metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(2,3-di-2-pyridyl­pyrazine-κ2N2,N3)palladium(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 9 November 2011; accepted 24 November 2011; online 30 November 2011)

The PdII ion in the title complex, [PdBr2(C14H10N4)], is four-coordinated in a slightly distorted square-planar environment by the two pyridine N atoms of the chelating 2,3-di-2-pyridyl­pyrazine (dpp) ligand and two bromide anions. The pyridine rings are considerably inclined to the least-squares plane of the PdBr2N2 unit [maximum deviation = 0.080 (2) Å], making dihedral angles of 64.9 (1) and 66.4 (1)°. The pyrazine ring is perpendicular to the unit plane, with a dihedral angle of 89.0 (1)°. In the crystal, the complex mol­ecules are stacked in columns along the a axis and connected by C—H⋯Br hydrogen bonds, forming a helical chain along the b axis.

Related literature

For related structures of [PdX2(dpp)] (X = Cl, I), see: Ha (2011a[Ha, K. (2011a). Acta Cryst. E67, m1615.],b[Ha, K. (2011b). Acta Cryst. E67, m1626.]). For related Pt, Pd and Mn complexes, see: Granifo et al. (2000[Granifo, J., Vargas, M. E., Garland, M. T. & Baggio, R. (2000). Inorg. Chim. Acta, 305, 143-150.]); Armentano et al. (2003[Armentano, D., de Munno, G., Guerra, F., Faus, J., Lloret, F. & Julve, M. (2003). Dalton Trans. pp. 4626-4634.]); Delir Kheirollahi Nezhad et al. (2008[Delir Kheirollahi Nezhad, P., Azadbakht, F., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m575-m576.]); Cai et al. (2009[Cai, X., Donzello, M. P., Viola, E., Rizzoli, C., Ercolani, C. & Kadish, K. M. (2009). Inorg. Chem. 48, 7086-7098.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr2(C14H10N4)]

  • Mr = 500.48

  • Monoclinic, P 21 /n

  • a = 8.515 (2) Å

  • b = 15.408 (4) Å

  • c = 11.941 (3) Å

  • β = 101.129 (5)°

  • V = 1537.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.40 mm−1

  • T = 200 K

  • 0.26 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.689, Tmax = 1.000

  • 9366 measured reflections

  • 2998 independent reflections

  • 2384 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.03

  • 2998 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—N3 2.029 (4)
Pd1—N4 2.031 (4)
Pd1—Br1 2.4183 (8)
Pd1—Br2 2.4288 (8)
N3—Pd1—N4 87.44 (14)
Br1—Pd1—Br2 92.99 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Br1i 0.95 2.88 3.670 (5) 141
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polypyridyl ligands have received considerable attention in coordination chemistry owing to the diverse coordination modes of the ligands (Granifo et al., 2000; Armentano et al., 2003; Delir Kheirollahi Nezhad et al., 2008; Cai et al., 2009).

The title complex, [PdBr2(dpp)] (dpp = 2,3-di-2-pyridylpyrazine, C14H10N4), is isomorphous with the previously reported analogous complexes [PdX2(dpp)] (X = Cl, I) (Ha, 2011a,b). The PdII ion is four-coordinated in a slightly distorted square-planar environment by the two pyridine N atoms of the chelating dpp ligand and two bromide anions (Fig. 1). The coordination mode of the dpp ligand is similar to that found in the mononuclear Pt(II) and Pd(II) complexes [PtCl2(dpq)] (dpq = 2,3-di-2-pyridylquinoxaline) (Granifo et al., 2000) and [MCl2(dcdpp)] (M = Pt, Pd; dcdpp = 2,3-dicyano-5,6-di-2-pyridylpyrazine) (Cai et al., 2009).

The contributions to the distortion of square are the N3—Pd1—N4 chelate angle of 87.44 (14)° and Br—Br repelling, and therefore the trans axes are slightly bent [<Br1—Pd1—N4 = 173.69 (10)° and <Br2—Pd1—N3 = 177.29 (10)°]. The Pd—N and Pd—Br bond lengths are nearly equivalent, respectively (Table 1). In the crystal, the two pyridine rings are considerably inclined to the least-squares plane of the PdBr2N2 unit [maximum deviation = 0.080 (2) Å], making dihedral angles of 64.9 (1)° and 66.4 (1)°. The nearly planar pyrazine ring [maximum deviation = 0.022 (3) Å] is perpendicular to the unit plane with a dihedral angle of 89.0 (1)°. The dihedral angle between the two pyridine rings is 78.84 (1)°. The complex molecules are stacked in columns along the a axis and connected by C—H···Br hydrogen bonds, forming a helical chain along the b axis (Fig. 2 and Table 2). The hydrogen bonding mode is similar to that observed in the isotypic complex [PdI2(dpp)] (Ha, 2011b). By contrast, in the chloro analog [PdCl2(dpp)], two independent intermolecular C—H···Cl hydrogen bonds generate a layer structure extending parallel to the ab plane (Ha, 2011a). Along the b axis, successive molecules stack in the opposite directions. In the columns, numerous inter- and intramolecular π-π interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 3.849 (3) Å.

Related literature top

For related structures of [PdX2(dpp)] (X = Cl, I), see: Ha (2011a,b). For related Pt, Pd and Mn complexes, see: Granifo et al. (2000); Armentano et al. (2003); Delir Kheirollahi Nezhad et al. (2008); Cai et al. (2009).

Experimental top

To a solution of K2PdBr4 (0.2513 g, 0.498 mmol) in MeOH (30 ml) was added 2,3-di-2-pyridylpyrazine (0.1188 g, 0.506 mmol) and refluxed for 3 h. The formed precipitate was separated by filtration, washed with MeOH, and dried at 50 °C, to give a yellow powder (0.2150 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3NO2/acetone solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (0.84 e Å-3) and the deepest hole (-0.56 e Å-3) in the difference Fourier map are located 0.88 Å and 0.69 Å from the atom Br1, respectively.

Structure description top

Polypyridyl ligands have received considerable attention in coordination chemistry owing to the diverse coordination modes of the ligands (Granifo et al., 2000; Armentano et al., 2003; Delir Kheirollahi Nezhad et al., 2008; Cai et al., 2009).

The title complex, [PdBr2(dpp)] (dpp = 2,3-di-2-pyridylpyrazine, C14H10N4), is isomorphous with the previously reported analogous complexes [PdX2(dpp)] (X = Cl, I) (Ha, 2011a,b). The PdII ion is four-coordinated in a slightly distorted square-planar environment by the two pyridine N atoms of the chelating dpp ligand and two bromide anions (Fig. 1). The coordination mode of the dpp ligand is similar to that found in the mononuclear Pt(II) and Pd(II) complexes [PtCl2(dpq)] (dpq = 2,3-di-2-pyridylquinoxaline) (Granifo et al., 2000) and [MCl2(dcdpp)] (M = Pt, Pd; dcdpp = 2,3-dicyano-5,6-di-2-pyridylpyrazine) (Cai et al., 2009).

The contributions to the distortion of square are the N3—Pd1—N4 chelate angle of 87.44 (14)° and Br—Br repelling, and therefore the trans axes are slightly bent [<Br1—Pd1—N4 = 173.69 (10)° and <Br2—Pd1—N3 = 177.29 (10)°]. The Pd—N and Pd—Br bond lengths are nearly equivalent, respectively (Table 1). In the crystal, the two pyridine rings are considerably inclined to the least-squares plane of the PdBr2N2 unit [maximum deviation = 0.080 (2) Å], making dihedral angles of 64.9 (1)° and 66.4 (1)°. The nearly planar pyrazine ring [maximum deviation = 0.022 (3) Å] is perpendicular to the unit plane with a dihedral angle of 89.0 (1)°. The dihedral angle between the two pyridine rings is 78.84 (1)°. The complex molecules are stacked in columns along the a axis and connected by C—H···Br hydrogen bonds, forming a helical chain along the b axis (Fig. 2 and Table 2). The hydrogen bonding mode is similar to that observed in the isotypic complex [PdI2(dpp)] (Ha, 2011b). By contrast, in the chloro analog [PdCl2(dpp)], two independent intermolecular C—H···Cl hydrogen bonds generate a layer structure extending parallel to the ab plane (Ha, 2011a). Along the b axis, successive molecules stack in the opposite directions. In the columns, numerous inter- and intramolecular π-π interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 3.849 (3) Å.

For related structures of [PdX2(dpp)] (X = Cl, I), see: Ha (2011a,b). For related Pt, Pd and Mn complexes, see: Granifo et al. (2000); Armentano et al. (2003); Delir Kheirollahi Nezhad et al. (2008); Cai et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 40% probability level; H atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. View of the hydrogen-bond interactions of the title complex. Hydrogen-bonds are drawn with dashed lines.
Dibromido(2,3-di-2-pyridylpyrazine-κ2N2,N3)palladium(II) top
Crystal data top
[PdBr2(C14H10N4)]F(000) = 952
Mr = 500.48Dx = 2.162 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4302 reflections
a = 8.515 (2) Åθ = 2.6–26.0°
b = 15.408 (4) ŵ = 6.40 mm1
c = 11.941 (3) ÅT = 200 K
β = 101.129 (5)°Block, yellow
V = 1537.3 (7) Å30.26 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2998 independent reflections
Radiation source: fine-focus sealed tube2384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.689, Tmax = 1.000k = 1815
9366 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.036P)2 + 0.1829P]
where P = (Fo2 + 2Fc2)/3
2998 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[PdBr2(C14H10N4)]V = 1537.3 (7) Å3
Mr = 500.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.515 (2) ŵ = 6.40 mm1
b = 15.408 (4) ÅT = 200 K
c = 11.941 (3) Å0.26 × 0.11 × 0.10 mm
β = 101.129 (5)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2998 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2384 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 1.000Rint = 0.046
9366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.03Δρmax = 0.84 e Å3
2998 reflectionsΔρmin = 0.56 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.52714 (4)0.06214 (2)0.31928 (3)0.02593 (12)
Br10.38710 (6)0.07475 (3)0.31457 (4)0.03824 (16)
Br20.28059 (6)0.14467 (4)0.26892 (5)0.04539 (18)
N10.8184 (5)0.0074 (3)0.0802 (3)0.0343 (9)
N20.7670 (5)0.1852 (3)0.0770 (3)0.0398 (10)
N30.7370 (4)0.0038 (2)0.3554 (3)0.0252 (8)
N40.6582 (5)0.1732 (2)0.3405 (3)0.0307 (9)
C10.8039 (5)0.0504 (3)0.1757 (4)0.0259 (10)
C20.7740 (5)0.1390 (3)0.1735 (4)0.0301 (11)
C30.7795 (6)0.1421 (4)0.0176 (4)0.0420 (13)
H30.77160.17290.08730.050*
C40.8037 (6)0.0538 (3)0.0161 (4)0.0383 (12)
H40.81010.02500.08530.046*
C50.8369 (5)0.0063 (3)0.2804 (4)0.0257 (10)
C60.9677 (6)0.0606 (3)0.2958 (4)0.0348 (12)
H61.03640.06130.24190.042*
C70.9980 (6)0.1141 (3)0.3906 (4)0.0403 (13)
H71.08600.15310.40170.048*
C80.8991 (6)0.1098 (3)0.4681 (4)0.0354 (12)
H80.92020.14470.53490.042*
C90.7696 (6)0.0552 (3)0.4493 (4)0.0295 (11)
H90.70110.05320.50330.035*
C100.7647 (5)0.1935 (3)0.2749 (4)0.0315 (11)
C110.8591 (6)0.2670 (3)0.2963 (4)0.0398 (13)
H110.93250.28130.24850.048*
C120.8459 (7)0.3190 (3)0.3869 (5)0.0455 (14)
H120.91060.36940.40310.055*
C130.7370 (7)0.2973 (4)0.4548 (4)0.0467 (15)
H130.72550.33260.51790.056*
C140.6474 (6)0.2249 (3)0.4294 (4)0.0390 (13)
H140.57350.20990.47650.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0282 (2)0.0277 (2)0.0233 (2)0.00439 (15)0.00855 (14)0.00168 (14)
Br10.0316 (3)0.0399 (3)0.0447 (3)0.0018 (2)0.0111 (2)0.0006 (2)
Br20.0450 (3)0.0547 (4)0.0378 (3)0.0204 (3)0.0114 (2)0.0097 (2)
N10.044 (2)0.032 (2)0.030 (2)0.0060 (19)0.0149 (18)0.0043 (18)
N20.050 (3)0.034 (3)0.036 (2)0.000 (2)0.009 (2)0.010 (2)
N30.0271 (19)0.024 (2)0.026 (2)0.0015 (17)0.0076 (16)0.0005 (16)
N40.044 (2)0.022 (2)0.026 (2)0.0063 (18)0.0077 (18)0.0030 (16)
C10.022 (2)0.030 (3)0.027 (2)0.0020 (19)0.0067 (18)0.003 (2)
C20.029 (2)0.033 (3)0.030 (3)0.005 (2)0.009 (2)0.004 (2)
C30.053 (3)0.043 (4)0.030 (3)0.008 (3)0.010 (2)0.006 (2)
C40.046 (3)0.042 (3)0.031 (3)0.003 (2)0.017 (2)0.000 (2)
C50.025 (2)0.026 (3)0.025 (2)0.003 (2)0.0019 (18)0.0001 (19)
C60.026 (2)0.042 (3)0.038 (3)0.002 (2)0.010 (2)0.006 (2)
C70.029 (3)0.042 (3)0.049 (3)0.004 (2)0.006 (2)0.011 (3)
C80.036 (3)0.029 (3)0.038 (3)0.001 (2)0.002 (2)0.012 (2)
C90.034 (3)0.031 (3)0.023 (2)0.001 (2)0.0033 (19)0.001 (2)
C100.035 (3)0.026 (3)0.033 (3)0.006 (2)0.002 (2)0.007 (2)
C110.040 (3)0.031 (3)0.045 (3)0.002 (2)0.000 (2)0.002 (2)
C120.053 (4)0.024 (3)0.052 (3)0.002 (2)0.010 (3)0.005 (3)
C130.071 (4)0.034 (3)0.030 (3)0.010 (3)0.003 (3)0.002 (2)
C140.055 (3)0.033 (3)0.029 (3)0.012 (3)0.009 (2)0.003 (2)
Geometric parameters (Å, º) top
Pd1—N32.029 (4)C4—H40.9500
Pd1—N42.031 (4)C5—C61.376 (6)
Pd1—Br12.4183 (8)C6—C71.384 (7)
Pd1—Br22.4288 (8)C6—H60.9500
N1—C41.339 (6)C7—C81.368 (7)
N1—C11.345 (6)C7—H70.9500
N2—C31.333 (6)C8—C91.371 (7)
N2—C21.346 (6)C8—H80.9500
N3—C51.349 (5)C9—H90.9500
N3—C91.357 (6)C10—C111.385 (7)
N4—C101.344 (6)C11—C121.368 (7)
N4—C141.345 (6)C11—H110.9500
C1—C21.388 (6)C12—C131.385 (8)
C1—C51.506 (6)C12—H120.9500
C2—C101.488 (6)C13—C141.353 (7)
C3—C41.374 (7)C13—H130.9500
C3—H30.9500C14—H140.9500
N3—Pd1—N487.44 (14)C6—C5—C1118.7 (4)
N3—Pd1—Br188.74 (10)C5—C6—C7119.3 (5)
N4—Pd1—Br1173.69 (10)C5—C6—H6120.3
N3—Pd1—Br2177.29 (10)C7—C6—H6120.3
N4—Pd1—Br291.01 (11)C8—C7—C6118.9 (5)
Br1—Pd1—Br292.99 (3)C8—C7—H7120.6
C4—N1—C1117.1 (4)C6—C7—H7120.6
C3—N2—C2117.7 (4)C7—C8—C9120.0 (4)
C5—N3—C9118.6 (4)C7—C8—H8120.0
C5—N3—Pd1121.0 (3)C9—C8—H8120.0
C9—N3—Pd1119.9 (3)N3—C9—C8121.5 (5)
C10—N4—C14118.5 (4)N3—C9—H9119.2
C10—N4—Pd1122.7 (3)C8—C9—H9119.2
C14—N4—Pd1118.6 (4)N4—C10—C11121.1 (5)
N1—C1—C2121.0 (4)N4—C10—C2119.4 (4)
N1—C1—C5112.6 (4)C11—C10—C2119.4 (4)
C2—C1—C5126.1 (4)C12—C11—C10119.4 (5)
N2—C2—C1120.9 (4)C12—C11—H11120.3
N2—C2—C10113.4 (4)C10—C11—H11120.3
C1—C2—C10125.3 (4)C11—C12—C13119.2 (5)
N2—C3—C4121.2 (5)C11—C12—H12120.4
N2—C3—H3119.4C13—C12—H12120.4
C4—C3—H3119.4C14—C13—C12118.7 (5)
N1—C4—C3121.9 (5)C14—C13—H13120.6
N1—C4—H4119.0C12—C13—H13120.6
C3—C4—H4119.0N4—C14—C13123.0 (5)
N3—C5—C6121.7 (4)N4—C14—H14118.5
N3—C5—C1119.6 (4)C13—C14—H14118.5
N4—Pd1—N3—C571.4 (3)N1—C1—C5—C644.7 (6)
Br1—Pd1—N3—C5113.6 (3)C2—C1—C5—C6130.3 (5)
N4—Pd1—N3—C9116.8 (3)N3—C5—C6—C70.1 (7)
Br1—Pd1—N3—C958.2 (3)C1—C5—C6—C7178.9 (4)
N3—Pd1—N4—C1061.5 (4)C5—C6—C7—C81.7 (8)
Br2—Pd1—N4—C10116.3 (3)C6—C7—C8—C92.1 (8)
N3—Pd1—N4—C14113.0 (3)C5—N3—C9—C81.1 (6)
Br2—Pd1—N4—C1469.3 (3)Pd1—N3—C9—C8170.9 (3)
C4—N1—C1—C20.4 (6)C7—C8—C9—N30.7 (7)
C4—N1—C1—C5174.9 (4)C14—N4—C10—C111.5 (7)
C3—N2—C2—C14.2 (7)Pd1—N4—C10—C11175.9 (3)
C3—N2—C2—C10178.0 (4)C14—N4—C10—C2177.6 (4)
N1—C1—C2—N23.5 (7)Pd1—N4—C10—C27.9 (6)
C5—C1—C2—N2171.1 (4)N2—C2—C10—N4129.0 (4)
N1—C1—C2—C10176.5 (4)C1—C2—C10—N457.6 (6)
C5—C1—C2—C101.9 (7)N2—C2—C10—C1147.3 (6)
C2—N2—C3—C41.9 (8)C1—C2—C10—C11126.2 (5)
C1—N1—C4—C31.9 (7)N4—C10—C11—C121.2 (7)
N2—C3—C4—N11.1 (8)C2—C10—C11—C12177.4 (4)
C9—N3—C5—C61.5 (6)C10—C11—C12—C130.6 (8)
Pd1—N3—C5—C6170.4 (3)C11—C12—C13—C140.3 (8)
C9—N3—C5—C1179.7 (4)C10—N4—C14—C131.1 (7)
Pd1—N3—C5—C18.4 (5)Pd1—N4—C14—C13175.8 (4)
N1—C1—C5—N3134.1 (4)C12—C13—C14—N40.5 (8)
C2—C1—C5—N350.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Br1i0.952.883.670 (5)141
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PdBr2(C14H10N4)]
Mr500.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)8.515 (2), 15.408 (4), 11.941 (3)
β (°) 101.129 (5)
V3)1537.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)6.40
Crystal size (mm)0.26 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.689, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9366, 2998, 2384
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.03
No. of reflections2998
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.56

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pd1—N32.029 (4)Pd1—Br12.4183 (8)
Pd1—N42.031 (4)Pd1—Br22.4288 (8)
N3—Pd1—N487.44 (14)Br1—Pd1—Br292.99 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Br1i0.952.883.670 (5)141.4
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationArmentano, D., de Munno, G., Guerra, F., Faus, J., Lloret, F. & Julve, M. (2003). Dalton Trans. pp. 4626–4634.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X., Donzello, M. P., Viola, E., Rizzoli, C., Ercolani, C. & Kadish, K. M. (2009). Inorg. Chem. 48, 7086–7098.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDelir Kheirollahi Nezhad, P., Azadbakht, F., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m575–m576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGranifo, J., Vargas, M. E., Garland, M. T. & Baggio, R. (2000). Inorg. Chim. Acta, 305, 143–150.  Web of Science CSD CrossRef CAS Google Scholar
First citationHa, K. (2011a). Acta Cryst. E67, m1615.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011b). Acta Cryst. E67, m1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds