metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[bis­(di­methylazanium) [[chloridocopper(II)]-di-μ-chlorido-[chloridocopper(II)]-di-μ-azido-κ4N:N]]

aDepartment of Obstetrics and Gynecology, The First Affiliated Hospital of Henan University, of Traditional Chinese Medicine, Zhengzhou, 450008, People's Republic of China, bHenan Medical College for Staff and Workers, Zhengzhou, 451191, People's Republic of China, and cDepartment of Urology, Henan Provincial People's Pospital, Zhengzhou, 450003, People's Republic of China
*Correspondence e-mail: liu_jie1011@163.com

(Received 11 September 2011; accepted 24 November 2011; online 30 November 2011)

The crystal structure of the title complex, {(C2H8N)[CuCl2(N3)]}n, exhibits inorganic chains consisting of Cu(II) cations as well azide and chloride anions. The chains, made up from Cu—Cl—Cu—N—Cu linkages, are aligned parallel to the c axis. This architecture is further stabilized by a number of N—H⋯Cl hydrogen bonds involving the protonated charge-compensating dimethyl­amine cations and chloride atoms.

Related literature

For background to polynuclear complexes, see Goher et al. (2000[Goher, M. A. S., Cano, J., Journaux, Y., Abu-Youssef, M. A. M., Mautner, F. A., Escuer, A. & Vicente, R. (2000). Chem. Eur. J. 6, 778-784.]); Liu et al. (2008[Liu, T., Yang, Y. F., Wang, Z. M. & Gao, S. (2008). Chem. Asian J. 3, 950-957.]); Ribas et al. (1994[Ribas, J., Monfort, M., Diaz, C., Bastos, C. & Solans, X. (1994). Inorg. Chem. 33, 484-489.]); Saha et al. (2005[Saha, S., Koner, S., Tuchagues, J. P., Boudalis, A. K., Okamoto, K. I., Banerjee, S. & Mal, D. (2005). Inorg. Chem. 44, 6379-6385.]); Vicente et al. (1993[Vicente, R., Escuer, A., Ribas, J., Fallah, M. S., Solans, X. & Font-Bardid, M. (1993). Inorg. Chem. 32, 1920-1924.]); Wang et al. (2008[Wang, X. Y., Wang, Z. M. & Gao, S. (2008). Chem. Commun. pp. 281-294.]). For di- or polyalkyl­amines as templates, see: Cheetham et al. (1999[Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]); Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]). For related copper(II) complexes, see: Mautner et al. (1999[Mautner, F. A., Hanna, S., Cortes, R., Lezama, L., Barandika, M. G. & Rojo, T. (1999). Inorg. Chem. 38, 4647-4652.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H8N)[CuCl2(N3)]

  • Mr = 222.57

  • Monoclinic, C 2/c

  • a = 15.348 (5) Å

  • b = 11.089 (2) Å

  • c = 10.729 (2) Å

  • β = 119.73 (2)°

  • V = 1585.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.35 mm−1

  • T = 298 K

  • 0.14 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.651, Tmax = 0.775

  • 3510 measured reflections

  • 1811 independent reflections

  • 1251 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.066

  • S = 0.94

  • 1811 reflections

  • 85 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1i 1.987 (2)
Cu1—N1 2.002 (2)
Cu1—Cl2 2.2527 (8)
Cu1—Cl1 2.2729 (9)
Cu1—Cl1ii 2.8860 (13)
Cu1—Cu1i 3.1460 (7)
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1⋯Cl1iii 0.99 2.41 3.331 (3) 154
N4—H2⋯Cl2ii 0.87 2.50 3.257 (3) 146
N4—H2⋯Cl1 0.87 2.82 3.270 (2) 114
N4—H2⋯Cl2 0.87 2.92 3.340 (3) 112
Symmetry codes: (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

It is well known that the azide ion is a versatile ligand, and its versatility and efficiency lie in its functionality as a terminal monodentate and a bridging bi-, tri-, and tetradentate ligand. Because of this unique capability, azide attracts a lot of attention in the design of mono- or multidimensional metal-assembled azido complexes. (Vicente et al., 1993; Ribas et al., 1994; Goher et al., 2000; Saha et al., 2005; Liu et al., 2008). Having control over the molecular dimensions and geometry of the metal-ligand moiety in the compounds may lead to the control over their magnetic properties.(Wang et al., 2008). Di- or polyalkylamines, if protonated, could be conveniently used as cationic templates, and they have been widely employed in making metal oxalates, metal phosphates, and oxometalates.(Cheetham et al., 1999; Hagrman et al., 1999).In order to study the coordination behavior of the azide ion and templates, we synthesized herein the title complex [(NH2(CH3)2)(CuN3Cl2)]n. As shown in Figure 1, each asymmetric unit contains one Cu(II) atom, two chloride atoms, one azide atom and one dimethylamine cation. This architecture is further stabilized by a number of N—H···Cl hydrogen bonds involving the protonated charge-compensating dimethylamine cations and chloride atoms.(Figure 2). The bond distances for Cu—N are 1.984 (2) and 2.001 (2) Å, respectively. and the angles for N—Cu—Cl are between 92.86 (6) and 167.48 (6)°. The Cu—Cl bond lengths are 2.2526 (8) Å, 2.2725 (10) Å, respectively. and the bond angles for N—Cu—N and Cl—Cu—Cl are 75.74 (10) and 94.61 (2)°, respectively. These bond distances and bond angles are in agreement with those found in the reported copper compounds(Mautner et al., 1999).

Related literature top

For background to polynuclear complexes, see Goher et al. (2000); Liu et al. (2008); Ribas et al. (1994); Saha et al. (2005); Vicente et al. (1993); Wang et al. (2008). For di- or polyalkylamines as templates, see: Cheetham et al. (1999); Hagrman et al. (1999). For related copper(II) complexes, see: Mautner et al.(1999).)

Experimental top

A mixture of methanol and water (1:1, 2 ml) was gently layered on the top of a solution of Cu(ClO4)2.6H2O (37.1 mg, 0.1 mmol) in water (3 ml). A solution of dimethylamine (18 mg, 0.4 mmol), NaN3 (13 mg, 0.2 mmol) and hydrochloric acid (40.5 mg, 0.4 mmol, 36%) in methanol (10 ml) was added carefully as the third layer. Green crystals were obtained after 3 weeks, washed with ethanol and ether, and dried in air.

Refinement top

During refinement, H atoms were placed in calculated positions and allowed to ride, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)or Uiso(H) = 1.5Ueq(C).

Data collection: APEX2(Bruker, 2007); cell refinemnet: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structures: SHELXS97(Sheldrick, 2008); program(s) used to refine structures: SHELXL97(Sheldrick, 2008); molecular graphics: SHELXTL(Sheldrick, 2008); software used to prepare material for publication: publCIF.

Structure description top

It is well known that the azide ion is a versatile ligand, and its versatility and efficiency lie in its functionality as a terminal monodentate and a bridging bi-, tri-, and tetradentate ligand. Because of this unique capability, azide attracts a lot of attention in the design of mono- or multidimensional metal-assembled azido complexes. (Vicente et al., 1993; Ribas et al., 1994; Goher et al., 2000; Saha et al., 2005; Liu et al., 2008). Having control over the molecular dimensions and geometry of the metal-ligand moiety in the compounds may lead to the control over their magnetic properties.(Wang et al., 2008). Di- or polyalkylamines, if protonated, could be conveniently used as cationic templates, and they have been widely employed in making metal oxalates, metal phosphates, and oxometalates.(Cheetham et al., 1999; Hagrman et al., 1999).In order to study the coordination behavior of the azide ion and templates, we synthesized herein the title complex [(NH2(CH3)2)(CuN3Cl2)]n. As shown in Figure 1, each asymmetric unit contains one Cu(II) atom, two chloride atoms, one azide atom and one dimethylamine cation. This architecture is further stabilized by a number of N—H···Cl hydrogen bonds involving the protonated charge-compensating dimethylamine cations and chloride atoms.(Figure 2). The bond distances for Cu—N are 1.984 (2) and 2.001 (2) Å, respectively. and the angles for N—Cu—Cl are between 92.86 (6) and 167.48 (6)°. The Cu—Cl bond lengths are 2.2526 (8) Å, 2.2725 (10) Å, respectively. and the bond angles for N—Cu—N and Cl—Cu—Cl are 75.74 (10) and 94.61 (2)°, respectively. These bond distances and bond angles are in agreement with those found in the reported copper compounds(Mautner et al., 1999).

For background to polynuclear complexes, see Goher et al. (2000); Liu et al. (2008); Ribas et al. (1994); Saha et al. (2005); Vicente et al. (1993); Wang et al. (2008). For di- or polyalkylamines as templates, see: Cheetham et al. (1999); Hagrman et al. (1999). For related copper(II) complexes, see: Mautner et al.(1999).)

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure for title compound. Displacement ellipsoids at the 30% probability level. Symmetry codes: (i) -x,-y + 1,-z
catena-Poly[bis(dimethylazanium) [[chloridocopper(II)]-di-µ-chlorido-[chloridocopper(II)]-di-µ-azido- κ4N:N]] top
Crystal data top
(C2H8N)[CuCl2(N3)]F(000) = 888
Mr = 222.57Dx = 1.865 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.348 (5) ÅCell parameters from 1037 reflections
b = 11.089 (2) Åθ = 2.6–24.6°
c = 10.729 (2) ŵ = 3.35 mm1
β = 119.73 (2)°T = 298 K
V = 1585.7 (7) Å3Block, green
Z = 80.14 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
1811 independent reflections
Radiation source: fine-focus sealed tube1251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1919
Tmin = 0.651, Tmax = 0.775k = 1414
3510 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0361P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.012
1811 reflectionsΔρmax = 0.41 e Å3
85 parametersΔρmin = 0.38 e Å3
13 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (3)
Crystal data top
(C2H8N)[CuCl2(N3)]V = 1585.7 (7) Å3
Mr = 222.57Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.348 (5) ŵ = 3.35 mm1
b = 11.089 (2) ÅT = 298 K
c = 10.729 (2) Å0.14 × 0.10 × 0.08 mm
β = 119.73 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1811 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1251 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 0.775Rint = 0.025
3510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02713 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 0.94Δρmax = 0.41 e Å3
1811 reflectionsΔρmin = 0.38 e Å3
85 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.03408 (2)0.39407 (3)0.06367 (3)0.03133 (14)
Cl10.14064 (5)0.39423 (5)0.15347 (8)0.03677 (18)
Cl20.03672 (5)0.19228 (5)0.03779 (7)0.0404 (2)
N10.04383 (19)0.57303 (19)0.0352 (3)0.0409 (6)
N20.08322 (18)0.64469 (19)0.0760 (3)0.0388 (6)
N30.1205 (2)0.7121 (2)0.1134 (3)0.0659 (9)
N40.1737 (2)0.1071 (2)0.1860 (3)0.0492 (6)
H10.21640.12910.08340.059*
H20.11800.14790.22870.059*
C10.1482 (3)0.0211 (3)0.1877 (4)0.0631 (9)
H1A0.11330.04960.28500.095*
H1B0.10620.03030.14550.095*
H1C0.20870.06690.13370.095*
C20.2303 (3)0.1339 (3)0.2608 (4)0.0579 (8)
H2A0.29210.08940.21670.087*
H2B0.24460.21860.25440.087*
H2C0.19110.11100.35980.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0392 (2)0.02505 (19)0.0368 (2)0.00100 (14)0.02419 (17)0.00218 (13)
Cl10.0405 (4)0.0355 (4)0.0434 (4)0.0016 (3)0.0277 (3)0.0042 (3)
Cl20.0520 (5)0.0270 (3)0.0459 (5)0.0020 (3)0.0271 (4)0.0012 (3)
N10.0609 (17)0.0280 (11)0.0535 (16)0.0035 (10)0.0433 (14)0.0048 (10)
N20.0495 (15)0.0285 (12)0.0501 (16)0.0050 (10)0.0336 (13)0.0062 (10)
N30.087 (2)0.0483 (17)0.092 (2)0.0157 (15)0.067 (2)0.0034 (14)
N40.0569 (14)0.0425 (11)0.0524 (14)0.0084 (10)0.0303 (11)0.0003 (9)
C10.0676 (17)0.0421 (14)0.0641 (17)0.0036 (14)0.0208 (15)0.0025 (13)
C20.0592 (17)0.0641 (15)0.0575 (17)0.0108 (14)0.0342 (14)0.0001 (13)
Geometric parameters (Å, º) top
Cu1—N1i1.987 (2)N4—C11.471 (4)
Cu1—N12.002 (2)N4—C21.477 (4)
Cu1—Cl22.2527 (8)N4—H10.9931
Cu1—Cl12.2729 (9)N4—H20.8693
Cu1—Cl1ii2.8860 (13)C1—H1A0.9600
Cu1—Cu1i3.1460 (7)C1—H1B0.9600
Cl1—Cu1ii2.8860 (13)C1—H1C0.9600
N1—N21.205 (3)C2—H2A0.9600
N1—Cu1i1.987 (2)C2—H2B0.9600
N2—N31.129 (3)C2—H2C0.9600
N1i—Cu1—N175.87 (10)N3—N2—N1179.6 (3)
N1i—Cu1—Cl295.48 (7)C1—N4—C2114.3 (2)
N1—Cu1—Cl2166.02 (7)C1—N4—H1106.0
N1i—Cu1—Cl1167.54 (7)C2—N4—H1108.0
N1—Cu1—Cl192.79 (7)C1—N4—H2108.1
Cl2—Cu1—Cl194.60 (3)C2—N4—H2107.4
N1i—Cu1—Cl1ii94.01 (8)H1—N4—H2113.1
N1—Cu1—Cl1ii96.89 (7)N4—C1—H1A109.5
Cl2—Cu1—Cl1ii94.63 (2)N4—C1—H1B109.5
Cl1—Cu1—Cl1ii92.46 (3)H1A—C1—H1B109.5
N1i—Cu1—Cu1i38.11 (6)N4—C1—H1C109.5
N1—Cu1—Cu1i37.76 (7)H1A—C1—H1C109.5
Cl2—Cu1—Cu1i132.67 (3)H1B—C1—H1C109.5
Cl1—Cu1—Cu1i130.36 (2)N4—C2—H2A109.5
Cl1ii—Cu1—Cu1i96.92 (2)N4—C2—H2B109.5
Cu1—Cl1—Cu1ii87.54 (3)H2A—C2—H2B109.5
N2—N1—Cu1i128.05 (19)N4—C2—H2C109.5
N2—N1—Cu1127.70 (19)H2A—C2—H2C109.5
Cu1i—N1—Cu1104.13 (10)H2B—C2—H2C109.5
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···Cl1iii0.992.413.331 (3)154
N4—H2···Cl2ii0.872.503.257 (3)146
N4—H2···Cl10.872.823.270 (2)114
N4—H2···Cl20.872.923.340 (3)112
Symmetry codes: (ii) x, y, z+1/2; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula(C2H8N)[CuCl2(N3)]
Mr222.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)15.348 (5), 11.089 (2), 10.729 (2)
β (°) 119.73 (2)
V3)1585.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)3.35
Crystal size (mm)0.14 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.651, 0.775
No. of measured, independent and
observed [I > 2σ(I)] reflections
3510, 1811, 1251
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 0.94
No. of reflections1811
No. of parameters85
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.38

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—N1i1.987 (2)Cu1—Cl12.2729 (9)
Cu1—N12.002 (2)Cu1—Cl1ii2.8860 (13)
Cu1—Cl22.2527 (8)Cu1—Cu1i3.1460 (7)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···Cl1iii0.992.413.331 (3)154.0
N4—H2···Cl2ii0.872.503.257 (3)145.7
N4—H2···Cl10.872.823.270 (2)113.9
N4—H2···Cl20.872.923.340 (3)111.6
Symmetry codes: (ii) x, y, z+1/2; (iii) x1/2, y+1/2, z.
 

Acknowledgements

This study was supported by the Doctoral Research Fund of Henan Chinese Medicine (BSJJ2009–42).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationGoher, M. A. S., Cano, J., Journaux, Y., Abu-Youssef, M. A. M., Mautner, F. A., Escuer, A. & Vicente, R. (2000). Chem. Eur. J. 6, 778–784.  CrossRef PubMed CAS Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationLiu, T., Yang, Y. F., Wang, Z. M. & Gao, S. (2008). Chem. Asian J. 3, 950–957.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMautner, F. A., Hanna, S., Cortes, R., Lezama, L., Barandika, M. G. & Rojo, T. (1999). Inorg. Chem. 38, 4647–4652.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRibas, J., Monfort, M., Diaz, C., Bastos, C. & Solans, X. (1994). Inorg. Chem. 33, 484–489.  CSD CrossRef CAS Web of Science Google Scholar
First citationSaha, S., Koner, S., Tuchagues, J. P., Boudalis, A. K., Okamoto, K. I., Banerjee, S. & Mal, D. (2005). Inorg. Chem. 44, 6379–6385.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicente, R., Escuer, A., Ribas, J., Fallah, M. S., Solans, X. & Font-Bardid, M. (1993). Inorg. Chem. 32, 1920–1924.  CSD CrossRef CAS Web of Science Google Scholar
First citationWang, X. Y., Wang, Z. M. & Gao, S. (2008). Chem. Commun. pp. 281–294.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds