (3)0.029 (2)0.001 (2)0.0222 (19)0.0041 (19)
C550.053 (3)0.053 (3)0.026 (2)0.014 (2)0.0148 (19)0.0028 (17)
C560.040 (2)0.038 (2)0.0288 (19)0.0120 (17)0.0168 (17)0.0035 (15)
C610.043 (2)0.032 (2)0.032 (2)0.0051 (17)0.0267 (18)0.0015 (16)
C620.038 (2)0.043 (2)0.044 (2)0.0062 (18)0.0258 (19)0.0022 (18)
C630.054 (3)0.063 (3)0.073 (3)0.019 (2)0.045 (3)0.019 (3)
C640.093 (4)0.074 (4)0.106 (5)0.028 (3)0.081 (4)0.002 (3)
C650.091 (4)0.073 (4)0.091 (4)0.001 (3)0.069 (4)0.030 (3)
C660.064 (3)0.050 (3)0.061 (3)0.004 (2)0.044 (2)0.017 (2)
B10.045 (3)0.045 (3)0.045 (3)0.007 (2)0.030 (2)0.012 (2)
B20.027 (2)0.037 (2)0.034 (2)0.0011 (18)0.0156 (19)0.0049 (18)
F10.089 (2)0.0490 (15)0.0475 (15)0.0135 (15)0.0243 (15)0.0046 (12)
F20.134 (3)0.115 (3)0.078 (2)0.057 (2)0.079 (2)0.0109 (19)
F30.066 (2)0.099 (3)0.182 (4)0.042 (2)0.064 (3)0.028 (3)
F40.0533 (16)0.0487 (15)0.0649 (18)0.0071 (12)0.0260 (14)0.0031 (13)
F50.0611 (18)0.0594 (18)0.065 (2)0.0157 (15)0.0068 (15)0.0042 (14)
F60.225 (5)0.139 (3)0.054 (2)0.128 (4)0.070 (3)0.030 (2)
F70.121 (3)0.063 (2)0.311 (7)0.022 (2)0.162 (4)0.015 (3)
F80.0449 (14)0.0435 (13)0.0596 (16)0.0008 (11)0.0197 (12)0.0028 (12)
P10.0313 (5)0.0290 (5)0.0239 (5)0.0035 (4)0.0168 (4)0.0032 (4)
P20.0248 (4)0.0276 (4)0.0226 (4)0.0006 (4)0.0137 (4)0.0012 (4)
Geometric parameters (Å, º) top
C1—C21.384 (5)C34—C351.362 (7)
C1—C61.399 (5)C34—H340.9500
C1—C71.495 (5)C35—C361.381 (6)
C2—C31.391 (5)C35—H350.9500
C2—H20.9500C36—H360.9500
C3—C41.390 (5)C41—C421.386 (5)
C3—H30.9500C41—C461.387 (5)
C4—C51.392 (5)C41—P21.785 (4)
C4—C81.525 (5)C42—C431.387 (5)
C5—C61.380 (5)C42—H420.9500
C5—H50.9500C43—C441.372 (6)
C6—H60.9500C43—H430.9500
C7—P11.812 (4)C44—C451.381 (6)
C7—H7A0.9900C44—H440.9500
C7—H7B0.9900C45—C461.386 (6)
C8—P21.817 (4)C45—H450.9500
C8—H8A0.9900C46—H460.9500
C8—H8B0.9900C51—C521.377 (5)
C11—C161.376 (6)C51—C561.398 (5)
C11—C121.378 (6)C51—P21.795 (3)
C11—P11.800 (4)C52—C531.384 (5)
C12—C131.387 (6)C52—H520.9500
C12—H120.9500C53—C541.374 (6)
C13—C141.367 (7)C53—H530.9500
C13—H130.9500C54—C551.371 (6)
C14—C151.382 (7)C54—H540.9500
C14—H140.9500C55—C561.383 (5)
C15—C161.385 (6)C55—H550.9500
C15—H150.9500C56—H560.9500
C16—H160.9500C61—C661.393 (6)
C21—C221.363 (6)C61—C621.398 (5)
C21—C261.391 (6)C61—P21.788 (4)
C21—P11.797 (4)C62—C631.376 (6)
C22—C231.395 (6)C62—H620.9500
C22—H220.9500C63—C641.383 (8)
C23—C241.340 (7)C63—H630.9500
C23—H230.9500C64—C651.372 (8)
C24—C251.364 (8)C64—H640.9500
C24—H240.9500C65—C661.389 (6)
C25—C261.383 (7)C65—H650.9500
C25—H250.9500C66—H660.9500
C26—H260.9500B1—F31.336 (6)
C31—C321.393 (5)B1—F21.371 (6)
C31—C361.398 (5)B1—F41.374 (6)
C31—P11.801 (4)B1—F11.391 (6)
C32—C331.397 (6)B2—F71.329 (6)
C32—H320.9500B2—F61.331 (6)
C33—C341.365 (7)B2—F51.373 (5)
C33—H330.9500B2—F81.383 (5)
C2—C1—C6118.3 (3)C35—C36—C31119.5 (4)
C2—C1—C7121.0 (3)C35—C36—H36120.2
C6—C1—C7120.6 (3)C31—C36—H36120.2
C1—C2—C3121.2 (3)C42—C41—C46119.0 (3)
C1—C2—H2119.4C42—C41—P2122.6 (3)
C3—C2—H2119.4C46—C41—P2118.4 (3)
C2—C3—C4120.2 (3)C41—C42—C43119.6 (4)
C2—C3—H3119.9C41—C42—H42120.2
C4—C3—H3119.9C43—C42—H42120.2
C5—C4—C3118.7 (3)C44—C43—C42121.1 (4)
C5—C4—C8120.5 (3)C44—C43—H43119.5
C3—C4—C8120.7 (3)C42—C43—H43119.5
C6—C5—C4120.9 (3)C43—C44—C45119.7 (4)
C6—C5—H5119.5C43—C44—H44120.1
C4—C5—H5119.5C45—C44—H44120.1
C5—C6—C1120.6 (3)C44—C45—C46119.5 (4)
C5—C6—H6119.7C44—C45—H45120.2
C1—C6—H6119.7C46—C45—H45120.2
C1—C7—P1112.2 (2)C45—C46—C41121.0 (4)
C1—C7—H7A109.2C45—C46—H46119.5
P1—C7—H7A109.2C41—C46—H46119.5
C1—C7—H7B109.2C52—C51—C56119.7 (3)
P1—C7—H7B109.2C52—C51—P2119.4 (3)
H7A—C7—H7B107.9C56—C51—P2120.9 (3)
C4—C8—P2116.9 (2)C51—C52—C53119.9 (4)
C4—C8—H8A108.1C51—C52—H52120.1
P2—C8—H8A108.1C53—C52—H52120.1
C4—C8—H8B108.1C54—C53—C52120.3 (4)
P2—C8—H8B108.1C54—C53—H53119.9
H8A—C8—H8B107.3C52—C53—H53119.9
C16—C11—C12119.8 (4)C55—C54—C53120.3 (4)
C16—C11—P1117.1 (3)C55—C54—H54119.9
C12—C11—P1123.0 (3)C53—C54—H54119.9
C11—C12—C13119.5 (4)C54—C55—C56120.2 (4)
C11—C12—H12120.2C54—C55—H55119.9
C13—C12—H12120.2C56—C55—H55119.9
C14—C13—C12120.8 (4)C55—C56—C51119.6 (3)
C14—C13—H13119.6C55—C56—H56120.2
C12—C13—H13119.6C51—C56—H56120.2
C13—C14—C15119.5 (4)C66—C61—C62119.6 (4)
C13—C14—H14120.2C66—C61—P2120.0 (3)
C15—C14—H14120.2C62—C61—P2120.2 (3)
C16—C15—C14119.9 (5)C63—C62—C61120.1 (4)
C16—C15—H15120.1C63—C62—H62120.0
C14—C15—H15120.1C61—C62—H62120.0
C11—C16—C15120.3 (4)C62—C63—C64120.0 (5)
C11—C16—H16119.8C62—C63—H63120.0
C15—C16—H16119.8C64—C63—H63120.0
C22—C21—C26119.4 (4)C65—C64—C63120.6 (5)
C22—C21—P1122.7 (3)C65—C64—H64119.7
C26—C21—P1117.8 (3)C63—C64—H64119.7
C21—C22—C23120.4 (4)C64—C65—C66120.2 (5)
C21—C22—H22119.8C64—C65—H65119.9
C23—C22—H22119.8C66—C65—H65119.9
C24—C23—C22120.2 (5)C65—C66—C61119.6 (5)
C24—C23—H23119.9C65—C66—H66120.2
C22—C23—H23119.9C61—C66—H66120.2
C23—C24—C25119.9 (4)F3—B1—F2110.4 (4)
C23—C24—H24120.0F3—B1—F4111.6 (4)
C25—C24—H24120.0F2—B1—F4108.3 (4)
C24—C25—C26121.3 (5)F3—B1—F1110.4 (5)
C24—C25—H25119.4F2—B1—F1106.6 (4)
C26—C25—H25119.4F4—B1—F1109.3 (4)
C25—C26—C21118.6 (5)F7—B2—F6109.9 (5)
C25—C26—H26120.7F7—B2—F5108.0 (4)
C21—C26—H26120.7F6—B2—F5109.4 (4)
C32—C31—C36119.6 (3)F7—B2—F8107.5 (4)
C32—C31—P1119.9 (3)F6—B2—F8111.4 (4)
C36—C31—P1120.5 (3)F5—B2—F8110.6 (3)
C33—C32—C31118.9 (4)C21—P1—C11108.16 (18)
C33—C32—H32120.5C21—P1—C31109.73 (18)
C31—C32—H32120.5C11—P1—C31110.33 (18)
C34—C33—C32120.9 (4)C21—P1—C7109.83 (18)
C34—C33—H33119.6C11—P1—C7108.83 (18)
C32—C33—H33119.6C31—P1—C7109.92 (17)
C35—C34—C33120.1 (4)C41—P2—C61107.66 (17)
C35—C34—H34119.9C41—P2—C51109.23 (16)
C33—C34—H34119.9C61—P2—C51110.82 (17)
C34—C35—C36121.0 (4)C41—P2—C8112.16 (17)
C34—C35—H35119.5C61—P2—C8110.80 (18)
C36—C35—H35119.5C51—P2—C8106.19 (16)
C6—C1—C2—C31.0 (5)C52—C51—C56—C551.7 (6)
C7—C1—C2—C3176.6 (3)P2—C51—C56—C55178.8 (3)
C1—C2—C3—C40.3 (5)C66—C61—C62—C631.4 (6)
C2—C3—C4—C51.8 (5)P2—C61—C62—C63175.7 (3)
C2—C3—C4—C8178.1 (3)C61—C62—C63—C641.0 (7)
C3—C4—C5—C62.0 (5)C62—C63—C64—C650.2 (8)
C8—C4—C5—C6178.3 (3)C63—C64—C65—C660.2 (9)
C4—C5—C6—C10.7 (6)C64—C65—C66—C610.2 (8)
C2—C1—C6—C50.8 (5)C62—C61—C66—C651.0 (7)
C7—C1—C6—C5176.9 (3)P2—C61—C66—C65175.3 (4)
C2—C1—C7—P196.2 (4)C22—C21—P1—C11129.0 (4)
C6—C1—C7—P181.5 (4)C26—C21—P1—C1153.3 (5)
C5—C4—C8—P272.5 (4)C22—C21—P1—C31110.6 (4)
C3—C4—C8—P2111.3 (3)C26—C21—P1—C3167.1 (4)
C16—C11—C12—C130.0 (7)C22—C21—P1—C710.3 (4)
P1—C11—C12—C13179.2 (4)C26—C21—P1—C7171.9 (4)
C11—C12—C13—C142.8 (8)C16—C11—P1—C2168.4 (4)
C12—C13—C14—C154.3 (8)C12—C11—P1—C21110.8 (4)
C13—C14—C15—C163.1 (8)C16—C11—P1—C31171.6 (3)
C12—C11—C16—C151.1 (7)C12—C11—P1—C319.2 (4)
P1—C11—C16—C15178.1 (4)C16—C11—P1—C750.9 (4)
C14—C15—C16—C110.4 (8)C12—C11—P1—C7129.9 (4)
C26—C21—C22—C232.5 (7)C32—C31—P1—C2111.2 (4)
P1—C21—C22—C23179.8 (4)C36—C31—P1—C21171.1 (3)
C21—C22—C23—C240.9 (8)C32—C31—P1—C11130.3 (3)
C22—C23—C24—C252.9 (8)C36—C31—P1—C1152.0 (3)
C23—C24—C25—C265.1 (10)C32—C31—P1—C7109.7 (3)
C24—C25—C26—C213.4 (10)C36—C31—P1—C768.0 (3)
C22—C21—C26—C250.4 (9)C1—C7—P1—C21166.1 (3)
P1—C21—C26—C25178.2 (5)C1—C7—P1—C1175.6 (3)
C36—C31—C32—C331.6 (5)C1—C7—P1—C3145.3 (3)
P1—C31—C32—C33179.3 (3)C42—C41—P2—C61117.1 (3)
C31—C32—C33—C341.5 (6)C46—C41—P2—C6164.2 (3)
C32—C33—C34—C350.8 (7)C42—C41—P2—C51122.5 (3)
C33—C34—C35—C360.1 (7)C46—C41—P2—C5156.2 (3)
C34—C35—C36—C310.2 (6)C42—C41—P2—C85.1 (4)
C32—C31—C36—C351.0 (6)C46—C41—P2—C8173.7 (3)
P1—C31—C36—C35178.7 (3)C66—C61—P2—C4118.8 (4)
C46—C41—C42—C432.1 (6)C62—C61—P2—C41166.9 (3)
P2—C41—C42—C43179.2 (3)C66—C61—P2—C51138.2 (3)
C41—C42—C43—C440.6 (7)C62—C61—P2—C5147.5 (4)
C42—C43—C44—C450.7 (7)C66—C61—P2—C8104.2 (4)
C43—C44—C45—C460.6 (7)C62—C61—P2—C870.1 (4)
C44—C45—C46—C410.8 (7)C52—C51—P2—C4183.8 (3)
C42—C41—C46—C452.2 (6)C56—C51—P2—C4195.7 (3)
P2—C41—C46—C45179.0 (4)C52—C51—P2—C61157.7 (3)
C56—C51—C52—C532.5 (6)C56—C51—P2—C6122.8 (4)
P2—C51—C52—C53177.9 (3)C52—C51—P2—C837.3 (4)
C51—C52—C53—C540.7 (7)C56—C51—P2—C8143.2 (3)
C52—C53—C54—C552.0 (7)C4—C8—P2—C4178.5 (3)
C53—C54—C55—C562.8 (7)C4—C8—P2—C6141.8 (3)
C54—C55—C56—C510.9 (7)C4—C8—P2—C51162.2 (3)

Experimental details

Crystal data
Chemical formulaC44H38P22+·2BF4
Mr802.30
Crystal system, space groupMonoclinic, Cc
Temperature (K)173
a, b, c (Å)21.8874 (5), 14.4610 (3), 15.2818 (3)
β (°) 123.898 (1)
V3)4014.78 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.52 × 0.22 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25162, 4853, 3786
Rint0.058
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.113, 1.10
No. of reflections4853
No. of parameters506
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We wish to thank Dr Manuel Fernandes (University of the Witwatersrand) for the data collection, and the NRF and the University of KwaZulu-Natal for financial support. This work is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology.

References

First citationBruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCieniecka-Roslonkiewicz, A., Pernak, J., Kubis-Feder, J., Ramani, A., Robertson, A. J. & Seddon, K. R. (2005). Green Chem. 7, 855–862.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGanesan, K. & Alias, Y. (2008). Int. J. Mol. Sci. 9, 1207–1213.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHafiz, A. A. (2008). J. Iran. Chem. Soc. 5, 106–114.  CrossRef CAS Google Scholar
First citationKariuki, B. M., Bonnet, L. G. & Warren, J. E. (2009). J. Chem. Crystallogr. 39, 693–697.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds