metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Tris{2-[(5-hy­dr­oxy­pyridin-2-yl-κN)methyl­­idene­imino-κN]eth­yl}amine)­zinc dinitrate

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01033 Kyiv, Ukraine, bDepartment of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland, and cDepartment of Chemistry, St. Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation
*Correspondence e-mail: mcs@univ.kiev.ua

(Received 27 October 2011; accepted 12 November 2011; online 19 November 2011)

In the complex cation of the title compound, [Zn(C24H27N7O3)](NO3)2, the tripodal tris­{[2-(5-hy­droxy­pyridin-2-yl)methyl­idene­imino]­eth­yl}amine ligand is coordin­ated to the Zn atom through the three pyridine and three imino N atoms. The coordination sphere of the Zn atom is based on an octahedron with a significant distortion towards trigonal prismatic, the twist angle being 45.58 (9)°. The crystal packing is formed by L and D anti­podes arranged in layers disposed parallel to the b axis. Strong O—H⋯O hydrogen bonding exists between the hy­droxy groups of the ligand and the nitrate anion.

Related literature

For structural and magnetic studies of related tripodand-based complexes of iron(II), see: Seredyuk et al. (2007[Seredyuk, M., Gaspar, A. B., Kusz, J., Bednarek, G. & Gütlich, P. (2007). J. Appl. Cryst. 40, 1135-1145.], 2008[Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Galyametdinov, Y., Kusz, J. & Gütlich, P. (2008). J. Am. Chem. Soc. 130, 1431-1439.], 2011[Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965-976.]). For related structures, see: Petrusenko et al. (1997[Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267-274.]); Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]); Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]); Wörl et al. (2005[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27-29.]); Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800-806.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C24H27N7O3)](NO3)2

  • Mr = 650.92

  • Monoclinic, C 2/c

  • a = 28.0587 (12) Å

  • b = 10.3677 (2) Å

  • c = 19.1322 (8) Å

  • β = 101.277 (2)°

  • V = 5458.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 120 K

  • 0.30 × 0.23 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.764, Tmax = 0.871

  • 13185 measured reflections

  • 4754 independent reflections

  • 3823 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.064

  • S = 1.05

  • 4754 reflections

  • 400 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯O6 0.80 (3) 1.90 (3) 2.698 (2) 173 (3)
O1—H1o⋯O7 0.82 (3) 1.80 (3) 2.597 (2) 163 (3)
O2—H2o⋯O4i 0.78 (3) 1.84 (3) 2.593 (3) 162 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Bruker–Nonius, 2000[Bruker-Nonius (2000). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our study of the tripodand-based 3d-metal complexes (Seredyuk et al., 2007; Seredyuk et al., 2008; Seredyuk et al., 2011), we report the crystal structure of the title compound.

The tripod ligand tris[2-(5-hydroxy-2-pyridylmethyleneimino)ethyl]amine coordinates to the metal centre through the three pyridine and three imino N atoms (Fig. 1). The coordination polyhedron of the zinc ion in the complex molecule is a distorted trigonal antiprism with the twist angle equal to 46.71 (8)°. The tertiary capping N1 atom lies on the pseudo C3–axis of the molecule and is situated at 2.972 (2) Å from the Zn center. The average values for the Zn–Npy and the Zn–Nim bond lengths differ significantly and are 2.265 (2) and 2.132 (2) Å, respectively. Similar differences in the geometrical parameters have been observed before in the related zinc complexes (Petrusenko et al.,1997; Świątek-Kozłowska et al., 2000; Wörl et al., 2005). The C—C and C—N bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Krämer & Fritsky, 2000; Sachse et al., 2008; Moroz et al., 2010).

The crystal packing is formed by L and D antipodes arranged in layers disposed parallel to the b axis (Fig. 2). A strong hydrogen bonding is settled between hydroxy groups of the ligand and nitrate anions [2.593 (3)–2.698 (3) Å].

Related literature top

For structural and magnetic studies of related tripodand-based complexes of iron(II), see: Seredyuk et al. (2007, 2008, 2011). For related structures, see: Petrusenko et al. (1997); Krämer & Fritsky (2000); Świątek-Kozłowska et al. (2000); Wörl et al. (2005); Sachse et al. (2008); Moroz et al. (2010).

Experimental top

To a stirred boiling mixture of 5-hydroxy-picolinaldehyde (Seredyuk et al., 2008) (0.5 g, 0.406 mmol) and Zn(NO3)2.6H2O (0.403 g, 0.136 mmol) in ethanol was added tris(2-aminoethyl)amine (0.198 g, 0.136 mmol). The obtained mixture was kept boiling for 15 min and then transferred into a fridge and left at 4°C overnight. The crystalline precipitate was filtered off, washed with a small portion of cold ethanol and air dried. Recrystallization in a thermostat from boiling methanol provided colorless crystalline material. ESI MS (rel. int.): m/z 587 [M+NO3]+ (17%), 524 [M–H]+ (100%) 264 [M]++ (18%). Calc for C24H27N9O9Zn: C, 44.28, H, 4.18, N, 19.37. Found C, 44.20, H, 4.28, N, 19.27.

Refinement top

The OH hydrogen atoms were located from the difference Fourier map, and their positional and thermal parameters were refined freely. The CH hydrogen atoms were positioned geometrically and refined as riding atoms, with C–H = 0.95–0.99 Å and with Uiso = 1.2 Ueq(parent atom).

Structure description top

As a part of our study of the tripodand-based 3d-metal complexes (Seredyuk et al., 2007; Seredyuk et al., 2008; Seredyuk et al., 2011), we report the crystal structure of the title compound.

The tripod ligand tris[2-(5-hydroxy-2-pyridylmethyleneimino)ethyl]amine coordinates to the metal centre through the three pyridine and three imino N atoms (Fig. 1). The coordination polyhedron of the zinc ion in the complex molecule is a distorted trigonal antiprism with the twist angle equal to 46.71 (8)°. The tertiary capping N1 atom lies on the pseudo C3–axis of the molecule and is situated at 2.972 (2) Å from the Zn center. The average values for the Zn–Npy and the Zn–Nim bond lengths differ significantly and are 2.265 (2) and 2.132 (2) Å, respectively. Similar differences in the geometrical parameters have been observed before in the related zinc complexes (Petrusenko et al.,1997; Świątek-Kozłowska et al., 2000; Wörl et al., 2005). The C—C and C—N bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Krämer & Fritsky, 2000; Sachse et al., 2008; Moroz et al., 2010).

The crystal packing is formed by L and D antipodes arranged in layers disposed parallel to the b axis (Fig. 2). A strong hydrogen bonding is settled between hydroxy groups of the ligand and nitrate anions [2.593 (3)–2.698 (3) Å].

For structural and magnetic studies of related tripodand-based complexes of iron(II), see: Seredyuk et al. (2007, 2008, 2011). For related structures, see: Petrusenko et al. (1997); Krämer & Fritsky (2000); Świątek-Kozłowska et al. (2000); Wörl et al. (2005); Sachse et al. (2008); Moroz et al. (2010).

Computing details top

Data collection: COLLECT (Bruker–Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids drawn at the 50% probability level. Dashed lines show hydrogen bonds between complex cations and nitrate anions [symmetry code: (i) 1.5–x, 0.5–y, 1–z].
[Figure 2] Fig. 2. Projection of the molecular packing along the a axis. Dashed lines correspond to hydrogen bonds between complex cations and nitrate anions.
(Tris{2-[(5-hydroxypyridin-2-yl-κN)methylideneimino- κN]ethyl}amine)zinc dinitrate top
Crystal data top
[Zn(C24H27N7O3)](NO3)2F(000) = 2688
Mr = 650.92Dx = 1.584 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3966 reflections
a = 28.0587 (12) Åθ = 1.5–25.5°
b = 10.3677 (2) ŵ = 0.97 mm1
c = 19.1322 (8) ÅT = 120 K
β = 101.277 (2)°Block, colorless
V = 5458.2 (3) Å30.30 × 0.23 × 0.12 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
4754 independent reflections
Radiation source: fine-focus sealed tube3823 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.024
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.9°
φ scans and ω scans with κ offseth = 2733
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1210
Tmin = 0.764, Tmax = 0.871l = 2220
13185 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0217P)2 + 8.7493P]
where P = (Fo2 + 2Fc2)/3
4754 reflections(Δ/σ)max = 0.001
400 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn(C24H27N7O3)](NO3)2V = 5458.2 (3) Å3
Mr = 650.92Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.0587 (12) ŵ = 0.97 mm1
b = 10.3677 (2) ÅT = 120 K
c = 19.1322 (8) Å0.30 × 0.23 × 0.12 mm
β = 101.277 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4754 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3823 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.871Rint = 0.024
13185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.48 e Å3
4754 reflectionsΔρmin = 0.39 e Å3
400 parameters
Special details top

Experimental. The OH hydrogen atoms were located from the difference Fourier map, and their positional and thermal parameters were refined freely. The CH hydrogen atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 - 0.99 Å and with Uĩso~ = 1.2 U~eq~(parent atom).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.634474 (9)0.16452 (2)0.235644 (13)0.01525 (8)
O10.58450 (6)0.16550 (16)0.50553 (8)0.0220 (4)
O20.79699 (7)0.28797 (17)0.44693 (11)0.0340 (5)
O30.72303 (6)0.23705 (16)0.42204 (9)0.0266 (4)
O40.74429 (6)0.03487 (17)0.48994 (9)0.0332 (4)
O50.81700 (7)0.03610 (17)0.55434 (10)0.0438 (5)
O60.80039 (6)0.07908 (17)0.45764 (9)0.0322 (4)
O70.56606 (5)0.26383 (16)0.62224 (8)0.0268 (4)
O80.51315 (6)0.33927 (16)0.68067 (8)0.0258 (4)
O90.49886 (7)0.3452 (2)0.56617 (9)0.0595 (7)
N10.58398 (6)0.20629 (17)0.08571 (9)0.0185 (4)
N20.61171 (6)0.35640 (16)0.20881 (9)0.0151 (4)
N30.60926 (6)0.23962 (16)0.33387 (9)0.0158 (4)
N40.67412 (7)0.10515 (17)0.15702 (10)0.0200 (4)
N50.71145 (6)0.20475 (16)0.28566 (10)0.0180 (4)
N60.56701 (6)0.06303 (16)0.20400 (9)0.0156 (4)
N70.64650 (6)0.03002 (16)0.29422 (9)0.0149 (4)
N80.78803 (7)0.00173 (19)0.50157 (11)0.0266 (5)
N90.52514 (6)0.31521 (17)0.62315 (9)0.0190 (4)
C10.57457 (8)0.3445 (2)0.08296 (11)0.0212 (5)
H1A0.54150.36110.09160.025*
H1B0.57630.37770.03500.025*
C20.61165 (8)0.4145 (2)0.13889 (11)0.0196 (5)
H2A0.64440.40720.12710.024*
H2B0.60320.50710.13970.024*
C30.59253 (7)0.4176 (2)0.25399 (11)0.0162 (5)
H30.58010.50200.24310.019*
C40.58951 (7)0.35904 (19)0.32235 (11)0.0149 (5)
C50.56781 (7)0.4207 (2)0.37240 (11)0.0171 (5)
H50.55450.50460.36300.020*
C60.56555 (8)0.3599 (2)0.43585 (11)0.0176 (5)
H60.55070.40070.47060.021*
C70.58551 (7)0.2375 (2)0.44754 (11)0.0158 (5)
C80.60739 (7)0.1816 (2)0.39515 (11)0.0167 (5)
H80.62150.09850.40380.020*
C90.62025 (8)0.1637 (2)0.04540 (12)0.0239 (5)
H9A0.64070.23790.03720.029*
H9B0.60370.13030.00160.029*
C100.65213 (9)0.0588 (2)0.08562 (12)0.0254 (5)
H10A0.63230.01890.08950.031*
H10B0.67800.03510.05940.031*
C110.72019 (8)0.1053 (2)0.17658 (12)0.0229 (5)
H110.74000.07340.14550.028*
C120.74247 (8)0.1546 (2)0.24709 (13)0.0210 (5)
C130.79224 (8)0.1498 (2)0.27344 (14)0.0298 (6)
H130.81340.11440.24530.036*
C140.81062 (8)0.1967 (2)0.34045 (15)0.0307 (6)
H140.84460.19470.35900.037*
C150.77898 (8)0.2468 (2)0.38054 (13)0.0248 (6)
C160.72922 (8)0.2496 (2)0.35089 (12)0.0204 (5)
H160.70740.28460.37810.024*
C170.54127 (8)0.1244 (2)0.07905 (11)0.0207 (5)
H17A0.54860.03820.06150.025*
H17B0.51430.16240.04400.025*
C180.52591 (8)0.1106 (2)0.15087 (12)0.0205 (5)
H18A0.51510.19530.16610.025*
H18B0.49840.04960.14660.025*
C190.56437 (8)0.0477 (2)0.23137 (11)0.0162 (5)
H190.53540.09680.21840.019*
C200.60524 (7)0.1008 (2)0.28262 (11)0.0153 (5)
C210.60142 (8)0.2162 (2)0.31789 (11)0.0196 (5)
H210.57190.26360.30890.024*
C220.64107 (8)0.2615 (2)0.36629 (12)0.0219 (5)
H220.63910.33960.39150.026*
C230.68378 (8)0.1907 (2)0.37740 (11)0.0189 (5)
C240.68483 (8)0.0745 (2)0.34015 (11)0.0172 (5)
H240.71400.02560.34800.021*
H1O0.5743 (11)0.204 (3)0.5368 (16)0.052 (10)*
H3O0.7447 (11)0.185 (3)0.4311 (15)0.046 (9)*
H2O0.7795 (11)0.332 (3)0.4639 (15)0.041 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01257 (13)0.01396 (13)0.01942 (14)0.00079 (10)0.00361 (10)0.00027 (11)
O10.0257 (9)0.0234 (9)0.0185 (9)0.0036 (7)0.0079 (7)0.0033 (7)
O20.0229 (10)0.0248 (10)0.0474 (12)0.0004 (8)0.0096 (9)0.0060 (9)
O30.0275 (10)0.0210 (9)0.0264 (9)0.0007 (8)0.0067 (8)0.0040 (7)
O40.0195 (9)0.0450 (11)0.0349 (10)0.0054 (8)0.0052 (8)0.0108 (8)
O50.0396 (11)0.0296 (10)0.0500 (12)0.0054 (8)0.0213 (10)0.0024 (9)
O60.0293 (10)0.0373 (10)0.0331 (10)0.0027 (8)0.0136 (8)0.0017 (8)
O70.0161 (9)0.0407 (10)0.0246 (9)0.0085 (7)0.0062 (7)0.0018 (7)
O80.0283 (9)0.0355 (10)0.0152 (8)0.0071 (8)0.0081 (7)0.0018 (7)
O90.0454 (12)0.1089 (19)0.0204 (10)0.0417 (13)0.0030 (9)0.0021 (11)
N10.0197 (10)0.0170 (9)0.0189 (10)0.0016 (8)0.0037 (8)0.0005 (8)
N20.0136 (9)0.0152 (9)0.0160 (9)0.0010 (7)0.0019 (8)0.0004 (7)
N30.0134 (9)0.0156 (9)0.0179 (10)0.0000 (7)0.0019 (8)0.0016 (8)
N40.0205 (11)0.0156 (9)0.0253 (11)0.0023 (8)0.0080 (9)0.0014 (8)
N50.0144 (10)0.0125 (9)0.0276 (11)0.0006 (7)0.0051 (8)0.0046 (8)
N60.0141 (9)0.0164 (9)0.0164 (10)0.0013 (7)0.0029 (8)0.0013 (8)
N70.0164 (10)0.0132 (9)0.0158 (9)0.0000 (7)0.0049 (8)0.0026 (7)
N80.0264 (12)0.0262 (11)0.0271 (12)0.0070 (9)0.0048 (10)0.0067 (9)
N90.0194 (10)0.0203 (10)0.0162 (10)0.0005 (8)0.0009 (8)0.0002 (8)
C10.0254 (12)0.0208 (12)0.0169 (11)0.0041 (10)0.0027 (10)0.0038 (10)
C20.0238 (12)0.0172 (12)0.0191 (12)0.0024 (9)0.0076 (10)0.0021 (9)
C30.0135 (11)0.0123 (11)0.0221 (12)0.0002 (9)0.0017 (9)0.0003 (9)
C40.0109 (11)0.0140 (11)0.0197 (12)0.0003 (8)0.0025 (9)0.0016 (9)
C50.0154 (11)0.0124 (11)0.0231 (12)0.0009 (9)0.0032 (9)0.0031 (9)
C60.0157 (11)0.0182 (12)0.0194 (12)0.0018 (9)0.0051 (9)0.0064 (9)
C70.0139 (11)0.0184 (11)0.0145 (11)0.0045 (9)0.0017 (9)0.0009 (9)
C80.0134 (11)0.0151 (11)0.0206 (12)0.0008 (9)0.0011 (9)0.0004 (9)
C90.0281 (13)0.0266 (12)0.0179 (12)0.0021 (11)0.0066 (10)0.0045 (10)
C100.0282 (13)0.0250 (13)0.0256 (13)0.0021 (10)0.0114 (11)0.0080 (10)
C110.0218 (13)0.0177 (12)0.0330 (14)0.0033 (10)0.0145 (11)0.0045 (10)
C120.0152 (11)0.0158 (11)0.0333 (13)0.0008 (9)0.0082 (10)0.0069 (10)
C130.0171 (12)0.0225 (13)0.0515 (17)0.0025 (10)0.0110 (12)0.0025 (12)
C140.0108 (12)0.0218 (13)0.0561 (18)0.0002 (10)0.0021 (12)0.0007 (12)
C150.0178 (12)0.0127 (11)0.0396 (15)0.0018 (9)0.0046 (11)0.0041 (10)
C160.0166 (12)0.0138 (11)0.0299 (13)0.0007 (9)0.0025 (10)0.0034 (9)
C170.0206 (12)0.0204 (12)0.0190 (12)0.0016 (9)0.0017 (10)0.0012 (9)
C180.0147 (11)0.0201 (11)0.0254 (13)0.0015 (9)0.0007 (10)0.0010 (10)
C190.0141 (11)0.0180 (12)0.0180 (12)0.0026 (9)0.0067 (9)0.0054 (9)
C200.0163 (11)0.0150 (11)0.0153 (11)0.0001 (9)0.0048 (9)0.0024 (9)
C210.0218 (12)0.0179 (11)0.0196 (12)0.0045 (9)0.0053 (10)0.0018 (9)
C220.0322 (14)0.0164 (11)0.0174 (12)0.0021 (10)0.0053 (10)0.0016 (9)
C230.0231 (12)0.0185 (12)0.0140 (11)0.0044 (9)0.0010 (9)0.0026 (9)
C240.0180 (12)0.0150 (11)0.0186 (12)0.0004 (9)0.0040 (10)0.0037 (9)
Geometric parameters (Å, º) top
Zn1—N22.1215 (17)C3—C41.459 (3)
Zn1—N42.1292 (18)C3—H30.9500
Zn1—N62.1468 (17)C4—C51.387 (3)
Zn1—N52.2239 (18)C5—C61.381 (3)
Zn1—N32.2711 (17)C5—H50.9500
Zn1—N72.3000 (17)C6—C71.387 (3)
O1—C71.342 (3)C6—H60.9500
O1—H1O0.82 (3)C7—C81.399 (3)
O2—C151.341 (3)C8—H80.9500
O2—H2O0.78 (3)C9—C101.518 (3)
O3—C231.344 (3)C9—H9A0.9900
O3—H3O0.80 (3)C9—H9B0.9900
O4—N81.262 (2)C10—H10A0.9900
O5—N81.230 (2)C10—H10B0.9900
O6—N81.258 (3)C11—C121.464 (3)
O7—N91.269 (2)C11—H110.9500
O8—N91.238 (2)C12—C131.390 (3)
O9—N91.230 (2)C13—C141.374 (4)
N1—C171.454 (3)C13—H130.9500
N1—C11.456 (3)C14—C151.383 (3)
N1—C91.460 (3)C14—H140.9500
N2—C31.273 (3)C15—C161.401 (3)
N2—C21.467 (3)C16—H160.9500
N3—C81.328 (3)C17—C181.525 (3)
N3—C41.357 (3)C17—H17A0.9900
N4—C111.273 (3)C17—H17B0.9900
N4—C101.466 (3)C18—H18A0.9900
N5—C161.334 (3)C18—H18B0.9900
N5—C121.350 (3)C19—C201.463 (3)
N6—C191.270 (3)C19—H190.9500
N6—C181.466 (3)C20—C211.388 (3)
N7—C241.331 (3)C21—C221.383 (3)
N7—C201.352 (3)C21—H210.9500
C1—C21.523 (3)C22—C231.385 (3)
C1—H1A0.9900C22—H220.9500
C1—H1B0.9900C23—C241.403 (3)
C2—H2A0.9900C24—H240.9500
C2—H2B0.9900
N2—Zn1—N4105.92 (7)C7—C6—H6120.9
N2—Zn1—N6100.61 (6)O1—C7—C6124.66 (19)
N4—Zn1—N6102.29 (7)O1—C7—C8116.43 (19)
N2—Zn1—N598.59 (6)C6—C7—C8118.88 (19)
N4—Zn1—N576.15 (7)N3—C8—C7122.95 (19)
N6—Zn1—N5160.36 (6)N3—C8—H8118.5
N2—Zn1—N375.58 (6)C7—C8—H8118.5
N4—Zn1—N3166.90 (7)N1—C9—C10110.56 (18)
N6—Zn1—N390.07 (6)N1—C9—H9A109.5
N5—Zn1—N390.75 (6)C10—C9—H9A109.5
N2—Zn1—N7161.58 (6)N1—C9—H9B109.5
N4—Zn1—N792.50 (6)C10—C9—H9B109.5
N6—Zn1—N775.22 (6)H9A—C9—H9B108.1
N5—Zn1—N785.25 (6)N4—C10—C9109.67 (18)
N3—Zn1—N786.40 (6)N4—C10—H10A109.7
C7—O1—H1O114 (2)C9—C10—H10A109.7
C15—O2—H2O115 (2)N4—C10—H10B109.7
C23—O3—H3O113 (2)C9—C10—H10B109.7
C17—N1—C1115.53 (17)H10A—C10—H10B108.2
C17—N1—C9115.15 (17)N4—C11—C12119.8 (2)
C1—N1—C9114.74 (18)N4—C11—H11120.1
C3—N2—C2119.29 (17)C12—C11—H11120.1
C3—N2—Zn1116.76 (14)N5—C12—C13121.7 (2)
C2—N2—Zn1123.53 (13)N5—C12—C11115.69 (19)
C8—N3—C4118.10 (18)C13—C12—C11122.6 (2)
C8—N3—Zn1130.39 (14)C14—C13—C12119.5 (2)
C4—N3—Zn1111.22 (13)C14—C13—H13120.2
C11—N4—C10119.50 (19)C12—C13—H13120.2
C11—N4—Zn1115.64 (16)C13—C14—C15119.1 (2)
C10—N4—Zn1124.77 (14)C13—C14—H14120.5
C16—N5—C12118.85 (19)C15—C14—H14120.5
C16—N5—Zn1128.46 (15)O2—C15—C14118.7 (2)
C12—N5—Zn1111.61 (14)O2—C15—C16122.5 (2)
C19—N6—C18119.28 (18)C14—C15—C16118.7 (2)
C19—N6—Zn1116.48 (14)N5—C16—C15122.2 (2)
C18—N6—Zn1124.15 (13)N5—C16—H16118.9
C24—N7—C20118.41 (18)C15—C16—H16118.9
C24—N7—Zn1130.39 (14)N1—C17—C18110.43 (17)
C20—N7—Zn1110.90 (13)N1—C17—H17A109.6
O5—N8—O6121.8 (2)C18—C17—H17A109.6
O5—N8—O4120.8 (2)N1—C17—H17B109.6
O6—N8—O4117.34 (19)C18—C17—H17B109.6
O9—N9—O8121.13 (18)H17A—C17—H17B108.1
O9—N9—O7118.75 (18)N6—C18—C17109.49 (17)
O8—N9—O7120.05 (17)N6—C18—H18A109.8
N1—C1—C2110.47 (17)C17—C18—H18A109.8
N1—C1—H1A109.6N6—C18—H18B109.8
C2—C1—H1A109.6C17—C18—H18B109.8
N1—C1—H1B109.6H18A—C18—H18B108.2
C2—C1—H1B109.6N6—C19—C20121.04 (19)
H1A—C1—H1B108.1N6—C19—H19119.5
N2—C2—C1108.90 (17)C20—C19—H19119.5
N2—C2—H2A109.9N7—C20—C21122.22 (19)
C1—C2—H2A109.9N7—C20—C19116.07 (18)
N2—C2—H2B109.9C21—C20—C19121.70 (19)
C1—C2—H2B109.9C22—C21—C20119.3 (2)
H2A—C2—H2B108.3C22—C21—H21120.3
N2—C3—C4120.48 (19)C20—C21—H21120.3
N2—C3—H3119.8C21—C22—C23118.8 (2)
C4—C3—H3119.8C21—C22—H22120.6
N3—C4—C5121.93 (19)C23—C22—H22120.6
N3—C4—C3115.58 (18)O3—C23—C22119.0 (2)
C5—C4—C3122.49 (19)O3—C23—C24122.3 (2)
C6—C5—C4119.89 (19)C22—C23—C24118.7 (2)
C6—C5—H5120.1N7—C24—C23122.6 (2)
C4—C5—H5120.1N7—C24—H24118.7
C5—C6—C7118.2 (2)C23—C24—H24118.7
C5—C6—H6120.9
N4—Zn1—N2—C3171.27 (15)Zn1—N2—C2—C165.7 (2)
N6—Zn1—N2—C382.56 (15)N1—C1—C2—N254.2 (2)
N5—Zn1—N2—C393.31 (15)C2—N2—C3—C4176.38 (18)
N3—Zn1—N2—C34.76 (14)Zn1—N2—C3—C43.6 (2)
N7—Zn1—N2—C37.6 (3)C8—N3—C4—C50.0 (3)
N4—Zn1—N2—C216.28 (17)Zn1—N3—C4—C5174.51 (15)
N6—Zn1—N2—C289.90 (16)C8—N3—C4—C3179.80 (18)
N5—Zn1—N2—C294.23 (16)Zn1—N3—C4—C35.3 (2)
N3—Zn1—N2—C2177.21 (16)N2—C3—C4—N31.6 (3)
N7—Zn1—N2—C2164.89 (18)N2—C3—C4—C5178.28 (19)
N2—Zn1—N3—C8178.92 (19)N3—C4—C5—C60.5 (3)
N4—Zn1—N3—C882.8 (3)C3—C4—C5—C6179.28 (19)
N6—Zn1—N3—C877.97 (18)C4—C5—C6—C70.2 (3)
N5—Zn1—N3—C882.40 (18)C5—C6—C7—O1177.68 (19)
N7—Zn1—N3—C82.79 (18)C5—C6—C7—C80.6 (3)
N2—Zn1—N3—C45.33 (13)C4—N3—C8—C70.8 (3)
N4—Zn1—N3—C4103.7 (3)Zn1—N3—C8—C7172.41 (15)
N6—Zn1—N3—C495.62 (14)O1—C7—C8—N3177.27 (18)
N5—Zn1—N3—C4104.01 (14)C6—C7—C8—N31.1 (3)
N7—Zn1—N3—C4170.80 (14)C17—N1—C9—C1081.2 (2)
N2—Zn1—N4—C11102.79 (16)C1—N1—C9—C10141.00 (19)
N6—Zn1—N4—C11152.25 (15)C11—N4—C10—C9123.0 (2)
N5—Zn1—N4—C117.64 (15)Zn1—N4—C10—C960.7 (2)
N3—Zn1—N4—C118.0 (4)N1—C9—C10—N455.5 (2)
N7—Zn1—N4—C1176.84 (16)C10—N4—C11—C12178.35 (19)
N2—Zn1—N4—C1080.77 (17)Zn1—N4—C11—C125.0 (3)
N6—Zn1—N4—C1024.19 (18)C16—N5—C12—C130.6 (3)
N5—Zn1—N4—C10175.92 (18)Zn1—N5—C12—C13169.65 (17)
N3—Zn1—N4—C10175.6 (2)C16—N5—C12—C11178.94 (18)
N7—Zn1—N4—C1099.60 (17)Zn1—N5—C12—C119.8 (2)
N2—Zn1—N5—C1678.54 (18)N4—C11—C12—N53.7 (3)
N4—Zn1—N5—C16177.07 (18)N4—C11—C12—C13175.7 (2)
N6—Zn1—N5—C1689.3 (3)N5—C12—C13—C140.2 (3)
N3—Zn1—N5—C163.01 (17)C11—C12—C13—C14179.3 (2)
N7—Zn1—N5—C1683.31 (17)C12—C13—C14—C150.6 (3)
N2—Zn1—N5—C12113.68 (14)C13—C14—C15—O2177.5 (2)
N4—Zn1—N5—C129.30 (14)C13—C14—C15—C160.9 (3)
N6—Zn1—N5—C1278.5 (2)C12—N5—C16—C150.2 (3)
N3—Zn1—N5—C12170.79 (14)Zn1—N5—C16—C15167.21 (15)
N7—Zn1—N5—C1284.46 (14)O2—C15—C16—N5177.84 (19)
N2—Zn1—N6—C19159.92 (15)C14—C15—C16—N50.5 (3)
N4—Zn1—N6—C1991.03 (16)C1—N1—C17—C1882.7 (2)
N5—Zn1—N6—C197.9 (3)C9—N1—C17—C18139.83 (19)
N3—Zn1—N6—C1984.58 (15)C19—N6—C18—C17114.6 (2)
N7—Zn1—N6—C191.68 (15)Zn1—N6—C18—C1761.9 (2)
N2—Zn1—N6—C1823.52 (16)N1—C17—C18—N655.2 (2)
N4—Zn1—N6—C1885.53 (16)C18—N6—C19—C20177.74 (18)
N5—Zn1—N6—C18168.71 (18)Zn1—N6—C19—C201.0 (3)
N3—Zn1—N6—C1898.86 (16)C24—N7—C20—C211.3 (3)
N7—Zn1—N6—C18174.88 (17)Zn1—N7—C20—C21173.13 (16)
N2—Zn1—N7—C2498.6 (3)C24—N7—C20—C19179.69 (18)
N4—Zn1—N7—C2480.29 (18)Zn1—N7—C20—C195.9 (2)
N6—Zn1—N7—C24177.66 (19)N6—C19—C20—N75.1 (3)
N5—Zn1—N7—C244.42 (18)N6—C19—C20—C21174.0 (2)
N3—Zn1—N7—C2486.64 (18)N7—C20—C21—C220.4 (3)
N2—Zn1—N7—C2074.9 (2)C19—C20—C21—C22179.4 (2)
N4—Zn1—N7—C20106.20 (14)C20—C21—C22—C230.9 (3)
N6—Zn1—N7—C204.15 (13)C21—C22—C23—O3177.15 (19)
N5—Zn1—N7—C20177.93 (14)C21—C22—C23—C241.3 (3)
N3—Zn1—N7—C2086.87 (14)C20—N7—C24—C230.8 (3)
C17—N1—C1—C2137.91 (19)Zn1—N7—C24—C23172.30 (15)
C9—N1—C1—C284.5 (2)O3—C23—C24—N7177.91 (19)
C3—N2—C2—C1106.5 (2)C22—C23—C24—N70.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O60.80 (3)1.90 (3)2.698 (2)173 (3)
O1—H1O···O70.82 (3)1.80 (3)2.597 (2)163 (3)
O2—H2O···O4i0.78 (3)1.84 (3)2.593 (3)162 (3)
Symmetry code: (i) x+3/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C24H27N7O3)](NO3)2
Mr650.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)28.0587 (12), 10.3677 (2), 19.1322 (8)
β (°) 101.277 (2)
V3)5458.2 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.30 × 0.23 × 0.12
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.764, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
13185, 4754, 3823
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.064, 1.05
No. of reflections4754
No. of parameters400
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.39

Computer programs: COLLECT (Bruker–Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O60.80 (3)1.90 (3)2.698 (2)173 (3)
O1—H1O···O70.82 (3)1.80 (3)2.597 (2)163 (3)
O2—H2O···O4i0.78 (3)1.84 (3)2.593 (3)162 (3)
Symmetry code: (i) x+3/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the Presidental Grant for young researchers (Project F32/248–2011). Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Russian Foundation for Basic Research (grant No. 11–03–90417) is also gratefully acknowledged.

References

First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker–Nonius (2000). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPetrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.  CSD CrossRef CAS Web of Science Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.  Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Ksenofontov, V., Galyametdinov, Y., Kusz, J. & Gütlich, P. (2008). J. Am. Chem. Soc. 130, 1431–1439.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Kusz, J., Bednarek, G. & Gütlich, P. (2007). J. Appl. Cryst. 40, 1135–1145.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965–976.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds