metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine-κ2N,N′)bis­­[3-(3-hy­droxyphenyl)propenoato-κ2O1,O1′]cadmium

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wyh@zjnu.edu.cn

(Received 10 November 2011; accepted 26 November 2011; online 30 November 2011)

The title compound, [Cd(C9H7O3)2(C10H8N2)2], was synthesized under mild hydro­thermal conditions. The structure of the complex mol­ecule consists of four approximately planar fragments: two 3-(3-hy­droxyphenyl)propenoate residues and two 2,2′-bipyridine ligands [largest deviation from the least-squares planes is 0.240 (1) Å for one of 3-(3-hy­droxy­phenyl)propenoate residues]. The dihedral angles formed by the least-squares planes of the 2,2′-bipyridine ligands and the opposite 3-(3-hy­droxyphenyl)propenoate residues are 22.68 (7) and 26.47 (6)°. The CdN4O4 coordination polyhedron can be described as distorted dodecahedral. Inter­molecular O—H⋯O hydrogen bonds between carboxyl­ate O atoms and hy­droxy groups lead to the formation of chains along the a-axis direction.

Related literature

For carboxyl­ate complexes, see: Armentano et al. (2005[Armentano, D., Munno, G. D., Lloret, F. & Julve, M. (2005). CrystEngComm, 7, 57-66.]); Baca et al. (2005[Baca, S. G., Filippova, I. G., Ambrus, C., Gdaniec, M., Simonov, Y. A., Gerbeleu, N., Gherco, O. A. & Decurtins, S. (2005). Eur. J. Inorg. Chem. pp. 3118-3130.]); Karmakar et al. (2009[Karmakar, A., Baruah, J. B. & Shankar, R. B. (2009). CrystEngComm, 11, 832-840.]); Liu et al. (2008[Liu, G. X., Huang, R. Y., Xu, H., Kong, X. J., Huang, L. F., Zhu, K. & Ren, X. M. (2008). Polyhedron, 27, 2327-2336.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]); Zhao et al. (2010[Zhao, J. W., Shi, D. Y., Cheng, H. L., Chen, L. J., Ma, P. T. & Niu, J. Y. (2010). Inorg. Chem. Commun. 13, 822-827.]); Zhu et al. (2011[Zhu, H. L., Xu, W., Lin, J. L., Cheng, Y. & Zheng, Y. Q. (2011). Inorg. Chim. Acta, 366, 27-38.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C9H7O3)2(C10H8N2)2]

  • Mr = 751.06

  • Monoclinic, P 21 /c

  • a = 8.7769 (16) Å

  • b = 36.711 (7) Å

  • c = 13.188 (2) Å

  • β = 126.382 (10)°

  • V = 3421.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 296 K

  • 0.35 × 0.25 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.81, Tmax = 0.93

  • 29901 measured reflections

  • 7869 independent reflections

  • 6136 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.076

  • S = 1.02

  • 7869 reflections

  • 442 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯O5i 0.82 1.86 2.672 (3) 171
O3—H3B⋯O1ii 0.82 1.82 2.624 (3) 168
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carboxylate complexes have received a great deal of attention over the last few years due to their interesting coordination chemistry, unusual structural features, remarkable physical and chemical properties, and extensive practical applications (Baca et al., 2005; Rao et al., 2004). Very recently, the coordination chemistry of carboxylate groups with transition metals, especially importing the ancillary ligand (e.g. pyridine), has undergone extensive development. (Armentano et al., 2005; Karmakar et al., 2009; Zhu et al.,2011; Zhao et al.,2010; Liu et al.,2008). In this context, we report the synthesis and structure of a new compound, [Cd(C9H7O3)2(C10H8N2)2].

A perspective view of molecular structure of the title complex is presented in Fig.1. The Cd2+ ions are eight-coordinated by two carboxylate groups from two 3-(3-hydroxyphenyl)propenoate anions, and four nitrogen atoms from two 2,2'-bipyridine molecules. The structure of complex molecule consists of four approximately planar fragments: two 3-(3-hydroxyphenyl)propenoate residues and two 2,2'-bipyridine ligands (largest deviation from the l.s. planes is 0.240 (1) Å for one of 3-(3-hydroxyphenyl)propenoate residues). The dihedral angles formed by the l.s. planes of 2,2'-bipyridine ligands and opposite 3-(3-hydroxyphenyl)propenoate residues are 22.68 (7)° and 26.47 (6)°. Strong intermolecular hydrogen bonding interactions O—H···O (2.672 (3) Å and 2.624 (3) Å) between the carboxylate O atoms and hydroxy groups play a vital role in the construction of the chains along the a direction (Figure. 2).

Related literature top

For carboxylate complexes, see: Armentano et al. (2005); Baca et al. (2005); Karmakar et al. (2009); Liu et al. (2008); Rao et al. (2004); Zhao et al. (2010); Zhu et al. (2011).

Experimental top

A mixture of Cd(Ac)2.6H2O (0.1998 g, 0.5 mmol), 3-hydroxycinnamic acid (0.1642 g, 1 mmol)and 2,2'-bipyridine (0.1563 g, 1 mmol) was dissolved in 25 ml of EtOH/ H2O mixture (V/V,1:5), and then sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 433 K for 3 d. On completion of the reaction, the reactor was cooled slowly to room temperature and the mixture was filtered, giving yellow blocky single crystals suitable for X-ray analysis in 38% yield.

Refinement top

All H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and O—H = 0.82 Å, Uiso(H) = 1.2Ueq(C,O)].

Structure description top

Carboxylate complexes have received a great deal of attention over the last few years due to their interesting coordination chemistry, unusual structural features, remarkable physical and chemical properties, and extensive practical applications (Baca et al., 2005; Rao et al., 2004). Very recently, the coordination chemistry of carboxylate groups with transition metals, especially importing the ancillary ligand (e.g. pyridine), has undergone extensive development. (Armentano et al., 2005; Karmakar et al., 2009; Zhu et al.,2011; Zhao et al.,2010; Liu et al.,2008). In this context, we report the synthesis and structure of a new compound, [Cd(C9H7O3)2(C10H8N2)2].

A perspective view of molecular structure of the title complex is presented in Fig.1. The Cd2+ ions are eight-coordinated by two carboxylate groups from two 3-(3-hydroxyphenyl)propenoate anions, and four nitrogen atoms from two 2,2'-bipyridine molecules. The structure of complex molecule consists of four approximately planar fragments: two 3-(3-hydroxyphenyl)propenoate residues and two 2,2'-bipyridine ligands (largest deviation from the l.s. planes is 0.240 (1) Å for one of 3-(3-hydroxyphenyl)propenoate residues). The dihedral angles formed by the l.s. planes of 2,2'-bipyridine ligands and opposite 3-(3-hydroxyphenyl)propenoate residues are 22.68 (7)° and 26.47 (6)°. Strong intermolecular hydrogen bonding interactions O—H···O (2.672 (3) Å and 2.624 (3) Å) between the carboxylate O atoms and hydroxy groups play a vital role in the construction of the chains along the a direction (Figure. 2).

For carboxylate complexes, see: Armentano et al. (2005); Baca et al. (2005); Karmakar et al. (2009); Liu et al. (2008); Rao et al. (2004); Zhao et al. (2010); Zhu et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% displacement ellipsoids for non-H atoms and atom labelling scheme.
[Figure 2] Fig. 2. Molecular packing diagram of the title compound showing the hydrogen bonding interactions.
(I) top
Crystal data top
[Cd(C9H7O3)2(C10H8N2)2]F(000) = 1528
Mr = 751.06Dx = 1.458 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9455 reflections
a = 8.7769 (16) Åθ = 2.0–27.6°
b = 36.711 (7) ŵ = 0.69 mm1
c = 13.188 (2) ÅT = 296 K
β = 126.382 (10)°Block, yellow
V = 3421.0 (10) Å30.35 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7869 independent reflections
Radiation source: fine-focus sealed tube6136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.81, Tmax = 0.93k = 4547
29901 measured reflectionsl = 1217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0265P)2 + 1.7042P]
where P = (Fo2 + 2Fc2)/3
7869 reflections(Δ/σ)max = 0.002
442 parametersΔρmax = 0.48 e Å3
1 restraintΔρmin = 0.53 e Å3
Crystal data top
[Cd(C9H7O3)2(C10H8N2)2]V = 3421.0 (10) Å3
Mr = 751.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7769 (16) ŵ = 0.69 mm1
b = 36.711 (7) ÅT = 296 K
c = 13.188 (2) Å0.35 × 0.25 × 0.10 mm
β = 126.382 (10)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7869 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6136 reflections with I > 2σ(I)
Tmin = 0.81, Tmax = 0.93Rint = 0.034
29901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.076H-atom parameters constrained
S = 1.02Δρmax = 0.48 e Å3
7869 reflectionsΔρmin = 0.53 e Å3
442 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.04645 (2)0.375575 (5)0.026646 (16)0.03575 (6)
C10.4528 (4)0.43853 (9)0.4179 (3)0.0566 (7)
C20.3126 (4)0.45796 (10)0.5215 (3)0.0659 (9)
H2A0.33560.46820.57580.079*
C30.1399 (4)0.46216 (9)0.5447 (3)0.0634 (8)
H3A0.04550.47520.61500.076*
C40.1046 (4)0.44724 (8)0.4651 (2)0.0520 (7)
H4A0.01330.45040.48150.062*
C50.2440 (3)0.42738 (7)0.3599 (2)0.0397 (6)
C60.4180 (4)0.42272 (8)0.3377 (2)0.0467 (6)
H6A0.51160.40900.26910.056*
C70.2141 (3)0.41185 (7)0.2705 (2)0.0400 (6)
H7A0.31460.39880.20320.048*
C80.0614 (4)0.41434 (8)0.2754 (2)0.0483 (7)
H8A0.04420.42570.34480.058*
C90.0479 (4)0.39991 (7)0.1755 (3)0.0450 (6)
C101.0806 (3)0.27718 (8)0.3225 (3)0.0497 (7)
C111.1024 (4)0.24959 (8)0.4007 (3)0.0543 (7)
H11A1.21130.23530.44310.065*
C120.9631 (4)0.24317 (8)0.4159 (3)0.0571 (8)
H12A0.97920.22490.47040.069*
C130.8003 (4)0.26347 (8)0.3511 (3)0.0519 (7)
H13A0.70630.25870.36160.062*
C140.7738 (3)0.29118 (7)0.2697 (2)0.0385 (5)
C150.9169 (3)0.29806 (7)0.2571 (2)0.0452 (6)
H15A0.90330.31670.20460.054*
C160.6011 (3)0.31352 (7)0.1980 (2)0.0385 (5)
H16A0.59790.33200.14850.046*
C170.4518 (3)0.31013 (7)0.1967 (2)0.0415 (6)
H17A0.45220.29210.24640.050*
C180.2812 (3)0.33360 (7)0.1201 (2)0.0403 (6)
C190.0096 (5)0.36621 (9)0.2536 (3)0.0652 (9)
H19A0.12210.37800.19330.078*
C200.0296 (6)0.35961 (11)0.3692 (3)0.0792 (10)
H20A0.05370.36690.38710.095*
C210.1927 (6)0.34225 (12)0.4564 (3)0.0928 (13)
H21A0.22370.33760.53600.111*
C220.3119 (6)0.33158 (11)0.4275 (3)0.0853 (11)
H22A0.42420.31950.48690.102*
C230.2633 (4)0.33893 (8)0.3082 (3)0.0531 (7)
C240.3793 (4)0.32705 (8)0.2669 (3)0.0523 (7)
C250.5515 (5)0.30908 (11)0.3469 (3)0.0819 (11)
H25A0.60100.30530.43100.098*
C260.6470 (5)0.29702 (12)0.3015 (4)0.0934 (13)
H26A0.76190.28500.35430.112*
C270.5740 (5)0.30267 (10)0.1791 (4)0.0812 (11)
H27A0.63680.29440.14630.097*
C280.4037 (4)0.32097 (8)0.1041 (3)0.0607 (8)
H28A0.35350.32500.02010.073*
C290.4742 (4)0.41556 (9)0.1822 (3)0.0717 (10)
H29A0.50050.39320.16280.086*
C300.6181 (4)0.44032 (10)0.2474 (3)0.0723 (9)
H30A0.73920.43480.27220.087*
C310.5795 (5)0.47320 (10)0.2748 (3)0.0736 (10)
H31A0.67450.49060.31920.088*
C320.4000 (4)0.48052 (9)0.2365 (3)0.0641 (8)
H32A0.37140.50290.25440.077*
C330.2614 (4)0.45420 (7)0.1708 (2)0.0451 (6)
C340.0622 (4)0.46075 (7)0.1234 (2)0.0425 (6)
C350.0035 (5)0.49414 (8)0.1388 (3)0.0604 (8)
H35A0.08970.51300.18170.072*
C360.1825 (5)0.49878 (9)0.0899 (3)0.0710 (9)
H36A0.22490.52090.09900.085*
C370.3057 (5)0.47050 (9)0.0276 (3)0.0685 (9)
H37A0.43310.47320.00660.082*
C380.2389 (4)0.43809 (8)0.0160 (3)0.0551 (7)
H38A0.32320.41890.02590.066*
N10.1041 (3)0.35667 (7)0.2231 (2)0.0512 (6)
N20.3087 (3)0.33299 (6)0.1467 (2)0.0464 (5)
N30.2993 (3)0.42174 (6)0.1454 (2)0.0531 (6)
N40.0578 (3)0.43312 (6)0.06265 (19)0.0434 (5)
O10.0944 (3)0.40896 (5)0.18017 (18)0.0572 (5)
O20.1759 (3)0.38054 (5)0.09022 (18)0.0535 (5)
O30.6236 (3)0.43639 (8)0.3960 (2)0.0870 (8)
H3B0.70040.42740.32630.131*
O40.2746 (3)0.35843 (5)0.05366 (18)0.0545 (5)
O50.1439 (2)0.32674 (5)0.12435 (17)0.0486 (4)
O61.2247 (3)0.28348 (7)0.3133 (2)0.0813 (7)
H6B1.18780.29690.25320.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02886 (9)0.04075 (11)0.03889 (10)0.00123 (7)0.02077 (8)0.00029 (8)
C10.0433 (15)0.083 (2)0.0555 (17)0.0052 (14)0.0358 (15)0.0005 (16)
C20.0562 (18)0.104 (3)0.0470 (17)0.0076 (17)0.0356 (16)0.0120 (17)
C30.0442 (16)0.095 (2)0.0450 (16)0.0007 (15)0.0234 (14)0.0170 (16)
C40.0375 (14)0.072 (2)0.0477 (16)0.0001 (13)0.0260 (13)0.0068 (14)
C50.0353 (12)0.0474 (15)0.0408 (13)0.0031 (11)0.0249 (11)0.0019 (11)
C60.0395 (14)0.0571 (17)0.0468 (15)0.0007 (12)0.0275 (13)0.0012 (13)
C70.0377 (13)0.0425 (15)0.0428 (14)0.0013 (10)0.0255 (12)0.0021 (11)
C80.0436 (14)0.0612 (18)0.0492 (16)0.0062 (12)0.0325 (13)0.0122 (13)
C90.0496 (15)0.0486 (16)0.0501 (16)0.0069 (12)0.0368 (14)0.0027 (13)
C100.0352 (13)0.0610 (18)0.0561 (17)0.0083 (12)0.0287 (13)0.0068 (14)
C110.0389 (14)0.0587 (18)0.0586 (17)0.0178 (13)0.0252 (14)0.0140 (14)
C120.0479 (16)0.0545 (18)0.0661 (19)0.0091 (13)0.0322 (15)0.0222 (15)
C130.0375 (14)0.0545 (17)0.0653 (18)0.0040 (12)0.0313 (14)0.0167 (14)
C140.0292 (11)0.0413 (14)0.0440 (14)0.0030 (10)0.0212 (11)0.0036 (11)
C150.0366 (13)0.0522 (16)0.0479 (15)0.0069 (11)0.0258 (12)0.0111 (12)
C160.0344 (12)0.0401 (14)0.0411 (13)0.0051 (10)0.0224 (11)0.0061 (11)
C170.0331 (12)0.0414 (14)0.0505 (15)0.0057 (10)0.0251 (12)0.0094 (12)
C180.0291 (12)0.0440 (15)0.0415 (14)0.0031 (10)0.0176 (11)0.0043 (12)
C190.072 (2)0.076 (2)0.065 (2)0.0132 (16)0.0500 (19)0.0133 (16)
C200.106 (3)0.085 (3)0.079 (3)0.010 (2)0.073 (3)0.008 (2)
C210.120 (3)0.114 (3)0.062 (2)0.019 (3)0.063 (3)0.021 (2)
C220.090 (3)0.106 (3)0.055 (2)0.023 (2)0.040 (2)0.027 (2)
C230.0509 (16)0.0584 (18)0.0416 (15)0.0007 (13)0.0229 (14)0.0064 (13)
C240.0435 (15)0.0516 (17)0.0480 (16)0.0036 (12)0.0197 (13)0.0086 (13)
C250.060 (2)0.104 (3)0.064 (2)0.028 (2)0.0279 (18)0.031 (2)
C260.061 (2)0.110 (3)0.096 (3)0.037 (2)0.039 (2)0.036 (3)
C270.066 (2)0.087 (3)0.103 (3)0.0295 (19)0.057 (2)0.020 (2)
C280.0609 (18)0.061 (2)0.067 (2)0.0172 (15)0.0423 (17)0.0117 (16)
C290.0447 (17)0.063 (2)0.100 (3)0.0120 (14)0.0385 (18)0.0190 (18)
C300.0460 (17)0.083 (3)0.078 (2)0.0140 (16)0.0317 (17)0.008 (2)
C310.062 (2)0.078 (2)0.076 (2)0.0325 (18)0.0380 (19)0.0200 (19)
C320.066 (2)0.057 (2)0.072 (2)0.0205 (15)0.0425 (18)0.0197 (16)
C330.0514 (15)0.0463 (16)0.0385 (14)0.0114 (12)0.0272 (13)0.0037 (12)
C340.0542 (15)0.0411 (15)0.0381 (14)0.0002 (12)0.0306 (13)0.0020 (11)
C350.071 (2)0.0463 (18)0.065 (2)0.0025 (15)0.0411 (18)0.0054 (15)
C360.080 (2)0.051 (2)0.082 (2)0.0148 (16)0.048 (2)0.0049 (17)
C370.0551 (18)0.066 (2)0.080 (2)0.0126 (16)0.0374 (18)0.0048 (18)
C380.0440 (15)0.0523 (17)0.0607 (18)0.0062 (13)0.0265 (14)0.0035 (14)
N10.0540 (14)0.0567 (15)0.0470 (13)0.0049 (11)0.0322 (12)0.0078 (11)
N20.0427 (12)0.0454 (13)0.0491 (13)0.0056 (10)0.0261 (11)0.0051 (10)
N30.0416 (12)0.0477 (14)0.0673 (15)0.0094 (10)0.0309 (12)0.0105 (12)
N40.0428 (12)0.0427 (13)0.0439 (12)0.0009 (9)0.0254 (10)0.0010 (10)
O10.0630 (12)0.0674 (13)0.0661 (11)0.0076 (10)0.0519 (11)0.0153 (9)
O20.0521 (11)0.0628 (13)0.0497 (11)0.0022 (9)0.0324 (10)0.0086 (10)
O30.0528 (13)0.147 (2)0.0842 (16)0.0142 (14)0.0532 (13)0.0328 (16)
O40.0469 (11)0.0551 (12)0.0604 (12)0.0145 (9)0.0312 (10)0.0181 (10)
O50.0300 (9)0.0545 (11)0.0605 (11)0.0048 (8)0.0264 (9)0.0008 (9)
O60.0448 (11)0.120 (2)0.0959 (17)0.0310 (12)0.0506 (13)0.0445 (15)
Geometric parameters (Å, º) top
Cd1—O22.4033 (18)C19—N11.325 (4)
Cd1—N12.428 (2)C19—C201.371 (4)
Cd1—O42.4325 (18)C19—H19A0.9300
Cd1—N22.434 (2)C20—C211.351 (5)
Cd1—O52.4544 (18)C20—H20A0.9300
Cd1—N42.458 (2)C21—C221.366 (5)
Cd1—N32.475 (2)C21—H21A0.9300
Cd1—O12.5435 (19)C22—C231.391 (4)
C1—O31.351 (3)C22—H22A0.9300
C1—C21.377 (4)C23—N11.332 (3)
C1—C61.390 (4)C23—C241.477 (4)
C2—C31.366 (4)C24—N21.334 (3)
C2—H2A0.9300C24—C251.393 (4)
C3—C41.373 (4)C25—C261.361 (5)
C3—H3A0.9300C25—H25A0.9300
C4—C51.393 (4)C26—C271.353 (5)
C4—H4A0.9300C26—H26A0.9300
C5—C61.385 (3)C27—C281.382 (4)
C5—C71.466 (3)C27—H27A0.9300
C6—H6A0.9300C28—N21.327 (3)
C7—C81.306 (3)C28—H28A0.9300
C7—H7A0.9300C29—N31.327 (3)
C8—C91.488 (3)C29—C301.368 (4)
C8—H8A0.9300C29—H29A0.9300
C9—O21.239 (3)C30—C311.359 (5)
C9—O11.259 (3)C30—H30A0.9300
C10—O61.360 (3)C31—C321.366 (4)
C10—C111.376 (4)C31—H31A0.9300
C10—C151.388 (3)C32—C331.384 (4)
C11—C121.372 (4)C32—H32A0.9300
C11—H11A0.9300C33—N31.333 (3)
C12—C131.371 (4)C33—C341.486 (4)
C12—H12A0.9300C34—N41.334 (3)
C13—C141.395 (3)C34—C351.390 (4)
C13—H13A0.9300C35—C361.364 (4)
C14—C151.385 (3)C35—H35A0.9300
C14—C161.471 (3)C36—C371.367 (4)
C15—H15A0.9300C36—H36A0.9300
C16—C171.307 (3)C37—C381.374 (4)
C16—H16A0.9300C37—H37A0.9300
C17—C181.487 (3)C38—N41.334 (3)
C17—H17A0.9300C38—H38A0.9300
C18—O41.241 (3)O3—H3B0.8200
C18—O51.264 (3)O6—H6B0.8200
O2—Cd1—N1145.83 (7)O4—C18—C17120.8 (2)
O2—Cd1—O4127.34 (7)O5—C18—C17117.1 (2)
N1—Cd1—O481.09 (7)N1—C19—C20123.6 (3)
O2—Cd1—N280.88 (7)N1—C19—H19A118.2
N1—Cd1—N266.68 (8)C20—C19—H19A118.2
O4—Cd1—N2121.41 (7)C21—C20—C19118.1 (3)
O2—Cd1—O583.59 (6)C21—C20—H20A121.0
N1—Cd1—O5105.53 (7)C19—C20—H20A121.0
O4—Cd1—O553.31 (6)C20—C21—C22119.9 (3)
N2—Cd1—O589.12 (7)C20—C21—H21A120.1
O2—Cd1—N4115.50 (7)C22—C21—H21A120.1
N1—Cd1—N484.57 (7)C21—C22—C23119.2 (3)
O4—Cd1—N480.71 (7)C21—C22—H22A120.4
N2—Cd1—N4138.00 (7)C23—C22—H22A120.4
O5—Cd1—N4129.22 (6)N1—C23—C22120.8 (3)
O2—Cd1—N376.48 (7)N1—C23—C24116.2 (2)
N1—Cd1—N388.83 (8)C22—C23—C24123.0 (3)
O4—Cd1—N3145.59 (7)N2—C24—C25120.6 (3)
N2—Cd1—N383.18 (8)N2—C24—C23117.0 (2)
O5—Cd1—N3159.52 (7)C25—C24—C23122.4 (3)
N4—Cd1—N365.55 (7)C26—C25—C24119.7 (3)
O2—Cd1—O152.40 (6)C26—C25—H25A120.2
N1—Cd1—O1160.57 (7)C24—C25—H25A120.2
O4—Cd1—O187.53 (7)C27—C26—C25119.7 (3)
N2—Cd1—O1132.66 (7)C27—C26—H26A120.1
O5—Cd1—O179.51 (6)C25—C26—H26A120.1
N4—Cd1—O178.06 (7)C26—C27—C28118.3 (3)
N3—Cd1—O191.81 (8)C26—C27—H27A120.8
O3—C1—C2117.8 (3)C28—C27—H27A120.8
O3—C1—C6122.0 (3)N2—C28—C27122.9 (3)
C2—C1—C6120.1 (2)N2—C28—H28A118.6
C3—C2—C1120.0 (3)C27—C28—H28A118.6
C3—C2—H2A120.0N3—C29—C30123.6 (3)
C1—C2—H2A120.0N3—C29—H29A118.2
C2—C3—C4120.5 (3)C30—C29—H29A118.2
C2—C3—H3A119.7C31—C30—C29118.3 (3)
C4—C3—H3A119.7C31—C30—H30A120.8
C3—C4—C5120.5 (3)C29—C30—H30A120.8
C3—C4—H4A119.8C30—C31—C32119.4 (3)
C5—C4—H4A119.8C30—C31—H31A120.3
C6—C5—C4118.8 (2)C32—C31—H31A120.3
C6—C5—C7118.9 (2)C31—C32—C33119.2 (3)
C4—C5—C7122.3 (2)C31—C32—H32A120.4
C5—C6—C1120.0 (3)C33—C32—H32A120.4
C5—C6—H6A120.0N3—C33—C32121.6 (3)
C1—C6—H6A120.0N3—C33—C34116.5 (2)
C8—C7—C5126.9 (2)C32—C33—C34121.9 (3)
C8—C7—H7A116.5N4—C34—C35121.9 (3)
C5—C7—H7A116.5N4—C34—C33116.3 (2)
C7—C8—C9123.4 (2)C35—C34—C33121.8 (2)
C7—C8—H8A118.3C36—C35—C34119.0 (3)
C9—C8—H8A118.3C36—C35—H35A120.5
O2—C9—O1122.3 (2)C34—C35—H35A120.5
O2—C9—C8120.2 (2)C35—C36—C37119.2 (3)
O1—C9—C8117.5 (2)C35—C36—H36A120.4
O6—C10—C11117.9 (2)C37—C36—H36A120.4
O6—C10—C15121.7 (3)C36—C37—C38119.1 (3)
C11—C10—C15120.3 (2)C36—C37—H37A120.4
C12—C11—C10119.8 (2)C38—C37—H37A120.4
C12—C11—H11A120.1N4—C38—C37122.5 (3)
C10—C11—H11A120.1N4—C38—H38A118.7
C13—C12—C11120.4 (3)C37—C38—H38A118.7
C13—C12—H12A119.8C19—N1—C23118.4 (2)
C11—C12—H12A119.8C19—N1—Cd1122.03 (19)
C12—C13—C14120.8 (2)C23—N1—Cd1119.27 (18)
C12—C13—H13A119.6C28—N2—C24118.9 (2)
C14—C13—H13A119.6C28—N2—Cd1121.84 (18)
C15—C14—C13118.5 (2)C24—N2—Cd1118.14 (18)
C15—C14—C16118.9 (2)C29—N3—C33117.9 (2)
C13—C14—C16122.6 (2)C29—N3—Cd1121.6 (2)
C14—C15—C10120.2 (2)C33—N3—Cd1120.49 (17)
C14—C15—H15A119.9C38—N4—C34118.3 (2)
C10—C15—H15A119.9C38—N4—Cd1120.46 (18)
C17—C16—C14126.8 (2)C34—N4—Cd1121.18 (16)
C17—C16—H16A116.6C9—O1—Cd189.06 (16)
C14—C16—H16A116.6C9—O2—Cd196.16 (16)
C16—C17—C18123.5 (2)C1—O3—H3B109.5
C16—C17—H17A118.3C18—O4—Cd193.11 (15)
C18—C17—H17A118.3C18—O5—Cd191.51 (15)
O4—C18—O5122.1 (2)C10—O6—H6B109.5
O3—C1—C2—C3177.3 (3)O5—Cd1—N2—C2870.6 (2)
C6—C1—C2—C30.9 (5)N4—Cd1—N2—C28131.3 (2)
C1—C2—C3—C40.2 (5)N3—Cd1—N2—C2890.4 (2)
C2—C3—C4—C50.4 (5)O1—Cd1—N2—C284.2 (3)
C3—C4—C5—C60.5 (4)O2—Cd1—N2—C24154.5 (2)
C3—C4—C5—C7178.3 (3)N1—Cd1—N2—C2414.47 (19)
C4—C5—C6—C11.7 (4)O4—Cd1—N2—C2477.0 (2)
C7—C5—C6—C1177.2 (3)O5—Cd1—N2—C24121.8 (2)
O3—C1—C6—C5176.3 (3)N4—Cd1—N2—C2436.3 (2)
C2—C1—C6—C51.9 (5)N3—Cd1—N2—C2477.2 (2)
C6—C5—C7—C8178.4 (3)O1—Cd1—N2—C24163.36 (18)
C4—C5—C7—C80.4 (4)C30—C29—N3—C331.6 (5)
C5—C7—C8—C9175.5 (2)C30—C29—N3—Cd1179.6 (3)
C7—C8—C9—O29.4 (4)C32—C33—N3—C291.7 (4)
C7—C8—C9—O1168.8 (3)C34—C33—N3—C29177.5 (3)
O6—C10—C11—C12177.8 (3)C32—C33—N3—Cd1179.7 (2)
C15—C10—C11—C121.2 (5)C34—C33—N3—Cd10.5 (3)
C10—C11—C12—C131.7 (5)O2—Cd1—N3—C2951.6 (3)
C11—C12—C13—C140.6 (5)N1—Cd1—N3—C2997.2 (3)
C12—C13—C14—C150.9 (4)O4—Cd1—N3—C29169.5 (2)
C12—C13—C14—C16179.8 (3)N2—Cd1—N3—C2930.6 (3)
C13—C14—C15—C101.3 (4)O5—Cd1—N3—C2938.0 (4)
C16—C14—C15—C10179.3 (2)N4—Cd1—N3—C29178.2 (3)
O6—C10—C15—C14179.2 (3)O1—Cd1—N3—C29102.2 (3)
C11—C10—C15—C140.3 (4)O2—Cd1—N3—C33126.3 (2)
C15—C14—C16—C17178.3 (3)N1—Cd1—N3—C3384.8 (2)
C13—C14—C16—C172.4 (4)O4—Cd1—N3—C3312.5 (3)
C14—C16—C17—C18179.2 (2)N2—Cd1—N3—C33151.5 (2)
C16—C17—C18—O41.1 (4)O5—Cd1—N3—C33139.9 (2)
C16—C17—C18—O5177.9 (2)N4—Cd1—N3—C330.25 (19)
N1—C19—C20—C210.4 (6)O1—Cd1—N3—C3375.8 (2)
C19—C20—C21—C220.6 (6)C37—C38—N4—C340.5 (4)
C20—C21—C22—C230.2 (7)C37—C38—N4—Cd1176.2 (2)
C21—C22—C23—N11.1 (6)C35—C34—N4—C380.1 (4)
C21—C22—C23—C24177.3 (3)C33—C34—N4—C38178.5 (2)
N1—C23—C24—N24.2 (4)C35—C34—N4—Cd1176.5 (2)
C22—C23—C24—N2174.2 (3)C33—C34—N4—Cd11.8 (3)
N1—C23—C24—C25178.3 (3)O2—Cd1—N4—C38117.8 (2)
C22—C23—C24—C253.3 (5)N1—Cd1—N4—C3891.1 (2)
N2—C24—C25—C261.0 (6)O4—Cd1—N4—C389.2 (2)
C23—C24—C25—C26176.4 (3)N2—Cd1—N4—C38136.7 (2)
C24—C25—C26—C270.1 (6)O5—Cd1—N4—C3814.6 (2)
C25—C26—C27—C280.5 (6)N3—Cd1—N4—C38177.8 (2)
C26—C27—C28—N20.4 (6)O1—Cd1—N4—C3880.2 (2)
N3—C29—C30—C310.7 (6)O2—Cd1—N4—C3458.8 (2)
C29—C30—C31—C320.2 (5)N1—Cd1—N4—C3492.33 (19)
C30—C31—C32—C330.1 (5)O4—Cd1—N4—C34174.16 (19)
C31—C32—C33—N30.9 (5)N2—Cd1—N4—C3446.7 (2)
C31—C32—C33—C34178.3 (3)O5—Cd1—N4—C34162.03 (16)
N3—C33—C34—N41.5 (3)N3—Cd1—N4—C341.15 (17)
C32—C33—C34—N4179.3 (2)O1—Cd1—N4—C3496.41 (19)
N3—C33—C34—C35176.9 (3)O2—C9—O1—Cd12.4 (3)
C32—C33—C34—C352.3 (4)C8—C9—O1—Cd1175.8 (2)
N4—C34—C35—C360.2 (4)O2—Cd1—O1—C91.33 (15)
C33—C34—C35—C36178.1 (3)N1—Cd1—O1—C9161.6 (2)
C34—C35—C36—C370.1 (5)O4—Cd1—O1—C9144.40 (16)
C35—C36—C37—C380.2 (5)N2—Cd1—O1—C912.4 (2)
C36—C37—C38—N40.5 (5)O5—Cd1—O1—C991.29 (16)
C20—C19—N1—C231.6 (5)N4—Cd1—O1—C9134.57 (17)
C20—C19—N1—Cd1172.3 (3)N3—Cd1—O1—C970.03 (16)
C22—C23—N1—C191.9 (5)O1—C9—O2—Cd12.6 (3)
C24—C23—N1—C19176.5 (3)C8—C9—O2—Cd1175.6 (2)
C22—C23—N1—Cd1172.2 (3)N1—Cd1—O2—C9168.65 (16)
C24—C23—N1—Cd19.4 (3)O4—Cd1—O2—C950.39 (19)
O2—Cd1—N1—C19166.6 (2)N2—Cd1—O2—C9173.17 (17)
O4—Cd1—N1—C1943.9 (2)O5—Cd1—O2—C983.04 (16)
N2—Cd1—N1—C19173.8 (3)N4—Cd1—O2—C947.60 (18)
O5—Cd1—N1—C1991.7 (2)N3—Cd1—O2—C9101.71 (17)
N4—Cd1—N1—C1937.5 (2)O1—Cd1—O2—C91.36 (15)
N3—Cd1—N1—C19103.1 (2)O5—C18—O4—Cd10.5 (3)
O1—Cd1—N1—C1911.0 (4)C17—C18—O4—Cd1178.4 (2)
O2—Cd1—N1—C237.3 (3)O2—Cd1—O4—C1842.24 (18)
O4—Cd1—N1—C23142.2 (2)N1—Cd1—O4—C18116.77 (17)
N2—Cd1—N1—C2312.3 (2)N2—Cd1—O4—C1861.19 (17)
O5—Cd1—N1—C2394.4 (2)O5—Cd1—O4—C180.28 (14)
N4—Cd1—N1—C23136.3 (2)N4—Cd1—O4—C18157.32 (16)
N3—Cd1—N1—C2370.8 (2)N3—Cd1—O4—C18168.62 (15)
O1—Cd1—N1—C23162.9 (2)O1—Cd1—O4—C1879.02 (16)
C27—C28—N2—C240.4 (5)O4—C18—O5—Cd10.5 (3)
C27—C28—N2—Cd1167.1 (3)C17—C18—O5—Cd1178.4 (2)
C25—C24—N2—C281.1 (4)O2—Cd1—O5—C18147.93 (15)
C23—C24—N2—C28176.4 (3)N1—Cd1—O5—C1865.67 (15)
C25—C24—N2—Cd1166.8 (3)O4—Cd1—O5—C180.27 (14)
C23—C24—N2—Cd115.6 (3)N2—Cd1—O5—C18131.15 (15)
O2—Cd1—N2—C2813.0 (2)N4—Cd1—O5—C1830.07 (17)
N1—Cd1—N2—C28178.0 (2)N3—Cd1—O5—C18161.2 (2)
O4—Cd1—N2—C28115.4 (2)O1—Cd1—O5—C1895.06 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O5i0.821.862.672 (3)171
O3—H3B···O1ii0.821.822.624 (3)168
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C9H7O3)2(C10H8N2)2]
Mr751.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.7769 (16), 36.711 (7), 13.188 (2)
β (°) 126.382 (10)
V3)3421.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.35 × 0.25 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.81, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
29901, 7869, 6136
Rint0.034
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.076, 1.02
No. of reflections7869
No. of parameters442
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.53

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O5i0.821.862.672 (3)170.7
O3—H3B···O1ii0.821.822.624 (3)167.9
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

References

First citationArmentano, D., Munno, G. D., Lloret, F. & Julve, M. (2005). CrystEngComm, 7, 57–66.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaca, S. G., Filippova, I. G., Ambrus, C., Gdaniec, M., Simonov, Y. A., Gerbeleu, N., Gherco, O. A. & Decurtins, S. (2005). Eur. J. Inorg. Chem. pp. 3118–3130.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKarmakar, A., Baruah, J. B. & Shankar, R. B. (2009). CrystEngComm, 11, 832–840.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, G. X., Huang, R. Y., Xu, H., Kong, X. J., Huang, L. F., Zhu, K. & Ren, X. M. (2008). Polyhedron, 27, 2327–2336.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, J. W., Shi, D. Y., Cheng, H. L., Chen, L. J., Ma, P. T. & Niu, J. Y. (2010). Inorg. Chem. Commun. 13, 822–827.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, H. L., Xu, W., Lin, J. L., Cheng, Y. & Zheng, Y. Q. (2011). Inorg. Chim. Acta, 366, 27–38.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds