organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(1H-Benzimidazol-2-yl)eth­yl]-1H-1,2,3-benzotriazole

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
*Correspondence e-mail: zhangzhong@mailbox.gxnu.edu.cn

(Received 4 October 2011; accepted 29 October 2011; online 5 November 2011)

In the title compound, C15H13N5, the N-containing heterocycles are linked by an ethyl­ene spacer in a gauche conformation, the N—C—C—C torsion angle along the linker being 60.1 (3)°. The dihedral angle between the terminal benzotriazole and benzimidazole rings is 39.02 (6)°. In the crystal, adjacent mol­ecules are connected by N—H⋯N hydrogen bonds, forming an infinite chain along the c axis. ππ stacking inter­actions [centroid–centroid distance = 3.8772 (7) Å] between the benzotriazole rings of neighbouring chains extend these chains into a supra­molecular sheet in the bc plane. Weak inter­molecular C—H⋯N inter­actions further stabilize the crystal structure.

Related literature

For the synthesis and anti­viral activity of bis-heterocyclcic compounds containing both benzotriazole and benzimidazole, see: Pagani & Sparatore (1965[Pagani, F. & Sparatore, F. (1965). Boll. Chim. Farm. 104, 427-431.]); Paglietti et al. (1975[Paglietti, G., Boido, V. & Sparatore, F. (1975). Farm. Ed. Sci. 30, 505-511.]); Katritzky et al. (1996[Katritzky, A. R., Irina, D. A., Shcherbakova, I. A., Chem, J. & Belyakov, S. A. (1996). J. Heterocycl. Chem. 33, 1107-1114.]); Yu et al. (2003[Yu, K. L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141-2144.]); Tonelli et al. (2008[Tonelli, M., Paglietti, G., Boido, V., Sparatore, F., Marongiu, F., Marongiu, E., La Colla, P. & Loddo, R. (2008). Chem. Biodivers. 5, 2386-2401.]). For the crystal structure of 1-(benzimidazol-2-ylmeth­yl)-1H-benzotriazole, see: Liu et al. (2007[Liu, S.-G., Ni, C.-L. & Li, Y.-Z. (2007). Acta Cryst. E63, o1827-o1828.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N5

  • Mr = 263.30

  • Monoclinic, P 21 /c

  • a = 6.3510 (13) Å

  • b = 20.830 (4) Å

  • c = 9.901 (2) Å

  • β = 96.78 (3)°

  • V = 1300.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 K

  • 0.37 × 0.32 × 0.26 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001)[Bruker (2001). SADABS. Bruker AXS inc., Madison, Wisconsin, USA.] Tmin = 0.969, Tmax = 0.978

  • 10985 measured reflections

  • 2290 independent reflections

  • 1608 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.125

  • S = 1.01

  • 2290 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H14⋯N5i 0.84 2.04 2.855 (3) 162
C1—H1⋯N3ii 0.93 2.54 3.456 (3) 167
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A family of asymmetric bis-heterocycle compounds comprising both benzotriazole and benzimidazole entities have been prepared (Pagani et al. 1965; Paglietti et al. 1975; Katritzky et al. 1996) and some of them exhibit potent antiviral activity (Yu et al. 2003; Tonelli et al. 2008), but the structure-function relationship of these novel potential drugs is still a research focus. The structural determination of 1-(Benzimidazol-2-ylmethyl)-1H-benzotriazole has been fulfilled (Liu et al. 2007). In this paper, the crystal structure of its analogue 1-(2-(1H-Benzimidazol-2-yl)ethyl)-1H-benzotriazole was reported. The molecular structure of the title compound, (I), is depicted in Fig. 1. In the molecule, benzotriazole and benzimidazole rings are arranged in a gauche conformation about the ethylidene linkage, as described by the N1—C7—C8—C9 torsion angle of 60.1 (3) °. Both heterocyclic rings are planar and the dihedral angle between them is 39.02 (6) °. In the crystal packing, adjacent molecules are self-assembled through intermolecular N4—H14···N5i hydrogen bonds (Table 1) between benzimidazole groups into an infinite one-dimensional non-linear chain along the c axis (Fig. 2), which is further held together via face-to-face ππ stacking [centriod-centriod distance = 3.8772 (7) Å, symmetry code: -x, 1 - y,2 - z] between the benzotriazole groups coming from neighbouring non-linear chains resulting in a two-dimensional supramolecular layer parallel to the bc plane (Fig. 3). Weak C1—H1···N3ii hydrogen bonds (Table 1) exist between the layers contributing to the construction of the three-dimensional network.

Related literature top

For the synthesis and antiviral activity of bis-heterocyclcic compounds containing both benzotriazole and benzimidazole, see: Pagani & Sparatore (1965); Paglietti et al. (1975); Katritzky et al. (1996); Yu et al. (2003); Tonelli et al. (2008). For the crystal structure of 1-(benzimidazol-2-ylmethyl)-1H-benzotriazole, see: Liu et al. (2007).

Experimental top

The mixture of 3-(1H-benzotriazole-1-yl)-propionic acid (3.8 g, 0.02 mol) and ο-phenylenediamine (3.2 g, 0.03 mol) were dissolved in 2 mol/L HCl (10 ml) and refluxed for 10 h to yield a brown solution. After cooling, the solution was filtered to remove the unreacted ο-phenylenediamine. Concentrated NH3.H2O was added to the resulting filtrate continuously until the gray solid was precipitated completely. The gray solid was redissolved in a small amount of CH3OH at room temperature. Two weeks ago, colorless block-like crystals of (I) suitable for X-ray diffraction analysis were obtained. (yield 47%) Elemental analysis found: C 68.69; H 5.32; N 26.64%; calculated for C15H13N5: C 68.42; H 4.98; N 26.60%.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å and N—H = 0.84 Å) and refined as riding atoms, with Uiso(H) = 1.2 times Ueq(C) or 1.5 times Ueq(N).

Structure description top

A family of asymmetric bis-heterocycle compounds comprising both benzotriazole and benzimidazole entities have been prepared (Pagani et al. 1965; Paglietti et al. 1975; Katritzky et al. 1996) and some of them exhibit potent antiviral activity (Yu et al. 2003; Tonelli et al. 2008), but the structure-function relationship of these novel potential drugs is still a research focus. The structural determination of 1-(Benzimidazol-2-ylmethyl)-1H-benzotriazole has been fulfilled (Liu et al. 2007). In this paper, the crystal structure of its analogue 1-(2-(1H-Benzimidazol-2-yl)ethyl)-1H-benzotriazole was reported. The molecular structure of the title compound, (I), is depicted in Fig. 1. In the molecule, benzotriazole and benzimidazole rings are arranged in a gauche conformation about the ethylidene linkage, as described by the N1—C7—C8—C9 torsion angle of 60.1 (3) °. Both heterocyclic rings are planar and the dihedral angle between them is 39.02 (6) °. In the crystal packing, adjacent molecules are self-assembled through intermolecular N4—H14···N5i hydrogen bonds (Table 1) between benzimidazole groups into an infinite one-dimensional non-linear chain along the c axis (Fig. 2), which is further held together via face-to-face ππ stacking [centriod-centriod distance = 3.8772 (7) Å, symmetry code: -x, 1 - y,2 - z] between the benzotriazole groups coming from neighbouring non-linear chains resulting in a two-dimensional supramolecular layer parallel to the bc plane (Fig. 3). Weak C1—H1···N3ii hydrogen bonds (Table 1) exist between the layers contributing to the construction of the three-dimensional network.

For the synthesis and antiviral activity of bis-heterocyclcic compounds containing both benzotriazole and benzimidazole, see: Pagani & Sparatore (1965); Paglietti et al. (1975); Katritzky et al. (1996); Yu et al. (2003); Tonelli et al. (2008). For the crystal structure of 1-(benzimidazol-2-ylmethyl)-1H-benzotriazole, see: Liu et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I), showing the atom labeling scheme and 30% displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound (I), showing the one-dimensional hydrogen-bonding chain. Hydrogen bonds are shown as black dashed lines.
[Figure 3] Fig. 3. A view of the two-dimensional supramolecular sheet constructed from one-dimensional chains via ππ stacking of heterocyclic rings. ππ stacking interactions are represented by red dashed lines.
1-[2-(1H-Benzimidazol-2-yl)ethyl]-1H-1,2,3-benzotriazole top
Crystal data top
C15H13N5F(000) = 552
Mr = 263.30Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10162 reflections
a = 6.3510 (13) Åθ = 3.2–27.8°
b = 20.830 (4) ŵ = 0.09 mm1
c = 9.901 (2) ÅT = 294 K
β = 96.78 (3)°Block, colourless
V = 1300.7 (5) Å30.37 × 0.32 × 0.26 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
2290 independent reflections
Radiation source: fine-focus sealed tube1608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
phi and ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.969, Tmax = 0.978k = 2424
10985 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.040P)2 + 0.8P]
where P = (Fo2 + 2Fc2)/3
2290 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H13N5V = 1300.7 (5) Å3
Mr = 263.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.3510 (13) ŵ = 0.09 mm1
b = 20.830 (4) ÅT = 294 K
c = 9.901 (2) Å0.37 × 0.32 × 0.26 mm
β = 96.78 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2290 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1608 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.978Rint = 0.071
10985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
2290 reflectionsΔρmin = 0.21 e Å3
181 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2105 (4)0.96993 (13)0.3185 (3)0.0476 (7)
H10.34260.96200.34680.057*
C20.1838 (5)1.01290 (14)0.2171 (3)0.0573 (8)
H20.30161.03460.17480.069*
C30.0144 (5)1.02507 (15)0.1755 (3)0.0567 (8)
H30.02521.05490.10680.068*
C40.1916 (5)0.99482 (14)0.2323 (3)0.0539 (8)
H40.32301.00280.20290.065*
C50.1695 (4)0.95122 (13)0.3364 (3)0.0414 (7)
C60.0285 (4)0.93888 (12)0.3764 (3)0.0367 (6)
C70.1427 (4)0.85935 (13)0.5476 (3)0.0448 (7)
H7A0.26620.88600.55470.054*
H7B0.07900.84930.63910.054*
C80.2120 (4)0.79717 (13)0.4733 (3)0.0435 (7)
H8A0.31490.77540.52200.052*
H8B0.28010.80740.38300.052*
C90.0301 (4)0.75382 (12)0.4618 (2)0.0344 (6)
C100.4117 (5)0.65844 (13)0.5972 (3)0.0482 (7)
H100.41800.65010.68990.058*
C110.5649 (5)0.63636 (13)0.5222 (3)0.0526 (8)
H110.67780.61270.56480.063*
C120.5546 (5)0.64870 (13)0.3839 (3)0.0498 (8)
H120.66150.63330.33610.060*
C130.3915 (4)0.68287 (13)0.3161 (3)0.0438 (7)
H130.38560.69040.22320.053*
C140.2348 (4)0.70614 (12)0.3900 (2)0.0344 (6)
C150.2474 (4)0.69362 (12)0.5293 (2)0.0363 (6)
N10.0085 (3)0.89470 (10)0.4772 (2)0.0388 (6)
N20.2169 (4)0.87999 (11)0.4968 (2)0.0491 (6)
N30.3165 (3)0.91386 (12)0.4137 (3)0.0530 (7)
N40.0740 (3)0.72406 (10)0.5709 (2)0.0398 (6)
H140.04390.72860.65120.060*
N50.0578 (3)0.74388 (10)0.3498 (2)0.0379 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0375 (16)0.0444 (17)0.0615 (19)0.0022 (14)0.0082 (14)0.0019 (15)
C20.0480 (19)0.0470 (19)0.074 (2)0.0052 (15)0.0048 (16)0.0073 (18)
C30.060 (2)0.0481 (18)0.061 (2)0.0064 (16)0.0035 (17)0.0156 (16)
C40.0446 (18)0.0541 (19)0.065 (2)0.0064 (15)0.0167 (16)0.0090 (17)
C50.0365 (15)0.0413 (16)0.0473 (17)0.0015 (13)0.0086 (13)0.0024 (14)
C60.0373 (16)0.0330 (15)0.0399 (16)0.0013 (12)0.0045 (13)0.0062 (13)
C70.0474 (17)0.0458 (17)0.0440 (17)0.0007 (14)0.0173 (14)0.0020 (14)
C80.0403 (16)0.0504 (17)0.0411 (16)0.0085 (14)0.0103 (13)0.0003 (14)
C90.0388 (15)0.0400 (15)0.0247 (14)0.0109 (12)0.0045 (12)0.0014 (12)
C100.0574 (19)0.0471 (17)0.0390 (16)0.0050 (15)0.0007 (15)0.0113 (14)
C110.0498 (19)0.0397 (17)0.067 (2)0.0042 (14)0.0008 (16)0.0082 (16)
C120.0539 (19)0.0389 (17)0.059 (2)0.0011 (15)0.0152 (16)0.0045 (15)
C130.0539 (18)0.0435 (17)0.0349 (15)0.0027 (14)0.0092 (14)0.0063 (13)
C140.0454 (16)0.0332 (14)0.0249 (13)0.0068 (13)0.0057 (12)0.0048 (12)
C150.0455 (16)0.0321 (15)0.0317 (14)0.0060 (13)0.0063 (13)0.0012 (12)
N10.0346 (13)0.0403 (13)0.0422 (13)0.0008 (10)0.0072 (10)0.0007 (11)
N20.0369 (14)0.0555 (16)0.0547 (15)0.0026 (12)0.0045 (12)0.0074 (13)
N30.0338 (13)0.0617 (16)0.0645 (17)0.0004 (12)0.0099 (12)0.0116 (14)
N40.0486 (14)0.0480 (14)0.0240 (12)0.0074 (11)0.0095 (10)0.0008 (10)
N50.0419 (13)0.0465 (13)0.0257 (11)0.0022 (11)0.0057 (10)0.0004 (10)
Geometric parameters (Å, º) top
C1—C21.370 (4)C8—H8B0.9700
C1—C61.388 (4)C9—N51.316 (3)
C1—H10.9300C9—N41.348 (3)
C2—C31.393 (4)C10—C111.372 (4)
C2—H20.9300C10—C151.383 (4)
C3—C41.353 (4)C10—H100.9300
C3—H30.9300C11—C121.387 (4)
C4—C51.394 (4)C11—H110.9300
C4—H40.9300C12—C131.366 (4)
C5—N31.376 (3)C12—H120.9300
C5—C61.386 (3)C13—C141.391 (3)
C6—N11.357 (3)C13—H130.9300
C7—N11.453 (3)C14—N51.391 (3)
C7—C81.529 (4)C14—C151.397 (3)
C7—H7A0.9700C15—N41.375 (3)
C7—H7B0.9700N1—N21.350 (3)
C8—C91.481 (4)N2—N31.303 (3)
C8—H8A0.9700N4—H140.8453
C2—C1—C6116.0 (3)N5—C9—N4112.7 (2)
C2—C1—H1122.0N5—C9—C8125.0 (2)
C6—C1—H1122.0N4—C9—C8122.1 (2)
C1—C2—C3122.0 (3)C11—C10—C15117.2 (3)
C1—C2—H2119.0C11—C10—H10121.4
C3—C2—H2119.0C15—C10—H10121.4
C4—C3—C2121.9 (3)C10—C11—C12121.3 (3)
C4—C3—H3119.0C10—C11—H11119.4
C2—C3—H3119.0C12—C11—H11119.4
C3—C4—C5117.3 (3)C13—C12—C11121.8 (3)
C3—C4—H4121.3C13—C12—H12119.1
C5—C4—H4121.3C11—C12—H12119.1
N3—C5—C6108.4 (2)C12—C13—C14118.1 (3)
N3—C5—C4131.2 (3)C12—C13—H13120.9
C6—C5—C4120.4 (3)C14—C13—H13120.9
N1—C6—C5104.6 (2)C13—C14—N5130.6 (2)
N1—C6—C1133.1 (2)C13—C14—C15119.6 (2)
C5—C6—C1122.3 (3)N5—C14—C15109.8 (2)
N1—C7—C8111.6 (2)N4—C15—C10133.1 (2)
N1—C7—H7A109.3N4—C15—C14104.8 (2)
C8—C7—H7A109.3C10—C15—C14122.1 (3)
N1—C7—H7B109.3N2—N1—C6109.9 (2)
C8—C7—H7B109.3N2—N1—C7120.6 (2)
H7A—C7—H7B108.0C6—N1—C7129.0 (2)
C9—C8—C7111.8 (2)N3—N2—N1109.1 (2)
C9—C8—H8A109.3N2—N3—C5108.0 (2)
C7—C8—H8A109.3C9—N4—C15107.9 (2)
C9—C8—H8B109.3C9—N4—H14124.0
C7—C8—H8B109.3C15—N4—H14127.7
H8A—C8—H8B107.9C9—N5—C14104.9 (2)
C6—C1—C2—C30.5 (4)N5—C14—C15—N40.5 (3)
C1—C2—C3—C40.5 (5)C13—C14—C15—C100.1 (4)
C2—C3—C4—C50.9 (5)N5—C14—C15—C10178.3 (2)
C3—C4—C5—N3179.5 (3)C5—C6—N1—N20.8 (3)
C3—C4—C5—C61.5 (4)C1—C6—N1—N2179.3 (3)
N3—C5—C6—N10.4 (3)C5—C6—N1—C7173.1 (2)
C4—C5—C6—N1179.6 (2)C1—C6—N1—C78.4 (5)
N3—C5—C6—C1179.1 (2)C8—C7—N1—N283.6 (3)
C4—C5—C6—C11.7 (4)C8—C7—N1—C688.0 (3)
C2—C1—C6—N1179.4 (3)C6—N1—N2—N31.0 (3)
C2—C1—C6—C51.2 (4)C7—N1—N2—N3174.1 (2)
N1—C7—C8—C960.1 (3)N1—N2—N3—C50.7 (3)
C7—C8—C9—N5105.2 (3)C6—C5—N3—N20.2 (3)
C7—C8—C9—N469.2 (3)C4—C5—N3—N2178.9 (3)
C15—C10—C11—C120.2 (4)N5—C9—N4—C151.9 (3)
C10—C11—C12—C130.4 (4)C8—C9—N4—C15173.2 (2)
C11—C12—C13—C140.8 (4)C10—C15—N4—C9177.2 (3)
C12—C13—C14—N5177.2 (3)C14—C15—N4—C91.4 (3)
C12—C13—C14—C150.5 (4)N4—C9—N5—C141.5 (3)
C11—C10—C15—N4177.9 (3)C8—C9—N5—C14173.4 (2)
C11—C10—C15—C140.5 (4)C13—C14—N5—C9177.3 (3)
C13—C14—C15—N4178.7 (2)C15—C14—N5—C90.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H14···N5i0.842.042.855 (3)162
C1—H1···N3ii0.932.543.456 (3)167
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H13N5
Mr263.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)6.3510 (13), 20.830 (4), 9.901 (2)
β (°) 96.78 (3)
V3)1300.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.32 × 0.26
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.969, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
10985, 2290, 1608
Rint0.071
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.125, 1.01
No. of reflections2290
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H14···N5i0.842.042.855 (3)162
C1—H1···N3ii0.932.543.456 (3)167
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

The authors are grateful for financial support from the Guangxi Science Foundation (grant No. 0832023) and the Scientific Research Foundation of Guangxi Normal University.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART, SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationKatritzky, A. R., Irina, D. A., Shcherbakova, I. A., Chem, J. & Belyakov, S. A. (1996). J. Heterocycl. Chem. 33, 1107–1114.  CrossRef CAS Google Scholar
First citationLiu, S.-G., Ni, C.-L. & Li, Y.-Z. (2007). Acta Cryst. E63, o1827–o1828.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPagani, F. & Sparatore, F. (1965). Boll. Chim. Farm. 104, 427–431.  CAS PubMed Google Scholar
First citationPaglietti, G., Boido, V. & Sparatore, F. (1975). Farm. Ed. Sci. 30, 505–511.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTonelli, M., Paglietti, G., Boido, V., Sparatore, F., Marongiu, F., Marongiu, E., La Colla, P. & Loddo, R. (2008). Chem. Biodivers. 5, 2386–2401.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, K. L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141–2144.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds