organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Prop-2-ynyl-1H-benzimidazol-2-amine

aDepartment of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 225 001, UP, India, and bChemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
*Correspondence e-mail: dralka@bhu.ac.in,

(Received 24 September 2011; accepted 15 October 2011; online 5 November 2011)

In the title compound, C10H9N3, the benzimidazol-2-amine and CH2—C≡CH units are not coplanar, with a dihedral angle of 60.36° between their mean planes. The crystal structure is stabilized by inter­molecular N—H⋯N hydrogen bonding and ππ inter­actions [centroid–centroid distances 3.677 (1) and 3.580 (1) Å], assembling the mol­ecules into a supra­molecular structure with a three-dimensional network.

Related literature

For the biological activities of benzimidazoles, see: Nawrocka et al. (1999[Nawrocka, W., Zimecki, M., Kuznicki, T. & Kowalska, M. W. (1999). Arch. Pharm. 332, 85-90.]); Cuberens & Contijoch (1997[Cuberens, M. & Contijoch, M. R. (1997). Chem. Pharm. Bull. 45, 1287-1292.]); Mor et al. (2004[Mor, M., Bordi, F., Silva, C., Rivara, S., Zuliana, V., Vacondio, F., Rivara, M., Barocelli, E., Bertoni, S., Ballabeni, V., Magnanini, F., Impicciatore, M. & Plazzi, P. V. (2004). Bioorg. Med. Chem. 12, 663-674.]); de Dios et al. (2005[Dios, A. de, et al. (2005). J. Med. Chem. 48, 2270-2273.]). For polyfunctionality and anti­viral activity of 2-amino­benzimidazoles, see: Garuti & Roberti (2002[Garuti, L. & Roberti, M. (2002). Bioorg. Med. Chem. Lett. 12, 2707-2710.]); Andries et al. (2003[Andries, K., Moeremans, M., Gevers, T., Willebrords, R., Sommen, C., Lacrampe, J., Janssens, F. & Wyde, P. R. (2003). Antiviral. Res. 60, 209-219.]). For anti­proliferative properties, see: Garuti et al. (1998[Garuti, L., Varoli, L., Cermelli, C., Baggio, G., Lupo, L., Malagoli, M. & Castelli, M. (1998). Anti-Cancer Drug Des. 13, 969-980.]); Nawrocka et al. (2005[Nawrocka, W., Sztuba, B., Liszkiewicz, H., Kowalska, M. W., Wietrzyk, J., Nevozhai, D. & Opolski, A. (2005). Pol. J. Chem. 79, 709-716.]). For inhibition activity against various strains of bacteria, fungi and yeasts, see: Nofal et al. (2002[Nofal, Z. M., Fahmy, H. H. & Mohamed, H. S. (2002). Arch. Pharm. Res. 25, 250-257.]); Omar et al. (1996[Omar, M. T., Fahmy, H. H. & Mohamed, H. S. (1996). Egypt. J. Pharm. Sci. 37, 606-620.]); Del Poenta et al. (1999[Del Poenta, M., Bixel, A. S., Barchiesi, F., Tidwell, R. R., Boykin, D., Scalise, G. & Perfect, J. R. (1999). J. Antimicrob. Chemother. 44, 223-228.]). For structural analysis of small mol­ecules, see: Singh, Agarwal, Mahawar & Awasthi (2011[Singh, M. K., Agarwal, A., Mahawar, C. & Awasthi, S. K. (2011). Acta Cryst. E67, o1382.]); Singh, Singh et al. (2011[Singh, S., Singh, M. K., Agarwal, A., Hussain, F. & Awasthi, S. K. (2011). Acta Cryst. E67, o1616-o1617.]); Singh, Agarwal & Awasthi (2011[Singh, M. K., Agarwal, A. & Awasthi, S. K. (2011). Acta Cryst. E67, o1137.]); Agarwal et al. (2011[Agarwal, A., Singh, M. K., Singh, S., Bhattacharya, S. & Awasthi, S. K. (2011). Acta Cryst. E67, o2637-o2638.]). For the synthesis, see: Lilienkampf et al. (2009[Lilienkampf, A., Mao, J., Wan, B., Wang, Y., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 2109-2118.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3

  • Mr = 171.20

  • Monoclinic, C 2/c

  • a = 15.385 (2) Å

  • b = 12.1433 (12) Å

  • c = 9.4653 (10) Å

  • β = 95.755 (11)°

  • V = 1759.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.39 × 0.36 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.677, Tmax = 1.000

  • 9853 measured reflections

  • 3178 independent reflections

  • 2505 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.137

  • S = 1.08

  • 3178 reflections

  • 126 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N1i 0.90 (2) 2.36 (2) 3.1823 (18) 153.5 (18)
N3—H2N3⋯N1ii 0.860 (18) 2.241 (19) 3.0591 (15) 158.6 (15)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The 2-aminobenzimidazole compounds showed different biological activities such as immunotropic, diuretic, antihistamine as well as highly selective p38a MAP inhibition properties ( Nawrocka et al., 1999, Cuberens & Contijoch 1997, Mor et al., 2004, De Dios et al., 2005). The polyfunctionality of the 2-aminobenzimidazole molecule is due to the cyclic guanidine moiety which acts as a building block for the synthesis of a large number of benzimidazole derivatives. The various benzimidazole derivatives such as enviradene and enviroxime and other 2-aminobenzimidazole derivatives have been synthesized and screened for antiviral activity (Garuti & Roberti 2002, Andries et al., 2003). Moreover, a number of 2-aminobenzimidazoles have exhibited antiproliferative properties (Garuti, Varoli et al., 1998, Nawrocka et al., 2005). Further, different substituted 2-aminobenzimidazoles have been found to possess inhibition activity against various strains of bacteria, fungi and yeasts in vivo and in vitro ( Nofal et al., 2002, Omar et al., 1996, Del Poenta et al., 1999). In continuation with our recent work on structural analysis of small molecule (Singh, Agarwal, Mahawar & Awasthi 2011, Singh, Singh, Agarwal, Hussain & Awasthi 2011, Singh, Agarwal & Awasthi 2011, Agarwal et al., 2011), we wish to report here the crystal structure of 1-prop-2-ynyl-1H-benzimidazol-2-ylamine (Figure1).

In the title compound, the C7-N3 single bond length (1.35 Å) is shorter than normal C-N (1.47 Å) bond suggesting a delocalized double bond in benzimidazole moiety. Again, in the crystal structure, the title compound is stabilized by intermolecular N-H···N hydrogen bonding and π···π interaction assembling, thus forming into supramolecule type assembly with a tri-dimensional network (Figure 2, Table 1). π···π interactions form a dimer, the ring A and B of an benzimidazole skeleton stacks with the ring B and A of another adjacent benzimidazole skeleton, respectively. The distance of CgA and CgB is 3.641 Å, where CgA and CgB are the center of ring A and B, respectively and the centroid - centroid distance between two adjacent benzimidazole ring is 3.580 Å and the bond distance between atoms C5···C10 is found to be 3.282 Å as well as the bond distance between atoms C1···C5 is found to be 3.369 Å, which helps in overall crystal structure packing as well as stabilization (Figure 2). In the molecule, 2-aminobenzimidazole ring and CH2-CCH are non-planar with dihedral angle is 60.36. The CCDC No. of crystal is 843876.

Related literature top

For different biological activites, see: Nawrocka et al. (1999); Cuberens & Contijoch (1997); Mor et al. (2004); De Dios et al. (2005). For polyfunctionality and antiviral activity of 2-aminobenzimidazoles, see: Garuti & Roberti (2002); Andries et al. (2003). For antiproliferative properties, see: Garuti et al. (1998); Nawrocka et al. (2005). For inhibition activity against various strains of bacteria, fungi and yeasts, see: Nofal et al. (2002); Omar et al. (1996); Del Poenta et al. (1999). For structural analysis of small molecules, see: Singh, Agarwal, Mahawar & Awasthi (2011); Singh, Singh et al. (2011); Singh, Agarwal & Awasthi (2011); Agarwal et al. (2011). For the synthesis, see: Lilienkampf et al. (2009).

Experimental top

The synthesis of the title compound was carried out according to the published procedure (Lilienkampf et al., 2009). Briefly, to a solution of 2- aminobenzimidazole (0.50 g m, 3.76 mmol) in dry acetone was added anhydrous K2CO3 (3.112 g m, 22.55 mmol) and reaction mixture was further refluxed for 15–30 minutes. Subsequently, KI (0.312 g m, 1.88 mmol) and propargyl bromide (0.39 ml, 4.37 mmol) were added into it and further refluxed the reaction mixture for 18 hrs. After this period, the reaction mixture was cooled, filtered and the filtrate was concentrated invacuo up to 10 ml and left for few days at room temperature which gave transparent crystals after slow evaporation of solvent. Yield = 30%, MS (Macromass G) m/z = 188 (M+), Rf0.59 (98:2, CH2Cl2: MeOH) Elemental analysis (Perkin –Elmer 240°C elemental analyzer)Calculated for: C10 H9 N3(%) C– 70.2, H-5.3, N -24.5 found C-69.9, H-5.5, N -24.6. 1H NMR (CDCl3), 7.71–7.68 (m, 1H), 7.44–7.42 (m, 1H), 7.26–7.21 (m, 1H), 7.07–7.02 (m, 1H), 4.88 (s, 2H, NH2), 4.71 (s, 2H, CH2), 2.43 (s, 1H, CH).

Refinement top

All H atoms were located from difference Fourier map (range of C—H = 0.93 - 0.97 Å and N—H = 0.86 (18) - 0.90 (2) Å) and allowed to refine freely.

Structure description top

The 2-aminobenzimidazole compounds showed different biological activities such as immunotropic, diuretic, antihistamine as well as highly selective p38a MAP inhibition properties ( Nawrocka et al., 1999, Cuberens & Contijoch 1997, Mor et al., 2004, De Dios et al., 2005). The polyfunctionality of the 2-aminobenzimidazole molecule is due to the cyclic guanidine moiety which acts as a building block for the synthesis of a large number of benzimidazole derivatives. The various benzimidazole derivatives such as enviradene and enviroxime and other 2-aminobenzimidazole derivatives have been synthesized and screened for antiviral activity (Garuti & Roberti 2002, Andries et al., 2003). Moreover, a number of 2-aminobenzimidazoles have exhibited antiproliferative properties (Garuti, Varoli et al., 1998, Nawrocka et al., 2005). Further, different substituted 2-aminobenzimidazoles have been found to possess inhibition activity against various strains of bacteria, fungi and yeasts in vivo and in vitro ( Nofal et al., 2002, Omar et al., 1996, Del Poenta et al., 1999). In continuation with our recent work on structural analysis of small molecule (Singh, Agarwal, Mahawar & Awasthi 2011, Singh, Singh, Agarwal, Hussain & Awasthi 2011, Singh, Agarwal & Awasthi 2011, Agarwal et al., 2011), we wish to report here the crystal structure of 1-prop-2-ynyl-1H-benzimidazol-2-ylamine (Figure1).

In the title compound, the C7-N3 single bond length (1.35 Å) is shorter than normal C-N (1.47 Å) bond suggesting a delocalized double bond in benzimidazole moiety. Again, in the crystal structure, the title compound is stabilized by intermolecular N-H···N hydrogen bonding and π···π interaction assembling, thus forming into supramolecule type assembly with a tri-dimensional network (Figure 2, Table 1). π···π interactions form a dimer, the ring A and B of an benzimidazole skeleton stacks with the ring B and A of another adjacent benzimidazole skeleton, respectively. The distance of CgA and CgB is 3.641 Å, where CgA and CgB are the center of ring A and B, respectively and the centroid - centroid distance between two adjacent benzimidazole ring is 3.580 Å and the bond distance between atoms C5···C10 is found to be 3.282 Å as well as the bond distance between atoms C1···C5 is found to be 3.369 Å, which helps in overall crystal structure packing as well as stabilization (Figure 2). In the molecule, 2-aminobenzimidazole ring and CH2-CCH are non-planar with dihedral angle is 60.36. The CCDC No. of crystal is 843876.

For different biological activites, see: Nawrocka et al. (1999); Cuberens & Contijoch (1997); Mor et al. (2004); De Dios et al. (2005). For polyfunctionality and antiviral activity of 2-aminobenzimidazoles, see: Garuti & Roberti (2002); Andries et al. (2003). For antiproliferative properties, see: Garuti et al. (1998); Nawrocka et al. (2005). For inhibition activity against various strains of bacteria, fungi and yeasts, see: Nofal et al. (2002); Omar et al. (1996); Del Poenta et al. (1999). For structural analysis of small molecules, see: Singh, Agarwal, Mahawar & Awasthi (2011); Singh, Singh et al. (2011); Singh, Agarwal & Awasthi (2011); Agarwal et al. (2011). For the synthesis, see: Lilienkampf et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the molecule with thermal ellipsoids drawn at 50% probability level Color code: White: C; blue: N; white: H.
[Figure 2] Fig. 2. Packing diagram of molecule viewed through a plane showing supramolecule arrangement and intermolecular N—H···N (red and purple doted line) hydrogen bonding, C—H···C (Green doted line) interactions and π···π (magneta and light blue doted line) interaction.
[Figure 3] Fig. 3. The synthesis of the title compound.
1-Prop-2-ynyl-1H-benzimidazol-2-amine top
Crystal data top
C10H9N3F(000) = 720.0
Mr = 171.20Dx = 1.293 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2285 reflections
a = 15.385 (2) Åθ = 3.3–29.2°
b = 12.1433 (12) ŵ = 0.08 mm1
c = 9.4653 (10) ÅT = 293 K
β = 95.755 (11)°Block, clear white
V = 1759.5 (3) Å30.39 × 0.36 × 0.20 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3178 independent reflections
Radiation source: fine-focus sealed tube2505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 32.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1923
Tmin = 0.677, Tmax = 1.000k = 1818
9853 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.678P]
where P = (Fo2 + 2Fc2)/3
3178 reflections(Δ/σ)max = 0.006
126 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H9N3V = 1759.5 (3) Å3
Mr = 171.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.385 (2) ŵ = 0.08 mm1
b = 12.1433 (12) ÅT = 293 K
c = 9.4653 (10) Å0.39 × 0.36 × 0.20 mm
β = 95.755 (11)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3178 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2505 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 1.000Rint = 0.020
9853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.25 e Å3
3178 reflectionsΔρmin = 0.18 e Å3
126 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H2N30.4017 (11)0.0261 (14)0.750 (2)0.056 (5)*
H1N30.4441 (14)0.0599 (17)0.892 (2)0.082 (6)*
N20.35287 (7)0.16350 (8)0.82062 (9)0.0344 (2)
N10.40855 (7)0.10067 (8)1.03481 (10)0.0370 (2)
C50.38413 (7)0.21017 (9)1.04715 (11)0.0327 (2)
C70.38975 (8)0.07726 (9)0.89807 (11)0.0347 (2)
N30.40152 (10)0.02285 (9)0.84084 (12)0.0507 (3)
C60.34953 (7)0.25096 (9)0.91465 (11)0.0332 (2)
C40.39113 (9)0.27854 (11)1.16533 (13)0.0416 (3)
H40.41280.25251.25440.050*
C90.38623 (9)0.24521 (11)0.60031 (12)0.0446 (3)
C30.36468 (10)0.38702 (11)1.14576 (15)0.0495 (3)
H30.37000.43501.22270.059*
C80.32884 (9)0.16969 (11)0.66794 (12)0.0448 (3)
H8A0.26890.19470.65000.054*
H8B0.33260.09690.62680.054*
C10.32143 (9)0.35828 (10)0.89445 (15)0.0439 (3)
H10.29790.38390.80620.053*
C20.33019 (10)0.42580 (10)1.01311 (17)0.0508 (3)
H20.31260.49891.00400.061*
C100.43272 (11)0.30823 (14)0.55223 (17)0.0580 (4)
H100.46970.35830.51400.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0425 (5)0.0342 (5)0.0259 (4)0.0015 (4)0.0010 (3)0.0029 (3)
N10.0490 (6)0.0362 (5)0.0257 (4)0.0108 (4)0.0030 (4)0.0004 (3)
C50.0345 (5)0.0338 (5)0.0301 (5)0.0030 (4)0.0054 (4)0.0003 (4)
C70.0417 (6)0.0349 (5)0.0277 (5)0.0055 (4)0.0048 (4)0.0016 (4)
N30.0769 (9)0.0425 (6)0.0319 (5)0.0186 (6)0.0013 (5)0.0051 (4)
C60.0347 (5)0.0322 (5)0.0331 (5)0.0005 (4)0.0051 (4)0.0026 (4)
C40.0477 (7)0.0439 (6)0.0336 (5)0.0033 (5)0.0055 (5)0.0059 (5)
C90.0586 (8)0.0469 (7)0.0289 (5)0.0108 (6)0.0069 (5)0.0047 (5)
C30.0562 (8)0.0403 (6)0.0534 (8)0.0005 (5)0.0118 (6)0.0139 (6)
C80.0554 (8)0.0482 (7)0.0289 (5)0.0018 (6)0.0051 (5)0.0047 (5)
C10.0481 (7)0.0341 (5)0.0491 (7)0.0021 (5)0.0029 (5)0.0077 (5)
C20.0554 (8)0.0308 (5)0.0669 (9)0.0035 (5)0.0099 (7)0.0020 (6)
C100.0669 (10)0.0587 (8)0.0513 (8)0.0076 (7)0.0205 (7)0.0105 (7)
Geometric parameters (Å, º) top
N2—C71.3684 (14)C4—H40.9300
N2—C61.3899 (14)C9—C101.170 (2)
N2—C81.4573 (14)C9—C81.4641 (19)
N1—C71.3284 (14)C3—C21.395 (2)
N1—C51.3898 (14)C3—H30.9300
C5—C41.3885 (16)C8—H8A0.9700
C5—C61.4028 (15)C8—H8B0.9700
C7—N31.3505 (15)C1—C21.386 (2)
N3—H2N30.860 (18)C1—H10.9300
N3—H1N30.90 (2)C2—H20.9300
C6—C11.3803 (16)C10—H100.9300
C4—C31.3856 (19)
C7—N2—C6106.36 (9)C5—C4—H4121.2
C7—N2—C8128.39 (10)C10—C9—C8176.81 (15)
C6—N2—C8125.00 (10)C4—C3—C2121.42 (12)
C7—N1—C5104.62 (9)C4—C3—H3119.3
C4—C5—N1129.79 (11)C2—C3—H3119.3
C4—C5—C6120.06 (10)N2—C8—C9111.21 (11)
N1—C5—C6110.13 (9)N2—C8—H8A109.4
N1—C7—N3123.96 (11)C9—C8—H8A109.4
N1—C7—N2113.34 (10)N2—C8—H8B109.4
N3—C7—N2122.63 (10)C9—C8—H8B109.4
C7—N3—H2N3117.1 (11)H8A—C8—H8B108.0
C7—N3—H1N3110.8 (13)C6—C1—C2116.27 (12)
H2N3—N3—H1N3116.2 (17)C6—C1—H1121.9
C1—C6—N2131.60 (11)C2—C1—H1121.9
C1—C6—C5122.87 (11)C1—C2—C3121.79 (12)
N2—C6—C5105.52 (9)C1—C2—H2119.1
C3—C4—C5117.57 (12)C3—C2—H2119.1
C3—C4—H4121.2C9—C10—H10180.0
C7—N1—C5—C4178.09 (12)N1—C5—C6—C1178.69 (11)
C7—N1—C5—C60.59 (13)C4—C5—C6—N2179.14 (10)
C5—N1—C7—N3178.29 (13)N1—C5—C6—N20.31 (12)
C5—N1—C7—N21.34 (14)N1—C5—C4—C3177.22 (12)
C6—N2—C7—N11.56 (14)C6—C5—C4—C31.35 (18)
C8—N2—C7—N1176.05 (11)C5—C4—C3—C21.6 (2)
C6—N2—C7—N3178.56 (12)C7—N2—C8—C9110.26 (14)
C8—N2—C7—N37.0 (2)C6—N2—C8—C963.27 (15)
C7—N2—C6—C1177.81 (13)C10—C9—C8—N227 (3)
C8—N2—C6—C13.1 (2)N2—C6—C1—C2177.87 (12)
C7—N2—C6—C51.07 (12)C5—C6—C1—C20.85 (18)
C8—N2—C6—C5175.79 (11)C6—C1—C2—C30.6 (2)
C4—C5—C6—C10.14 (18)C4—C3—C2—C10.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N1i0.90 (2)2.36 (2)3.1823 (18)153.5 (18)
N3—H2N3···N1ii0.860 (18)2.241 (19)3.0591 (15)158.6 (15) (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC10H9N3
Mr171.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.385 (2), 12.1433 (12), 9.4653 (10)
β (°) 95.755 (11)
V3)1759.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.39 × 0.36 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.677, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9853, 3178, 2505
Rint0.020
(sin θ/λ)max1)0.755
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.137, 1.08
No. of reflections3178
No. of parameters126
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N1i0.90 (2)2.36 (2)3.1823 (18)153.5 (18)
N3—H2N3···N1ii0.860 (18)2.241 (19)3.0591 (15)158.6 (15)(2)
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z1/2.
 

Acknowledgements

AA is thankful to the University Grant Commission (UGC) (scheme No. 34–311/2008), New Delhi, and Banaras Hindu University, Varanasi, India, for financial assistance. The authors are very grateful to the Department of Chemistry, Banaras Hindu University, Varanasi, for providing the single-crystal X-ray diffraction facility.

References

First citationAgarwal, A., Singh, M. K., Singh, S., Bhattacharya, S. & Awasthi, S. K. (2011). Acta Cryst. E67, o2637–o2638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAndries, K., Moeremans, M., Gevers, T., Willebrords, R., Sommen, C., Lacrampe, J., Janssens, F. & Wyde, P. R. (2003). Antiviral. Res. 60, 209–219.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCuberens, M. & Contijoch, M. R. (1997). Chem. Pharm. Bull. 45, 1287–1292.  PubMed Web of Science Google Scholar
First citationDel Poenta, M., Bixel, A. S., Barchiesi, F., Tidwell, R. R., Boykin, D., Scalise, G. & Perfect, J. R. (1999). J. Antimicrob. Chemother. 44, 223–228.  Web of Science PubMed Google Scholar
First citationDios, A. de, et al. (2005). J. Med. Chem. 48, 2270–2273.  Web of Science PubMed Google Scholar
First citationGaruti, L. & Roberti, M. (2002). Bioorg. Med. Chem. Lett. 12, 2707–2710.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGaruti, L., Varoli, L., Cermelli, C., Baggio, G., Lupo, L., Malagoli, M. & Castelli, M. (1998). Anti-Cancer Drug Des. 13, 969–980.  Web of Science PubMed CAS Google Scholar
First citationLilienkampf, A., Mao, J., Wan, B., Wang, Y., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 2109–2118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMor, M., Bordi, F., Silva, C., Rivara, S., Zuliana, V., Vacondio, F., Rivara, M., Barocelli, E., Bertoni, S., Ballabeni, V., Magnanini, F., Impicciatore, M. & Plazzi, P. V. (2004). Bioorg. Med. Chem. 12, 663–674.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNawrocka, W., Sztuba, B., Liszkiewicz, H., Kowalska, M. W., Wietrzyk, J., Nevozhai, D. & Opolski, A. (2005). Pol. J. Chem. 79, 709–716.  CAS Google Scholar
First citationNawrocka, W., Zimecki, M., Kuznicki, T. & Kowalska, M. W. (1999). Arch. Pharm. 332, 85–90.  CrossRef CAS Google Scholar
First citationNofal, Z. M., Fahmy, H. H. & Mohamed, H. S. (2002). Arch. Pharm. Res. 25, 250–257.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOmar, M. T., Fahmy, H. H. & Mohamed, H. S. (1996). Egypt. J. Pharm. Sci. 37, 606–620.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, M. K., Agarwal, A. & Awasthi, S. K. (2011). Acta Cryst. E67, o1137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSingh, M. K., Agarwal, A., Mahawar, C. & Awasthi, S. K. (2011). Acta Cryst. E67, o1382.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSingh, S., Singh, M. K., Agarwal, A., Hussain, F. & Awasthi, S. K. (2011). Acta Cryst. E67, o1616–o1617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds