metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­carbonyl-1κ2C,2κ3C-(4-iodo­phenyl isocyanide-1κC)(μ-propane-1,3-di­thiol­ato-1:2κ4S,S′:S,S′)iron(I)(FeFe)

aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
*Correspondence e-mail: tangyanfeng1@163.com

(Received 19 October 2011; accepted 7 November 2011; online 12 November 2011)

In the title compound, [Fe2(C7H4IN)(C3H6S2)(CO)5], the Fe—Fe distance of 2.5156 (11) Å compares well with that in related model structures. The phenyl isocyanide ligand is in the basal position and trans to the S atoms of the propane­dithiol­ate ligand due to steric hindrance. The crystal structure features C—H⋯O inter­actions.

Related literature

The title compound was prepared as a model for the iron-only hydrogenase ([Fe]H2ase) active site. Iron-only hydrogenase in micro-organisms can catalyse the reversible reduction of protons to hydrogen, see: Cammack (1999[Cammack, R. (1999). Nature (London), 397, 214-215.]); Frey (2002[Frey, M. (2002). ChemBioChem, 3, 152-160.]); Nicolet et al. (2000[Nicolet, Y., Lemon, B. J., Fontecilla-Camps, J. C. & Peters, J. W. (2000). Trends Biochem. Sci. 25, 138-143.]). For the active site of [Fe]H2ase, see: Nicolet et al. (1999[Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla- Camps, J. C. (1999). Structure, 7, 13-23.]); Peters et al. (1998[Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853-1858.]). For an analogous structure, see: Lyon et al. (1999[Lyon, E. J., Georgakaki, I. P., Reibenspies, J. H. & Darensbourg, M. Y. (1999). Angew. Chem. Int. Ed. 38, 3178-3180.]). For the preparation of the starting material [Fe2(S2C3H6)(CO)6], see: Winter et al. (1982[Winter, A., Zsolnai, L. & Huttner, G. (1982). Z. Naturforsch. Teil B, 37, 1430-1436.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C7H4IN)(C3H6S2)(CO)5]

  • Mr = 586.96

  • Monoclinic, P 21 /n

  • a = 7.7290 (3) Å

  • b = 11.7215 (5) Å

  • c = 22.3974 (10) Å

  • β = 99.466 (1)°

  • V = 2001.47 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.23 mm−1

  • T = 293 K

  • 0.15 × 0.14 × 0.12 mm

Data collection
  • Bruker Smart APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.630, Tmax = 0.680

  • 5430 measured reflections

  • 3254 independent reflections

  • 2913 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.110

  • S = 1.09

  • 3254 reflections

  • 235 parameters

  • 219 restraints

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—C2 1.785 (7)
Fe1—C1 1.805 (6)
Fe1—C3 1.812 (6)
Fe1—S1 2.2656 (17)
Fe1—S2 2.2692 (15)
S1—Fe2 2.2590 (16)
Fe2—C8 1.785 (6)
Fe2—C7 1.797 (6)
Fe2—C9 1.867 (6)
Fe2—S2 2.2689 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2i 0.93 2.57 3.423 (9) 153
C15—H15A⋯O5ii 0.93 2.55 3.464 (8) 168
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The iron-only Hydrogenases ([Fe]H2ase) in microorganisms can catalyze the reversible reduction of protons to hydrogen according to the reaction: 2H++2 e-=H2. (Cammack et al. 1999, Nicolet et al. 2000, Frey et al. 2002) The active site of [Fe]H2ase is consisted of a 2Fe2S linked to a [4Fe4S] cluster by a bridged cysteine sulfur (Peters et al. 1998, Nicolet et al. 1999). In the 2Fe2S unit, the two iron atoms are coordinated by CO and CN– ligands. We have prepared the title complex as a structural model for the iron-only hydrogenases active site. Herein we report its crystal structure.

The molecular structure of the title complex is shown in Fig.1 and selected bond distances are listed in Table 1. The crystal packing diagram reveals that molecules of the title compound form layers in the yz plane (Fig. 2) and the intermolecular interactions present in the structure are listed in Table 2. The Fe—Fe distance of 2.5157 (14) Å compares well with that in the (µ-PDT) Fe2 (CO)6 analogous structure (Lyon et al., 1999). The phenyl isocyanide ligand is in the basal position and trans to the sulfur atoms of the propanedithiolate ligand due to the steric hindrance. The Fe—CN distance of 1.87 Å is longer than Fe—CO distance of 1.79–1.81 Å, suggesting the strong electron σ-donating of the isocyanide ligand with iron center. The π-π conjugation between CN triple bond and phenyl ring is somewhat interrupted in the solid state, as the angle of C(9) N(1) C(10) is 169.8 (9)°, indicating a slight distorting from linearity.

Related literature top

The title compound was prepared as a model for the iron-only hydrogenase ([Fe]H2ase) active site. Iron-only hydrogenase in micro-organisms can catalyse the reversible reduction of protons to hydrogen, see: Cammack (1999); Frey (2002); Nicolet et al. (2000). For the active site of [Fe]H2ase , see: Nicolet et al. (1999); Peters et al. (1998). For an analogous structure, see: Lyon et al. (1999). For the preparation of the starting material [Fe2(S2C3H6)(CO)6], see: Winter et al. (1982).

Experimental top

A solution of Fe2(S2C3H6)(CO)6 (Winter et al. 1982) (1.5 g, 3.88 mmol) in 100 ml MeCN was treated with a solution of Me3NO.2H2O (433 mg, 3.9 mmol) in 30 ml of MeCN followed by a solution of p- benzylisocyanide (895 mg, 3.9 mmol) in 30 ml of MeCN at ambient temperature. After 2 h at this temperature, the solvent was removed in vacuo, and the resulting red residue was purified on silica gel to give title compound as a red solid (1.94 g, 85% yield). Single crystals of the title compound for X-ray analysis were grown by slow evaporation. A near saturated solution of the title compound was prepared in a CH2Cl2 -hexane (1:5 v/v) solution. The solution was then being left in a glass tube that has a perforated cap at ambient temperature. After one week, some of the crystals grow on the side of the tube.

Refinement top

Carbon-bound H atoms were positioned geometrically, with C—H = 0.97Å for methylene and 0.93 Å for aromatic, and refined using a riding model, with Uiso (H) = 1.2 Ueq (C). The hydroxyl H atom was positioned geometrically and freely refined.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Structure description top

The iron-only Hydrogenases ([Fe]H2ase) in microorganisms can catalyze the reversible reduction of protons to hydrogen according to the reaction: 2H++2 e-=H2. (Cammack et al. 1999, Nicolet et al. 2000, Frey et al. 2002) The active site of [Fe]H2ase is consisted of a 2Fe2S linked to a [4Fe4S] cluster by a bridged cysteine sulfur (Peters et al. 1998, Nicolet et al. 1999). In the 2Fe2S unit, the two iron atoms are coordinated by CO and CN– ligands. We have prepared the title complex as a structural model for the iron-only hydrogenases active site. Herein we report its crystal structure.

The molecular structure of the title complex is shown in Fig.1 and selected bond distances are listed in Table 1. The crystal packing diagram reveals that molecules of the title compound form layers in the yz plane (Fig. 2) and the intermolecular interactions present in the structure are listed in Table 2. The Fe—Fe distance of 2.5157 (14) Å compares well with that in the (µ-PDT) Fe2 (CO)6 analogous structure (Lyon et al., 1999). The phenyl isocyanide ligand is in the basal position and trans to the sulfur atoms of the propanedithiolate ligand due to the steric hindrance. The Fe—CN distance of 1.87 Å is longer than Fe—CO distance of 1.79–1.81 Å, suggesting the strong electron σ-donating of the isocyanide ligand with iron center. The π-π conjugation between CN triple bond and phenyl ring is somewhat interrupted in the solid state, as the angle of C(9) N(1) C(10) is 169.8 (9)°, indicating a slight distorting from linearity.

The title compound was prepared as a model for the iron-only hydrogenase ([Fe]H2ase) active site. Iron-only hydrogenase in micro-organisms can catalyse the reversible reduction of protons to hydrogen, see: Cammack (1999); Frey (2002); Nicolet et al. (2000). For the active site of [Fe]H2ase , see: Nicolet et al. (1999); Peters et al. (1998). For an analogous structure, see: Lyon et al. (1999). For the preparation of the starting material [Fe2(S2C3H6)(CO)6], see: Winter et al. (1982).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for the title compound viewed along the [001] axis (H atoms are omitted for clarity)
Pentacarbonyl-1κ2C,2κ3C-(4-iodophenyl isocyanide-1κC)(µ-propane-1,3-dithiolato-1:2κ4S,S': S,S')iron(I)(FeFe) top
Crystal data top
[Fe2(C7H4IN)(C3H6S2)(CO)5]Z = 4
Mr = 586.96F(000) = 1136
Monoclinic, P21/nDx = 1.948 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.7290 (3) ŵ = 3.23 mm1
b = 11.7215 (5) ÅT = 293 K
c = 22.3974 (10) ÅCuboid, red
β = 99.466 (1)°0.15 × 0.14 × 0.12 mm
V = 2001.47 (15) Å3
Data collection top
Bruker Smart APEX CCD area-detector
diffractometer
3254 independent reflections
Radiation source: fine-focus sealed tube2913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 24.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 69
Tmin = 0.630, Tmax = 0.680k = 1310
5430 measured reflectionsl = 2225
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0001P)2 + 16.8715P]
where P = (Fo2 + 2Fc2)/3
3254 reflections(Δ/σ)max = 0.002
235 parametersΔρmax = 0.78 e Å3
219 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Fe2(C7H4IN)(C3H6S2)(CO)5]V = 2001.47 (15) Å3
Mr = 586.96Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7290 (3) ŵ = 3.23 mm1
b = 11.7215 (5) ÅT = 293 K
c = 22.3974 (10) Å0.15 × 0.14 × 0.12 mm
β = 99.466 (1)°
Data collection top
Bruker Smart APEX CCD area-detector
diffractometer
3254 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2913 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.680Rint = 0.018
5430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051219 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0001P)2 + 16.8715P]
where P = (Fo2 + 2Fc2)/3
3254 reflectionsΔρmax = 0.78 e Å3
235 parametersΔρmin = 0.64 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3432 (6)0.7795 (5)0.9391 (2)0.0648 (15)
I10.13693 (6)1.11048 (4)1.135787 (19)0.07267 (14)
Fe10.09353 (10)0.48170 (7)0.86223 (4)0.0473 (2)
S10.28437 (19)0.42518 (11)0.80138 (7)0.0531 (4)
O10.0108 (7)0.6147 (5)0.9623 (2)0.0910 (16)
C10.0272 (8)0.5622 (5)0.9234 (3)0.0599 (14)
Fe20.36277 (9)0.59245 (6)0.84823 (3)0.04142 (18)
S20.08546 (16)0.64796 (11)0.80994 (6)0.0403 (3)
O20.2466 (8)0.2970 (5)0.9430 (3)0.124 (2)
C20.1834 (9)0.3696 (6)0.9117 (3)0.0699 (14)
O30.2423 (6)0.3742 (5)0.8099 (2)0.0927 (17)
C30.1125 (8)0.4154 (5)0.8299 (3)0.0605 (13)
O40.6000 (6)0.6782 (4)0.7683 (2)0.0833 (14)
C40.1905 (9)0.4428 (5)0.7209 (3)0.0649 (14)
H4A0.27230.41000.69720.078*
H4B0.08390.39780.71290.078*
O50.6200 (6)0.4745 (5)0.9381 (2)0.0909 (17)
C50.1472 (9)0.5607 (6)0.6976 (3)0.0666 (15)
H5A0.25540.60400.70120.080*
H5B0.09900.55550.65490.080*
C60.0215 (8)0.6253 (5)0.7284 (2)0.0564 (14)
H6A0.08980.58520.72170.068*
H6B0.00240.69930.70910.068*
C70.5080 (8)0.6483 (5)0.8004 (3)0.0553 (13)
C80.5211 (8)0.5203 (5)0.9022 (3)0.0580 (14)
C90.3564 (7)0.7105 (5)0.9038 (3)0.0524 (12)
C100.3002 (8)0.8540 (5)0.9841 (2)0.0542 (12)
C110.2862 (8)0.9692 (5)0.9732 (3)0.0573 (12)
H11A0.30870.99860.93660.069*
C120.2389 (8)1.0414 (5)1.0164 (3)0.0576 (13)
H12A0.22691.11931.00870.069*
C130.2097 (7)0.9983 (5)1.0706 (2)0.0512 (12)
C140.2235 (9)0.8808 (5)1.0821 (3)0.0616 (13)
C150.2705 (8)0.8104 (5)1.0382 (3)0.0614 (13)
H15A0.28220.73241.04550.074*
H14A0.19910.85161.11820.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.057 (3)0.073 (3)0.062 (3)0.007 (3)0.004 (2)0.029 (3)
I10.0759 (3)0.0804 (3)0.0617 (2)0.0098 (2)0.0113 (2)0.0295 (2)
Fe10.0490 (4)0.0437 (4)0.0540 (4)0.0003 (3)0.0224 (3)0.0047 (3)
S10.0550 (7)0.0342 (7)0.0756 (9)0.0039 (6)0.0268 (7)0.0082 (6)
O10.118 (3)0.100 (4)0.067 (3)0.016 (3)0.051 (2)0.017 (3)
C10.058 (3)0.064 (3)0.062 (3)0.002 (2)0.024 (2)0.004 (2)
Fe20.0412 (4)0.0367 (4)0.0491 (4)0.0025 (3)0.0154 (3)0.0058 (3)
S20.0453 (6)0.0367 (6)0.0408 (6)0.0046 (5)0.0126 (5)0.0034 (5)
O20.130 (4)0.111 (4)0.138 (4)0.038 (3)0.048 (3)0.072 (3)
C20.071 (3)0.065 (3)0.078 (3)0.007 (2)0.026 (2)0.019 (2)
O30.071 (3)0.095 (4)0.117 (4)0.030 (3)0.033 (3)0.032 (3)
C30.061 (2)0.058 (3)0.069 (3)0.005 (2)0.029 (2)0.007 (2)
O40.082 (3)0.079 (3)0.100 (3)0.022 (3)0.050 (2)0.004 (3)
C40.075 (3)0.063 (3)0.061 (3)0.002 (2)0.023 (2)0.020 (2)
O50.077 (3)0.089 (3)0.101 (4)0.022 (3)0.002 (3)0.013 (3)
C50.074 (3)0.075 (3)0.052 (3)0.002 (3)0.016 (2)0.012 (3)
C60.064 (3)0.061 (3)0.045 (2)0.004 (3)0.010 (2)0.008 (2)
C70.059 (2)0.050 (2)0.062 (2)0.005 (2)0.022 (2)0.011 (2)
C80.055 (3)0.052 (3)0.069 (3)0.006 (2)0.018 (2)0.005 (2)
C90.054 (2)0.051 (2)0.054 (2)0.006 (2)0.013 (2)0.007 (2)
C100.062 (2)0.053 (2)0.046 (2)0.006 (2)0.006 (2)0.013 (2)
C110.071 (2)0.053 (2)0.049 (2)0.000 (2)0.013 (2)0.007 (2)
C120.073 (3)0.049 (2)0.050 (2)0.005 (2)0.010 (2)0.004 (2)
C130.061 (2)0.050 (2)0.041 (2)0.008 (2)0.005 (2)0.009 (2)
C140.081 (3)0.055 (2)0.047 (2)0.004 (2)0.004 (2)0.004 (2)
C150.078 (2)0.049 (2)0.055 (2)0.007 (2)0.002 (2)0.007 (2)
Geometric parameters (Å, º) top
N1—C91.148 (7)C4—C51.495 (9)
N1—C101.413 (7)C4—H4A0.9700
I1—C132.109 (5)C4—H4B0.9700
Fe1—C21.785 (7)O5—C81.148 (7)
Fe1—C11.805 (6)C5—C61.488 (9)
Fe1—C31.812 (6)C5—H5A0.9700
Fe1—S12.2656 (17)C5—H5B0.9700
Fe1—S22.2692 (15)C6—H6A0.9700
Fe1—Fe22.5156 (11)C6—H6B0.9700
S1—C41.841 (6)C10—C151.370 (8)
S1—Fe22.2590 (16)C10—C111.373 (8)
O1—C11.144 (7)C11—C121.380 (8)
Fe2—C81.785 (6)C11—H11A0.9300
Fe2—C71.797 (6)C12—C131.369 (8)
Fe2—C91.867 (6)C12—H12A0.9300
Fe2—S22.2689 (14)C13—C141.401 (8)
S2—C61.831 (5)C14—C151.376 (8)
O2—C21.157 (8)C14—H14A0.9272
O3—C31.137 (7)C15—H15A0.9300
O4—C71.146 (7)
C9—N1—C10170.0 (6)C5—C4—S1118.4 (4)
C2—Fe1—C192.5 (3)C5—C4—H4A107.7
C2—Fe1—C399.2 (3)S1—C4—H4A107.7
C1—Fe1—C3100.8 (3)C5—C4—H4B107.7
C2—Fe1—S186.2 (2)S1—C4—H4B107.7
C1—Fe1—S1154.6 (2)H4A—C4—H4B107.1
C3—Fe1—S1104.5 (2)C6—C5—C4115.8 (6)
C2—Fe1—S2158.1 (2)C6—C5—H5A108.3
C1—Fe1—S287.5 (2)C4—C5—H5A108.3
C3—Fe1—S2102.4 (2)C6—C5—H5B108.3
S1—Fe1—S284.61 (5)C4—C5—H5B108.3
C2—Fe1—Fe2102.2 (2)H5A—C5—H5B107.4
C1—Fe1—Fe299.7 (2)C5—C6—S2116.5 (4)
C3—Fe1—Fe2149.5 (2)C5—C6—H6A108.2
S1—Fe1—Fe256.10 (4)S2—C6—H6A108.2
S2—Fe1—Fe256.33 (4)C5—C6—H6B108.2
C4—S1—Fe2112.9 (2)S2—C6—H6B108.2
C4—S1—Fe1111.4 (2)H6A—C6—H6B107.3
Fe2—S1—Fe167.56 (5)O4—C7—Fe2176.2 (5)
O1—C1—Fe1178.2 (6)O5—C8—Fe2178.0 (6)
C8—Fe2—C798.6 (3)N1—C9—Fe2175.5 (6)
C8—Fe2—C989.5 (3)C15—C10—C11120.3 (5)
C7—Fe2—C9102.4 (3)C15—C10—N1119.6 (5)
C8—Fe2—S190.3 (2)C11—C10—N1120.1 (5)
C7—Fe2—S1100.69 (19)C10—C11—C12120.0 (6)
C9—Fe2—S1156.70 (19)C10—C11—H11A120.0
C8—Fe2—S2153.1 (2)C12—C11—H11A120.0
C7—Fe2—S2108.30 (19)C13—C12—C11119.8 (6)
C9—Fe2—S284.98 (17)C13—C12—H12A120.1
S1—Fe2—S284.77 (5)C11—C12—H12A120.1
C8—Fe2—Fe199.2 (2)C12—C13—C14120.5 (5)
C7—Fe2—Fe1150.77 (19)C12—C13—I1119.0 (4)
C9—Fe2—Fe1100.75 (18)C14—C13—I1120.5 (4)
S1—Fe2—Fe156.35 (5)C15—C14—C13118.7 (6)
S2—Fe2—Fe156.34 (4)C15—C14—H14A121.2
C6—S2—Fe1111.7 (2)C13—C14—H14A120.1
C6—S2—Fe2114.7 (2)C10—C15—C14120.7 (6)
Fe1—S2—Fe267.33 (4)C10—C15—H15A119.7
O2—C2—Fe1177.7 (7)C14—C15—H15A119.7
O3—C3—Fe1179.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.932.573.423 (9)153
C15—H15A···O5ii0.932.553.464 (8)168
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Fe2(C7H4IN)(C3H6S2)(CO)5]
Mr586.96
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.7290 (3), 11.7215 (5), 22.3974 (10)
β (°) 99.466 (1)
V3)2001.47 (15)
Z4
Radiation typeMo Kα
µ (mm1)3.23
Crystal size (mm)0.15 × 0.14 × 0.12
Data collection
DiffractometerBruker Smart APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.630, 0.680
No. of measured, independent and
observed [I > 2σ(I)] reflections
5430, 3254, 2913
Rint0.018
(sin θ/λ)max1)0.582
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.110, 1.09
No. of reflections3254
No. of parameters235
No. of restraints219
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0001P)2 + 16.8715P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.78, 0.64

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—C21.785 (7)S1—Fe22.2590 (16)
Fe1—C11.805 (6)Fe2—C81.785 (6)
Fe1—C31.812 (6)Fe2—C71.797 (6)
Fe1—S12.2656 (17)Fe2—C91.867 (6)
Fe1—S22.2692 (15)Fe2—S22.2689 (14)
Fe1—Fe22.5156 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.932.5703.423 (9)153
C15—H15A···O5ii0.932.5493.464 (8)168
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the Science Foundation of Nantong Municipality (grant No. AA2010026), the Science Foundation of Nantong University (grant No. 10Z012), the University Science Research Project of Jiangsu Province (09KJB530008), the National Natural Science Foundation of China (grant Nos. 20906052 and 21006054) and the Natural Science Foundation of Jiangsu Provice (BK2010281) for financial support.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCammack, R. (1999). Nature (London), 397, 214–215.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFrey, M. (2002). ChemBioChem, 3, 152–160.  Web of Science CrossRef Google Scholar
First citationLyon, E. J., Georgakaki, I. P., Reibenspies, J. H. & Darensbourg, M. Y. (1999). Angew. Chem. Int. Ed. 38, 3178–3180.  Web of Science CrossRef CAS Google Scholar
First citationNicolet, Y., Lemon, B. J., Fontecilla-Camps, J. C. & Peters, J. W. (2000). Trends Biochem. Sci. 25, 138–143.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla- Camps, J. C. (1999). Structure, 7, 13–23.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853–1858.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinter, A., Zsolnai, L. & Huttner, G. (1982). Z. Naturforsch. Teil B, 37, 1430–1436.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds