organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,4-Dipropoxyphen­yl)boronic acid

aPhysical Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: kdurka@ch.pw.edu.pl

(Received 17 November 2011; accepted 21 November 2011; online 30 November 2011)

In the crystal, the title compound, C12H19BO4, exists as a centrosymmetric O—H⋯O hydrogen-bonded dimer. Dimers are linked via C—H⋯O hydrogen bonds, generating an infinite zigzag chain oriented parallel to [1[\overline{1}]1]. The chains are assembled, giving sheets aligned parallel to (21[\overline{1}]) and inter­connected by weak C—H⋯π inter­actions, producing a three-dimensional network.

Related literature

For the structural characterization of related ortho-alk­oxy aryl­boronic acids, see: Dąbrowski et al. (2008[Dąbrowski, M., Luliński, S. & Serwatowski, J. (2008). Acta Cryst. E64, o437.], 2009[Dąbrowski, M., Luliński, S., Serwatowski, J. & Wilmowicz, A. (2009). Acta Cryst. E65, o1669.]); Yang et al. (2005[Yang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907-6912.]).

[Scheme 1]

Experimental

Crystal data
  • C12H19BO4

  • Mr = 238.08

  • Triclinic, [P \overline 1]

  • a = 7.9630 (9) Å

  • b = 8.8014 (12) Å

  • c = 9.3182 (13) Å

  • α = 101.585 (11)°

  • β = 91.924 (10)°

  • γ = 90.826 (10)°

  • V = 639.26 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.986, Tmax = 0.992

  • 12243 measured reflections

  • 2950 independent reflections

  • 1981 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.081

  • S = 0.90

  • 2950 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.96 2.794 (1) 176
O2—H2⋯O3 0.84 1.95 2.672 (1) 144
C5—H5⋯O4ii 0.95 2.50 3.445 (1) 175
C10—H10B⋯O1iii 0.99 2.84 3.78 (1) 158
C8—H8BCg1iv 0.99 2.83 3.671 (1) 143
Symmetry codes: (i) -x+1, -y+1, -z-1; (ii) -x+2, -y, -z; (iii) x, y, z+1; (iv) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The ability of arylboronic acids to form supramolecular assemblies due to intermolecular hydrogen bonding is well known. Our interest has focused on ortho-alkoxy derivatives and the influence of various factors (including the number and length of the alkoxy group) on their structural behaviour.

The molecular structure of (I) shows the boronic groups possesses an exo-endo conformation. The entire molecule including both propoxy groups remains essentially planar. The endo-oriented OH group is engaged in an intramolecular O—H···O hydrogen bond (Table 1) with the 2-propoxy O atom, resulting in the formation of a six-membered ring. This motif is generally typical for structures of all ortho-alkoxyarylboronic acids (Yang et al., 2005; Dąbrowski et al., 2008; Luliński, 2008).

Centrosymmetric O—H···O hydrogen-bonded dimers of (I) are linked by weaker C—H···O hydrogen bonds connecting the H5 atom attached to aromatic ring with the O atom of the 4-propoxy group in the adjacent molecule. Thus, another centrosymmetric dimeric motif can be distinguished. These two alternating dimeric motifs generate a zig-zag chain which runs along the [111] direction. Adjacent chains are ordered due to van der Waals interactions of propoxy groups which leads to the formation of a 2D layer aligned parallel to the (211) plane. The supramolecular architecture extends further due to weak C—H···O contacts between α-methylene units of 4-propoxy groups and one of O atoms of the boronic group. Finally, C—H···π interactions occur between the β-methylene units of the 2-propoxy group and the aromatic ring of a molecule in the adjacent layer. As a result, a three-dimensional network is formed.

Related literature top

For the structural characterization of related ortho-alkoxy arylboronic acids, see: Dąbrowski et al. (2008, 2009); Yang et al. (2005).

Experimental top

The title compound was received from Aldrich. Crystals suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of a solution of the acid (0.2 g) in acetone/water (10 ml, 1:1).

Refinement top

All hydrogen atoms were placed in calculated positions with C—H distance of 0.95Å (phenyl), 0.98Å (methyl), 0.99Å (methylene) and O—H distance of 0.84 Å.They were visible in difference maps and they were included in the refinement in riding-motion approximation with Uiso(phenyl H)=1.2Ueq(C), Uiso(methyl H)=1.5Ueq(C) and Uiso(OH H)=1.5Ueq(O).

Structure description top

The ability of arylboronic acids to form supramolecular assemblies due to intermolecular hydrogen bonding is well known. Our interest has focused on ortho-alkoxy derivatives and the influence of various factors (including the number and length of the alkoxy group) on their structural behaviour.

The molecular structure of (I) shows the boronic groups possesses an exo-endo conformation. The entire molecule including both propoxy groups remains essentially planar. The endo-oriented OH group is engaged in an intramolecular O—H···O hydrogen bond (Table 1) with the 2-propoxy O atom, resulting in the formation of a six-membered ring. This motif is generally typical for structures of all ortho-alkoxyarylboronic acids (Yang et al., 2005; Dąbrowski et al., 2008; Luliński, 2008).

Centrosymmetric O—H···O hydrogen-bonded dimers of (I) are linked by weaker C—H···O hydrogen bonds connecting the H5 atom attached to aromatic ring with the O atom of the 4-propoxy group in the adjacent molecule. Thus, another centrosymmetric dimeric motif can be distinguished. These two alternating dimeric motifs generate a zig-zag chain which runs along the [111] direction. Adjacent chains are ordered due to van der Waals interactions of propoxy groups which leads to the formation of a 2D layer aligned parallel to the (211) plane. The supramolecular architecture extends further due to weak C—H···O contacts between α-methylene units of 4-propoxy groups and one of O atoms of the boronic group. Finally, C—H···π interactions occur between the β-methylene units of the 2-propoxy group and the aromatic ring of a molecule in the adjacent layer. As a result, a three-dimensional network is formed.

For the structural characterization of related ortho-alkoxy arylboronic acids, see: Dąbrowski et al. (2008, 2009); Yang et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. Formation of two-dimensional layer constructed from one-dimensional chains, which are generated through O—H···O and C—H···O interactions (red and blue colours, respectively).
[Figure 3] Fig. 3. The three-dimensional supramolecular structure of (I). Intermolecular C—H···O and C—H···π interactions formed between two-dimensional layers are depicted as blue and green lines, respectively.
(2,4-Dipropoxyphenyl)boronic acid top
Crystal data top
C12H19BO4Z = 2
Mr = 238.08F(000) = 256
Triclinic, P1Dx = 1.237 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9630 (9) ÅCell parameters from 1540 reflections
b = 8.8014 (12) Åθ = 2.7–28.4°
c = 9.3182 (13) ŵ = 0.09 mm1
α = 101.585 (11)°T = 100 K
β = 91.924 (10)°Unshaped, colourless
γ = 90.826 (10)°0.15 × 0.12 × 0.10 mm
V = 639.26 (15) Å3
Data collection top
Bruker APEXII
diffractometer
2950 independent reflections
Radiation source: TXS rotating anode1981 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1010
Tmin = 0.986, Tmax = 0.992k = 1111
12243 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0487P)2]
where P = (Fo2 + 2Fc2)/3
2950 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C12H19BO4γ = 90.826 (10)°
Mr = 238.08V = 639.26 (15) Å3
Triclinic, P1Z = 2
a = 7.9630 (9) ÅMo Kα radiation
b = 8.8014 (12) ŵ = 0.09 mm1
c = 9.3182 (13) ÅT = 100 K
α = 101.585 (11)°0.15 × 0.12 × 0.10 mm
β = 91.924 (10)°
Data collection top
Bruker APEXII
diffractometer
2950 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1981 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.992Rint = 0.024
12243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 0.90Δρmax = 0.35 e Å3
2950 reflectionsΔρmin = 0.19 e Å3
154 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62433 (10)0.32104 (9)0.46474 (8)0.0260 (3)
O20.54695 (10)0.55834 (9)0.31800 (8)0.0243 (3)
O30.67310 (10)0.60724 (8)0.04282 (8)0.0209 (2)
O40.96656 (9)0.20013 (9)0.13916 (8)0.0211 (2)
C10.72028 (13)0.36735 (12)0.19957 (11)0.0169 (3)
C20.73803 (13)0.46070 (12)0.05836 (11)0.0174 (3)
C30.81690 (13)0.40958 (12)0.05908 (11)0.0176 (3)
C40.88240 (13)0.26147 (13)0.03411 (11)0.0173 (3)
C50.86780 (13)0.16440 (12)0.10371 (11)0.0181 (3)
C60.78780 (13)0.21836 (13)0.21711 (11)0.0187 (3)
C70.69286 (13)0.71279 (12)0.09706 (11)0.0177 (3)
C80.61739 (14)0.86468 (12)0.08068 (12)0.0215 (3)
C90.62471 (15)0.98129 (13)0.22669 (12)0.0282 (4)
C100.99022 (14)0.29466 (12)0.28420 (11)0.0192 (3)
C111.09520 (15)0.20257 (13)0.37344 (11)0.0227 (3)
C121.13065 (15)0.29436 (14)0.52911 (12)0.0274 (4)
B10.62724 (15)0.41844 (14)0.33306 (13)0.0179 (3)
H10.571250.361320.526500.0390*
H20.560010.607490.231130.0363*
H30.825540.474580.153760.0212*
H50.911990.062950.119550.0218*
H60.778070.151810.310970.0224*
H7A0.634760.670280.173130.0212*
H7B0.813460.728200.126650.0212*
H8A0.679390.908010.007210.0258*
H8B0.498930.846620.044760.0258*
H9A0.574671.078720.213070.0423*
H9B0.562070.939090.299130.0423*
H9C0.742081.000760.261410.0423*
H10A1.048690.393510.279630.0231*
H10B0.880320.318530.329160.0231*
H11A1.035000.104370.377390.0272*
H11B1.202880.176300.325260.0272*
H12A1.198650.232250.584400.0411*
H12B1.191870.390800.525380.0411*
H12C1.024180.318950.577450.0411*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0343 (5)0.0274 (5)0.0162 (4)0.0093 (4)0.0060 (3)0.0047 (3)
O20.0343 (5)0.0246 (4)0.0133 (4)0.0074 (3)0.0056 (3)0.0031 (3)
O30.0294 (4)0.0171 (4)0.0156 (4)0.0066 (3)0.0050 (3)0.0026 (3)
O40.0283 (4)0.0201 (4)0.0146 (4)0.0076 (3)0.0057 (3)0.0031 (3)
C10.0165 (5)0.0199 (5)0.0150 (5)0.0004 (4)0.0009 (4)0.0056 (4)
C20.0173 (5)0.0176 (5)0.0182 (5)0.0023 (4)0.0004 (4)0.0061 (4)
C30.0204 (5)0.0186 (5)0.0132 (5)0.0019 (4)0.0014 (4)0.0017 (4)
C40.0163 (5)0.0208 (5)0.0160 (5)0.0011 (4)0.0016 (4)0.0072 (4)
C50.0200 (6)0.0149 (5)0.0194 (6)0.0038 (4)0.0004 (4)0.0031 (4)
C60.0193 (5)0.0221 (6)0.0142 (5)0.0000 (4)0.0009 (4)0.0027 (4)
C70.0200 (5)0.0190 (6)0.0134 (5)0.0013 (4)0.0021 (4)0.0021 (4)
C80.0257 (6)0.0189 (6)0.0201 (6)0.0038 (5)0.0012 (4)0.0048 (5)
C90.0351 (7)0.0210 (6)0.0269 (6)0.0047 (5)0.0034 (5)0.0016 (5)
C100.0240 (6)0.0182 (5)0.0149 (5)0.0032 (4)0.0030 (4)0.0023 (4)
C110.0288 (6)0.0225 (6)0.0167 (5)0.0046 (5)0.0049 (4)0.0041 (5)
C120.0357 (7)0.0281 (7)0.0182 (6)0.0041 (5)0.0063 (5)0.0051 (5)
B10.0167 (6)0.0206 (6)0.0175 (6)0.0000 (5)0.0010 (5)0.0067 (5)
Geometric parameters (Å, º) top
O1—B11.3476 (14)C11—C121.5270 (15)
O2—B11.3798 (15)C3—H30.9500
O3—C21.3788 (13)C5—H50.9500
O3—C71.4431 (13)C6—H60.9500
O4—C41.3702 (13)C7—H7A0.9900
O4—C101.4426 (13)C7—H7B0.9900
O1—H10.8400C8—H8A0.9900
O2—H20.8400C8—H8B0.9900
C1—C21.4058 (14)C9—H9A0.9800
C1—C61.4055 (16)C9—H9B0.9800
C1—B11.5719 (16)C9—H9C0.9800
C2—C31.3979 (15)C10—H10A0.9900
C3—C41.3898 (16)C10—H10B0.9900
C4—C51.3925 (15)C11—H11A0.9900
C5—C61.3831 (15)C11—H11B0.9900
C7—C81.5068 (15)C12—H12A0.9800
C8—C91.5297 (16)C12—H12B0.9800
C10—C111.5135 (16)C12—H12C0.9800
O1···O2i2.7938 (12)H3···C102.5400
O2···O32.6722 (11)H3···H7A2.3000
O2···O1i2.7938 (12)H3···H7B2.3000
O3···O22.6722 (11)H3···H10A2.3000
O1···H10Bii2.8400H3···H10B2.3700
O1···H62.5600H5···O4iv2.5000
O2···H1i1.9600H5···C11iv2.9700
O3···H21.9500H6···O12.5600
O4···H9Ciii2.9000H7A···C32.7800
O4···H5iv2.5000H7A···H32.3000
C1···C7v3.5564 (15)H7A···H9B2.5100
C7···C1v3.5564 (15)H7A···C1v2.8700
C8···C8vi3.5788 (16)H7A···B1v2.8000
C1···H10Avii3.0000H7A···H12Aviii2.5700
C1···H7Av2.8700H7B···C32.7500
C2···H22.6500H7B···H32.3000
C3···H7B2.7500H7B···H9C2.5600
C3···H10B2.8200H7B···C4vii2.9000
C3···H7A2.7800H7B···C5vii2.7300
C3···H10A2.7400H8A···C5ix3.0600
C4···H7Bvii2.9000H8B···C5v2.9900
C5···H7Bvii2.7300H8B···C6v2.9500
C5···H8Bv2.9900H9B···H7A2.5100
C5···H8Aiii3.0600H9B···C6v3.1000
C6···H9Bv3.1000H9C···O4ix2.9000
C6···H12Cii2.9800H9C···H7B2.5600
C6···H8Bv2.9500H10A···C32.7400
C7···H12Aviii3.0000H10A···H32.3000
C7···H32.5000H10A···H12B2.5300
C10···H32.5400H10A···C1vii3.0000
C11···H5iv2.9700H10A···B1vii3.0200
B1···H1i2.9900H10B···O1x2.8400
B1···H7Av2.8000H10B···C32.8200
B1···H10Avii3.0200H10B···H32.3700
H1···O2i1.9600H10B···H12C2.5500
H1···B1i2.9900H12A···C7viii3.0000
H1···H2i2.5200H12A···H7Aviii2.5700
H2···O31.9500H12B···H10A2.5300
H2···C22.6500H12C···C6x2.9800
H2···H1i2.5200H12C···H10B2.5500
H3···C72.5000
C2—O3—C7119.07 (8)C7—C8—H8B109.00
C4—O4—C10118.39 (8)C7—C8—H8A109.00
B1—O1—H1109.00C9—C8—H8A109.00
B1—O2—H2109.00C9—C8—H8B109.00
C2—C1—C6116.11 (9)H8A—C8—H8B108.00
C2—C1—B1124.11 (10)C8—C9—H9B109.00
C6—C1—B1119.76 (9)C8—C9—H9C109.00
O3—C2—C1115.62 (9)H9A—C9—H9B109.00
C1—C2—C3122.57 (10)C8—C9—H9A109.00
O3—C2—C3121.81 (9)H9A—C9—H9C109.00
C2—C3—C4118.46 (9)H9B—C9—H9C109.00
O4—C4—C5114.96 (10)O4—C10—H10A110.00
O4—C4—C3123.87 (9)H10A—C10—H10B109.00
C3—C4—C5121.17 (10)C11—C10—H10B110.00
C4—C5—C6118.80 (10)O4—C10—H10B110.00
C1—C6—C5122.88 (10)C11—C10—H10A110.00
O3—C7—C8107.64 (8)C10—C11—H11B109.00
C7—C8—C9111.13 (9)C10—C11—H11A109.00
O4—C10—C11106.96 (8)C12—C11—H11A109.00
C10—C11—C12111.14 (9)C12—C11—H11B109.00
C2—C3—H3121.00H11A—C11—H11B108.00
C4—C3—H3121.00C11—C12—H12B109.00
C6—C5—H5121.00C11—C12—H12C109.00
C4—C5—H5121.00H12A—C12—H12B109.00
C1—C6—H6119.00C11—C12—H12A109.00
C5—C6—H6119.00H12A—C12—H12C109.00
O3—C7—H7A110.00H12B—C12—H12C109.00
O3—C7—H7B110.00O2—B1—C1121.77 (10)
H7A—C7—H7B108.00O1—B1—O2119.62 (10)
C8—C7—H7B110.00O1—B1—C1118.60 (10)
C8—C7—H7A110.00
C7—O3—C2—C1177.25 (9)C2—C1—B1—O1177.34 (10)
C7—O3—C2—C32.44 (14)B1—C1—C2—O32.44 (15)
C2—O3—C7—C8177.61 (9)C6—C1—B1—O14.42 (15)
C10—O4—C4—C5178.70 (9)O3—C2—C3—C4178.64 (10)
C10—O4—C4—C30.52 (15)C1—C2—C3—C41.03 (16)
C4—O4—C10—C11176.48 (9)C2—C3—C4—C51.12 (16)
C6—C1—C2—O3179.27 (9)C2—C3—C4—O4178.05 (10)
C2—C1—B1—O23.72 (17)C3—C4—C5—C60.62 (16)
B1—C1—C6—C5178.48 (10)O4—C4—C5—C6178.62 (9)
C6—C1—B1—O2174.52 (10)C4—C5—C6—C10.00 (17)
B1—C1—C2—C3177.87 (10)O3—C7—C8—C9177.03 (9)
C2—C1—C6—C50.11 (16)O4—C10—C11—C12178.86 (9)
C6—C1—C2—C30.42 (15)
Symmetry codes: (i) x+1, y+1, z1; (ii) x, y, z1; (iii) x, y1, z; (iv) x+2, y, z; (v) x+1, y+1, z; (vi) x+1, y+2, z; (vii) x+2, y+1, z; (viii) x+2, y+1, z+1; (ix) x, y+1, z; (x) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.8401.9602.794 (1)176.0
O2—H2···O30.8401.9502.672 (1)144.0
C5—H5···O4iv0.9502.5003.445 (1)175.0
C10—H10B···O1x0.9902.8443.778 (1)157.5
C8—H8B···Cg1xi0.9902.8293.671 (1)143.4
Symmetry codes: (i) x+1, y+1, z1; (iv) x+2, y, z; (x) x, y, z+1; (xi) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H19BO4
Mr238.08
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9630 (9), 8.8014 (12), 9.3182 (13)
α, β, γ (°)101.585 (11), 91.924 (10), 90.826 (10)
V3)639.26 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.986, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
12243, 2950, 1981
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 0.90
No. of reflections2950
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.19

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
O1—B11.3476 (14)O4—C41.3702 (13)
O2—B11.3798 (15)O4—C101.4426 (13)
O3—C21.3788 (13)C1—B11.5719 (16)
O3—C71.4431 (13)
C2—O3—C7119.07 (8)O4—C4—C3123.87 (9)
C4—O4—C10118.39 (8)O3—C7—C8107.64 (8)
C2—C1—B1124.11 (10)O4—C10—C11106.96 (8)
C6—C1—B1119.76 (9)O2—B1—C1121.77 (10)
O3—C2—C1115.62 (9)O1—B1—O2119.62 (10)
O3—C2—C3121.81 (9)O1—B1—C1118.60 (10)
O4—C4—C5114.96 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.8401.9602.794 (1)176.0
O2—H2···O30.8401.9502.672 (1)144.0
C5—H5···O4ii0.9502.5003.445 (1)175.0
C10—H10B···O1iii0.9902.8443.778 (1)157.5
C8—H8B···Cg1iv0.9902.8293.671 (1)143.4
Symmetry codes: (i) x+1, y+1, z1; (ii) x+2, y, z; (iii) x, y, z+1; (iv) x, y, z+1.
 

Acknowledgements

The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Aldrich Chemical Co. through donation of chemicals and equipment, and by Warsaw University of Technology.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDąbrowski, M., Luliński, S. & Serwatowski, J. (2008). Acta Cryst. E64, o437.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDąbrowski, M., Luliński, S., Serwatowski, J. & Wilmowicz, A. (2009). Acta Cryst. E65, o1669.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907–6912.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds