metal-organic compounds
Bis(μ2-η2:η2-2,4,6-trimethylbenzonitrile)bis[(N-isopropyl-3,5-dimethylanilido)molybdenum(III)](Mo—Mo)
aDepartment of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA, and bDepartment of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
*Correspondence e-mail: elena.rybak-akimova@tufts.edu
The title compound, [Mo2(C11H16N)4(C10H11N)2], is a dinuclear molybdenum complex with a formal metal–metal bond [Mo⋯Mo separation = 2.5946 (8) Å], four anilide-type ligands and two bridging mesityl nitrile groups. There are two inversion symmetric molecules in the (an inversion center is localized at the mid-point of the Mo—Mo bond), each with approximate non-crystallographic C2h symmetry. The molecules contain disordered isopropyl and 3,5-C6H3Me2 groups on different anilido ligands; the major component having an occupancy of 0.683 (7). The complex was obtained in low yield as the product from the reaction between the bridging pyrazine adduct of molybdenum tris-anilide ([μ2-(C4H4N2){Mo(C11H16N)3}2]) and mesityl nitrile with a loss of one anilido ligand.
Related literature
For the synthesis of molybdenum(III) tris-anilide nitrides and structures of similar complexes, see: Johnson et al. (1997); Tsai et al. (1999). For reactions of three-coordinate Mo(III) complexes with dinitrogen, organic and including a base-catalysed dinitrogen cleavage, see: Tsai et al. (2003); Curley et al. (2008); Germain et al. (2009). For the structural parameters of mesityl nitrile and its complexes, see: Britton (1979); Figueroa & Cummins (2003). For the structural parameters of molybdenum complexes with μ2-η2-η2 bridging benzonitrile, see: Li et al. (2008).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811044680/zl2410sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811044680/zl2410Isup2.hkl
All synthetic operations were performed in an air-free MBraun drybox under an argon atmosphere. Compound [µ2-η2-η2-(C10N1H11)2{Mo(C11N1H16)2}2] was obtained in two steps. [µ2-(pyrazine){Mo(N{i-Pr}Ar)3}2] was synthesized in situ: 0.002 g (0.03 mmol) of pyrazine in 2 ml of dry THF was added to a solution of molybdenum complex, [HMo(η2-Me2CNAr)(N{i-Pr}Ar)2] (0.03 g, 0.05 mmol) in dry diethyl ether (3 ml). The resulting dark blue mixture was stirred for 20 min, followed by solvent evaporation under reduced pressure. In the second step the crude product was redissolved in diethyl ether and 0.008 g (0.06 mmol) of mesityl nitrile was added. The mixture was stirred for 30 min, then the solvent was evaporated under reduced pressure. The product was redissolved twice in dry n-hexane to remove the traces of the THF, then the solvent was again evaporated and the solid was dissolved in dry n-pentane (2 ml) and left for crystallization at 238 K (-35 °C) inside the Dark blue crystals suitable for X-ray analysis formed after one week (Yield (crude): 20%). 1H NMR (500 MHz, 298 K, C6D6): δ -8.94, -1.79, 0.62, 3.06, 8.84, 9.02, 15.96 ppm.
Methyl H atoms were placed in geometrically idealized positions allowing the initial torsion angle to be determined by a difference Fourier analysis [C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C)]. Other H atoms were placed in geometrically idealized positions and included as riding atoms [C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C)]. Disordered i-Pr and disordered
reside next to each other in the which causes a correlation in the model of the disorder, the ratios between the two components were refined freely. The geometries of the two PARTs of the disordered i-Pr and were kept similar using the SAME command of the program Shelxtl (Sheldrick, 2008); additionally, SADI restraints were used to restrain N2—C19A, N2—C19B and N3—C22A, N3—C22B bond distances. This allowed the 1,2- and 1,3-distances of corresponding atoms to be equal within determined standard deviations (0.02 Å for 1,2- and 0.04 for 1,3-distances). Rigid bond restraints for anisotropic displacement parameters of atoms of the disordered i-Pr and disordered aryl group were applied using the DELU command (standard deviation is 0.01 Å). In addition, anisotropic displacement parameters of the pairs of overlapping disordered atoms of the major and minor components of the disorder were made equal using the EADP constraint.For more than fifteen years, low-coordinate molybdenum(III) tris-anilide complexes, [Mo(N{R1}Ar)3] and [HMo(η2-Me2CNAr)(N{R2}Ar)2] (where R1 = t-Bu; R2 = i-Pr or CH(CD3)2; Ar = 3,5-C6H3Me2), have attracted the attention of inorganic chemists and crystallographers due to their unusual coordination geometries and their remarkable ability to activate small molecules, including triply-bonded dinitrogen (Tsai et al., 1999; Curley et al., 2008; Germain et al., 2009). It was previously shown that N2 cleavage with the sterically bulky [Mo(N{t-Bu}Ar)3] affords a terminal nitride, ([(N)Mo(N{t-Bu}Ar)3]), while the less bulky [HMo(η2-(CD3)2CNAr)(N{CH(CD3)2}Ar)2] yields a µ2-N bridged dinuclear complex ([µ2-(N){Mo(N{CH(CD3)2}Ar)3}2]). Furthermore, the rate of N2 uptake increases in the presence of bases such as 1-methyl-imidazole, 2,6-dimethylpyrazine or pyridine (Tsai et al., 2003). Thus, the study of molybdenum tris-anilide adducts with additional ligands will help in understanding the N2 uptake, a critical step in the overall N2 cleavage mechanism. Additionally, molecules with element-element triple bonds, such as can be viewed as dinitrogen surrogates, and provide structural information on molybdenum interacting with multiply bonded substrates in cases when N2 binding affinity is too low, and N2 complexes cannot be isolated and crystallized.
In this report, we discuss the molecular structure of the dinuclear [µ2-η2-η2-(MesCN)2{Mo(N{i-Pr}Ar)2}2] molybdenum compound (Figure 1 and 2) obtained from the reaction between mesityl nitrile and the pyrazine adduct of [HMo(η2-Me2CNAr)(N{i-Pr}Ar)2] mixed in 2:1 stoichiometric ratio. The title compound crystallizes in the monoclinic P21/n and consists of neutral molecules; inter-molecular interactions include a number of van der Waals contacts. The crystal packing diagram reveals that molecules of the title compound form layers in the xz plane (Figure 3). The molybdenum centers have distorted tetrahedral geometries; the is formed by two N atoms belonging to the anilide residues and two bridging η2-CN groups from MesCN molecules. Additionally, short metal-metal separation (2.5946 (8) Å) indicates the presence of a formal single Mo···Mo' bond. The bridging η2-η2– coordination of MesCN results in an elongation of the C—N bond in the molecule. Its value is typical for a double C—N bond (1.318 (7) Å) and longer than the CN triple bond in free MesCN (1.160 Å, Britton, 1979) and for the case of η2-coordination to a single Nb center (1.258 (4) Å, Figueroa et al., 2003) but very close to the value reported for µ2-η2-η2 benzonitrile coordinated to two molybdenum atoms (1.299 (3) Å) (Li, et al., 2008). The Mo—N bond lengths are comparable to the previously reported [Mo(N{R}Ar)3] complexes (Geometric parameters table) (Johnson et al., 1997), and the other C—C, C—N bond length values in the anilide and mesityl ligands have their typical values.
For the synthesis of molybdenum(III) tris-anilide nitrides and structures of similar complexes, see: Johnson et al. (1997); Tsai et al. (1999). For reactions of three-coordinate Mo(III) complexes with dinitrogen, organic η2-η2 bridging benzonitrile, see: Li et al. (2008).
and including a base-catalysed dinitrogen cleavage, see: Tsai et al. (2003); Curley et al. (2008); Germain et al. (2009). For the structural parameters of mesityl nitrile and its complexes, see: Britton (1979); Figueroa & Cummins (2003). For the structural parameters of molybdenum complexes with µ2-Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Mo2(C11H16N)4(C10H11N)2] | F(000) = 1192 |
Mr = 1131.27 | Dx = 1.321 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 55443 reflections |
a = 13.262 (2) Å | θ = 1.9–28.7° |
b = 17.090 (3) Å | µ = 0.49 mm−1 |
c = 13.306 (2) Å | T = 100 K |
β = 109.387 (2)° | Plate, dark blue |
V = 2844.7 (8) Å3 | 0.15 × 0.1 × 0.07 mm |
Z = 2 |
Bruker SMART APEX CCD diffractometer | 7345 independent reflections |
Radiation source: fine-focus sealed tube | 4190 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.119 |
φ and ω scans | θmax = 28.7°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2009) | h = −17→17 |
Tmin = 0.459, Tmax = 0.746 | k = −23→23 |
55443 measured reflections | l = −17→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.067 | H-atom parameters constrained |
wR(F2) = 0.172 | w = 1/[σ2(Fo2) + (0.0372P)2 + 14.5221P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.003 |
7345 reflections | Δρmax = 1.54 e Å−3 |
375 parameters | Δρmin = −1.51 e Å−3 |
63 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0011 (2) |
[Mo2(C11H16N)4(C10H11N)2] | V = 2844.7 (8) Å3 |
Mr = 1131.27 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.262 (2) Å | µ = 0.49 mm−1 |
b = 17.090 (3) Å | T = 100 K |
c = 13.306 (2) Å | 0.15 × 0.1 × 0.07 mm |
β = 109.387 (2)° |
Bruker SMART APEX CCD diffractometer | 7345 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2009) | 4190 reflections with I > 2σ(I) |
Tmin = 0.459, Tmax = 0.746 | Rint = 0.119 |
55443 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 63 restraints |
wR(F2) = 0.172 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0372P)2 + 14.5221P] where P = (Fo2 + 2Fc2)/3 |
7345 reflections | Δρmax = 1.54 e Å−3 |
375 parameters | Δρmin = −1.51 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Methyl H atoms were placed in geometrically idealized positions allowing the initial torsion angle to be determined by a difference Fourier analysis [C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C)]. Other H atoms were placed in geometrically idealized positions and included as riding atoms [C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C)]. Disordered i-Pr and disordered aryl group reside next to each other in the unit cell which causes a correlation in the model of the disorder, the ratios between the two components were refined freely. The geometries of the two PARTs of the disordered groups were kept similar using the SAME (it was applied for all atoms in the disordered i-Pr and disordered aryl groups) and SADI (it was used to restrain N2–C19A, N2–C19B and N3–C22A, N3–C22B bond distances) restraints of the program Shelxtl (Sheldrick, 2008) which allowed the 1,2- and 1,3- distances of corresponding atoms to be equal within determined standard deviations (0.02 Å for 1,2- and 0.04 for 1,3-distances); rigid bond restraints for anisotropic displacement parameters of atoms of the disordered i-Pr and disordered aryl group were applied using the DELU command (standart deviation is 0.01 Å). In addition, anisotropic displacement parameters of the pairs of overlapping disordered atoms of the major and minor components of the disorder were made equal using the EADP constraint. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mo1 | 0.94612 (3) | 0.99741 (3) | 0.56542 (3) | 0.02648 (14) | |
N1 | 1.0387 (3) | 0.9050 (3) | 0.5088 (3) | 0.0293 (11) | |
N2 | 0.9342 (4) | 1.0655 (3) | 0.6828 (4) | 0.0372 (12) | |
N3 | 0.8204 (3) | 0.9260 (3) | 0.5336 (4) | 0.0347 (12) | |
C1 | 1.0935 (4) | 0.9466 (3) | 0.5926 (4) | 0.0265 (12) | |
C2 | 1.1925 (4) | 0.9270 (4) | 0.6799 (4) | 0.0297 (12) | |
C3 | 1.2509 (4) | 0.9866 (4) | 0.7474 (4) | 0.0341 (14) | |
C4 | 1.3495 (4) | 0.9667 (4) | 0.8245 (5) | 0.0423 (16) | |
H4 | 1.3894 | 1.0060 | 0.8683 | 0.051* | |
C5 | 1.3885 (4) | 0.8927 (4) | 0.8374 (5) | 0.0446 (17) | |
C6 | 1.3278 (4) | 0.8341 (4) | 0.7753 (5) | 0.0406 (15) | |
H6 | 1.3528 | 0.7829 | 0.7864 | 0.049* | |
C7 | 1.2296 (4) | 0.8488 (4) | 0.6962 (4) | 0.0319 (13) | |
C8 | 1.2093 (5) | 1.0688 (4) | 0.7414 (5) | 0.0432 (15) | |
H8A | 1.1801 | 1.0846 | 0.6681 | 0.065* | |
H8B | 1.2666 | 1.1034 | 0.7784 | 0.065* | |
H8C | 1.1544 | 1.0711 | 0.7736 | 0.065* | |
C9 | 1.4973 (5) | 0.8740 (5) | 0.9173 (6) | 0.070 (3) | |
H9A | 1.5517 | 0.8858 | 0.8867 | 0.105* | |
H9B | 1.5005 | 0.8195 | 0.9355 | 0.105* | |
H9C | 1.5085 | 0.9049 | 0.9803 | 0.105* | |
C10 | 1.1667 (5) | 0.7804 (4) | 0.6362 (5) | 0.0432 (15) | |
H10A | 1.1572 | 0.7858 | 0.5618 | 0.065* | |
H10B | 1.0981 | 0.7789 | 0.6459 | 0.065* | |
H10C | 1.2047 | 0.7328 | 0.6627 | 0.065* | |
C11 | 0.9237 (5) | 1.0201 (4) | 0.7667 (4) | 0.0363 (15) | |
C12 | 0.8446 (5) | 1.0306 (4) | 0.8144 (5) | 0.0437 (16) | |
H12 | 0.7966 | 1.0719 | 0.7923 | 0.052* | |
C13 | 0.8364 (5) | 0.9810 (5) | 0.8934 (4) | 0.049 (2) | |
C14 | 0.9048 (5) | 0.9175 (4) | 0.9242 (4) | 0.0412 (15) | |
H14 | 0.8969 | 0.8831 | 0.9753 | 0.049* | |
C15 | 0.9845 (4) | 0.9039 (4) | 0.8803 (4) | 0.0370 (14) | |
C16 | 0.9941 (4) | 0.9569 (4) | 0.8040 (4) | 0.0326 (13) | |
H16 | 1.0496 | 0.9500 | 0.7766 | 0.039* | |
C17 | 0.7532 (5) | 0.9951 (5) | 0.9464 (5) | 0.059 (2) | |
H17A | 0.7841 | 1.0252 | 1.0101 | 0.089* | |
H17B | 0.7288 | 0.9458 | 0.9642 | 0.089* | |
H17C | 0.6939 | 1.0232 | 0.8985 | 0.089* | |
C18 | 1.0611 (5) | 0.8367 (4) | 0.9145 (5) | 0.0465 (16) | |
H18A | 1.1106 | 0.8467 | 0.9845 | 0.070* | |
H18B | 1.0996 | 0.8308 | 0.8653 | 0.070* | |
H18C | 1.0221 | 0.7896 | 0.9156 | 0.070* | |
C19A | 0.9254 (8) | 1.1512 (5) | 0.6841 (9) | 0.038 (2) | 0.683 (7) |
H19A | 0.9672 | 1.1715 | 0.6413 | 0.046* | 0.683 (7) |
C21A | 0.8119 (8) | 1.1862 (8) | 0.6359 (10) | 0.051 (3) | 0.683 (7) |
H21D | 0.7690 | 1.1704 | 0.6779 | 0.076* | 0.683 (7) |
H21E | 0.7799 | 1.1676 | 0.5642 | 0.076* | 0.683 (7) |
H21F | 0.8165 | 1.2422 | 0.6356 | 0.076* | 0.683 (7) |
C20A | 0.9781 (9) | 1.1816 (9) | 0.7956 (9) | 0.046 (2) | 0.683 (7) |
H20D | 0.9347 | 1.1688 | 0.8385 | 0.069* | 0.683 (7) |
H20E | 0.9859 | 1.2373 | 0.7936 | 0.069* | 0.683 (7) |
H20F | 1.0472 | 1.1579 | 0.8259 | 0.069* | 0.683 (7) |
C19B | 0.9603 (19) | 1.1499 (10) | 0.711 (2) | 0.038 (2) | 0.317 (7) |
H19B | 1.0036 | 1.1651 | 0.6671 | 0.046* | 0.317 (7) |
C20B | 1.0263 (19) | 1.179 (2) | 0.8245 (19) | 0.046 (2) | 0.317 (7) |
H20A | 0.9841 | 1.1746 | 0.8705 | 0.069* | 0.317 (7) |
H20B | 1.0456 | 1.2330 | 0.8209 | 0.069* | 0.317 (7) |
H20C | 1.0899 | 1.1482 | 0.8522 | 0.069* | 0.317 (7) |
C21B | 0.8616 (17) | 1.2008 (18) | 0.670 (2) | 0.051 (3) | 0.317 (7) |
H21A | 0.8270 | 1.1912 | 0.5952 | 0.076* | 0.317 (7) |
H21B | 0.8820 | 1.2549 | 0.6807 | 0.076* | 0.317 (7) |
H21C | 0.8134 | 1.1887 | 0.7078 | 0.076* | 0.317 (7) |
C22A | 0.7116 (6) | 0.9388 (6) | 0.4677 (9) | 0.027 (2) | 0.683 (7) |
C23A | 0.6437 (7) | 0.8872 (7) | 0.3947 (7) | 0.033 (2) | 0.683 (7) |
H23A | 0.6672 | 0.8370 | 0.3869 | 0.040* | 0.683 (7) |
C24A | 0.5414 (6) | 0.9106 (7) | 0.3335 (7) | 0.037 (2) | 0.683 (7) |
C25A | 0.5053 (6) | 0.9838 (7) | 0.3441 (8) | 0.040 (2) | 0.683 (7) |
H25A | 0.4364 | 0.9980 | 0.3025 | 0.048* | 0.683 (7) |
C26A | 0.5698 (7) | 1.0379 (6) | 0.4161 (8) | 0.0344 (18) | 0.683 (7) |
C27A | 0.6723 (6) | 1.0137 (6) | 0.4776 (7) | 0.0295 (19) | 0.683 (7) |
H27A | 0.7161 | 1.0483 | 0.5269 | 0.035* | 0.683 (7) |
C28A | 0.4706 (7) | 0.8532 (8) | 0.2521 (8) | 0.057 (3) | 0.683 (7) |
H28A | 0.4025 | 0.8490 | 0.2623 | 0.086* | 0.683 (7) |
H28B | 0.5043 | 0.8028 | 0.2615 | 0.086* | 0.683 (7) |
H28C | 0.4606 | 0.8719 | 0.1814 | 0.086* | 0.683 (7) |
C29A | 0.5277 (8) | 1.1158 (7) | 0.4255 (8) | 0.050 (2) | 0.683 (7) |
H29A | 0.4800 | 1.1321 | 0.3573 | 0.074* | 0.683 (7) |
H29B | 0.5858 | 1.1523 | 0.4499 | 0.074* | 0.683 (7) |
H29C | 0.4898 | 1.1140 | 0.4756 | 0.074* | 0.683 (7) |
C22B | 0.7171 (14) | 0.9624 (13) | 0.490 (2) | 0.027 (2) | 0.317 (7) |
C23B | 0.6383 (14) | 0.9158 (13) | 0.4197 (18) | 0.033 (2) | 0.317 (7) |
H23B | 0.6526 | 0.8635 | 0.4106 | 0.040* | 0.317 (7) |
C24B | 0.5386 (14) | 0.9470 (13) | 0.3635 (17) | 0.037 (2) | 0.317 (7) |
C25B | 0.5201 (15) | 1.0238 (12) | 0.3792 (18) | 0.040 (2) | 0.317 (7) |
H25B | 0.4542 | 1.0448 | 0.3397 | 0.048* | 0.317 (7) |
C26B | 0.5936 (14) | 1.0727 (11) | 0.4507 (16) | 0.0344 (18) | 0.317 (7) |
C27B | 0.6937 (14) | 1.0403 (12) | 0.5068 (18) | 0.0295 (19) | 0.317 (7) |
H27B | 0.7450 | 1.0707 | 0.5558 | 0.035* | 0.317 (7) |
C28B | 0.4540 (16) | 0.8961 (16) | 0.2848 (18) | 0.057 (3) | 0.317 (7) |
H28D | 0.3844 | 0.9105 | 0.2860 | 0.086* | 0.317 (7) |
H28E | 0.4673 | 0.8421 | 0.3046 | 0.086* | 0.317 (7) |
H28F | 0.4570 | 0.9036 | 0.2144 | 0.086* | 0.317 (7) |
C29B | 0.5700 (17) | 1.1550 (12) | 0.468 (2) | 0.050 (2) | 0.317 (7) |
H29D | 0.5978 | 1.1885 | 0.4254 | 0.074* | 0.317 (7) |
H29E | 0.6027 | 1.1681 | 0.5418 | 0.074* | 0.317 (7) |
H29F | 0.4940 | 1.1621 | 0.4477 | 0.074* | 0.317 (7) |
C30 | 0.8460 (4) | 0.8482 (4) | 0.5816 (4) | 0.0321 (13) | |
H30 | 0.9189 | 0.8522 | 0.6324 | 0.039* | |
C31 | 0.8491 (5) | 0.7815 (4) | 0.5064 (5) | 0.0420 (15) | |
H31A | 0.7774 | 0.7663 | 0.4658 | 0.063* | |
H31B | 0.8862 | 0.7376 | 0.5472 | 0.063* | |
H31C | 0.8856 | 0.7985 | 0.4589 | 0.063* | |
C32 | 0.7753 (4) | 0.8279 (4) | 0.6483 (5) | 0.0417 (16) | |
H32A | 0.7785 | 0.8695 | 0.6977 | 0.062* | |
H32B | 0.8002 | 0.7803 | 0.6867 | 0.062* | |
H32C | 0.7029 | 0.8212 | 0.6022 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.01402 (18) | 0.0447 (3) | 0.02243 (19) | 0.0035 (2) | 0.00838 (13) | 0.0022 (3) |
N1 | 0.0137 (17) | 0.055 (3) | 0.018 (2) | 0.006 (2) | 0.0045 (16) | 0.004 (2) |
N2 | 0.035 (3) | 0.054 (3) | 0.031 (2) | 0.011 (2) | 0.022 (2) | 0.002 (2) |
N3 | 0.0090 (19) | 0.061 (4) | 0.034 (2) | 0.003 (2) | 0.0058 (17) | 0.005 (2) |
C1 | 0.011 (2) | 0.044 (3) | 0.025 (2) | 0.007 (2) | 0.0070 (18) | 0.004 (2) |
C2 | 0.016 (2) | 0.051 (4) | 0.023 (2) | −0.002 (2) | 0.009 (2) | 0.001 (2) |
C3 | 0.018 (2) | 0.056 (5) | 0.027 (2) | 0.002 (3) | 0.0058 (18) | 0.007 (3) |
C4 | 0.022 (3) | 0.071 (5) | 0.030 (3) | −0.009 (3) | 0.003 (2) | 0.008 (3) |
C5 | 0.017 (3) | 0.069 (5) | 0.042 (3) | −0.001 (3) | 0.002 (2) | 0.019 (3) |
C6 | 0.020 (3) | 0.059 (4) | 0.042 (3) | 0.005 (3) | 0.008 (2) | 0.016 (3) |
C7 | 0.017 (2) | 0.049 (4) | 0.033 (3) | 0.004 (2) | 0.012 (2) | 0.004 (3) |
C8 | 0.035 (3) | 0.053 (4) | 0.036 (3) | −0.006 (3) | 0.004 (3) | −0.002 (3) |
C9 | 0.024 (3) | 0.084 (6) | 0.078 (5) | −0.006 (4) | −0.016 (3) | 0.034 (5) |
C10 | 0.033 (3) | 0.045 (4) | 0.050 (4) | 0.015 (3) | 0.012 (3) | 0.006 (3) |
C11 | 0.032 (3) | 0.052 (4) | 0.028 (3) | 0.002 (3) | 0.014 (2) | −0.003 (2) |
C12 | 0.036 (3) | 0.066 (5) | 0.034 (3) | 0.007 (3) | 0.018 (3) | 0.001 (3) |
C13 | 0.026 (3) | 0.098 (6) | 0.023 (3) | −0.005 (3) | 0.009 (2) | −0.007 (3) |
C14 | 0.033 (3) | 0.064 (5) | 0.028 (3) | −0.011 (3) | 0.013 (2) | 0.000 (3) |
C15 | 0.028 (3) | 0.058 (4) | 0.024 (3) | −0.001 (3) | 0.007 (2) | −0.001 (3) |
C16 | 0.028 (3) | 0.050 (4) | 0.023 (3) | 0.002 (3) | 0.013 (2) | 0.000 (2) |
C17 | 0.032 (3) | 0.111 (6) | 0.043 (3) | −0.004 (4) | 0.024 (3) | 0.004 (5) |
C18 | 0.047 (4) | 0.058 (4) | 0.036 (3) | 0.002 (3) | 0.016 (3) | 0.003 (3) |
C19A | 0.037 (7) | 0.054 (5) | 0.027 (6) | 0.015 (4) | 0.016 (5) | 0.010 (4) |
C21A | 0.036 (6) | 0.061 (7) | 0.064 (7) | 0.017 (6) | 0.029 (5) | 0.007 (6) |
C20A | 0.047 (7) | 0.057 (5) | 0.041 (6) | −0.005 (7) | 0.024 (5) | −0.010 (5) |
C19B | 0.037 (7) | 0.054 (5) | 0.027 (6) | 0.015 (4) | 0.016 (5) | 0.010 (4) |
C20B | 0.047 (7) | 0.057 (5) | 0.041 (6) | −0.005 (7) | 0.024 (5) | −0.010 (5) |
C21B | 0.036 (6) | 0.061 (7) | 0.064 (7) | 0.017 (6) | 0.029 (5) | 0.007 (6) |
C22A | 0.012 (2) | 0.045 (6) | 0.024 (6) | −0.004 (3) | 0.007 (2) | 0.002 (4) |
C23A | 0.018 (3) | 0.048 (6) | 0.026 (5) | −0.008 (3) | −0.002 (3) | 0.003 (4) |
C24A | 0.016 (3) | 0.063 (6) | 0.026 (5) | −0.008 (4) | −0.001 (3) | 0.006 (4) |
C25A | 0.015 (3) | 0.068 (6) | 0.035 (5) | 0.001 (4) | 0.006 (3) | 0.016 (4) |
C26A | 0.019 (4) | 0.056 (6) | 0.032 (6) | 0.006 (4) | 0.014 (3) | 0.010 (4) |
C27A | 0.016 (3) | 0.047 (6) | 0.028 (5) | −0.002 (4) | 0.011 (3) | 0.001 (4) |
C28A | 0.027 (4) | 0.090 (9) | 0.038 (6) | −0.015 (5) | −0.012 (4) | −0.005 (5) |
C29A | 0.035 (5) | 0.068 (6) | 0.052 (6) | 0.020 (4) | 0.023 (5) | 0.010 (4) |
C22B | 0.012 (2) | 0.045 (6) | 0.024 (6) | −0.004 (3) | 0.007 (2) | 0.002 (4) |
C23B | 0.018 (3) | 0.048 (6) | 0.026 (5) | −0.008 (3) | −0.002 (3) | 0.003 (4) |
C24B | 0.016 (3) | 0.063 (6) | 0.026 (5) | −0.008 (4) | −0.001 (3) | 0.006 (4) |
C25B | 0.015 (3) | 0.068 (6) | 0.035 (5) | 0.001 (4) | 0.006 (3) | 0.016 (4) |
C26B | 0.019 (4) | 0.056 (6) | 0.032 (6) | 0.006 (4) | 0.014 (3) | 0.010 (4) |
C27B | 0.016 (3) | 0.047 (6) | 0.028 (5) | −0.002 (4) | 0.011 (3) | 0.001 (4) |
C28B | 0.027 (4) | 0.090 (9) | 0.038 (6) | −0.015 (5) | −0.012 (4) | −0.005 (5) |
C29B | 0.035 (5) | 0.068 (6) | 0.052 (6) | 0.020 (4) | 0.023 (5) | 0.010 (4) |
C30 | 0.015 (2) | 0.055 (4) | 0.025 (3) | −0.002 (2) | 0.006 (2) | 0.004 (3) |
C31 | 0.027 (3) | 0.057 (4) | 0.039 (3) | −0.008 (3) | 0.008 (2) | −0.007 (3) |
C32 | 0.021 (3) | 0.068 (5) | 0.034 (3) | −0.006 (3) | 0.008 (2) | 0.008 (3) |
Mo1—N1i | 1.982 (5) | C21A—H21E | 0.9600 |
Mo1—N3 | 1.995 (5) | C21A—H21F | 0.9600 |
Mo1—N2 | 1.995 (5) | C20A—H20D | 0.9600 |
Mo1—C1 | 2.059 (5) | C20A—H20E | 0.9600 |
Mo1—C1i | 2.208 (5) | C20A—H20F | 0.9600 |
Mo1—N1 | 2.276 (5) | C19B—C21B | 1.515 (18) |
Mo1—Mo1i | 2.5946 (8) | C19B—C20B | 1.558 (19) |
N1—C1 | 1.318 (7) | C19B—H19B | 0.9800 |
N1—Mo1i | 1.982 (5) | C20B—H20A | 0.9600 |
N2—C11 | 1.404 (7) | C20B—H20B | 0.9600 |
N2—C19A | 1.469 (10) | C20B—H20C | 0.9600 |
N2—C19B | 1.500 (17) | C21B—H21A | 0.9600 |
N3—C22A | 1.435 (8) | C21B—H21B | 0.9600 |
N3—C22B | 1.440 (13) | C21B—H21C | 0.9600 |
N3—C30 | 1.465 (8) | C22A—C23A | 1.397 (10) |
C1—C2 | 1.474 (7) | C22A—C27A | 1.404 (11) |
C1—Mo1i | 2.208 (5) | C23A—C24A | 1.389 (10) |
C2—C3 | 1.408 (8) | C23A—H23A | 0.9300 |
C2—C7 | 1.416 (8) | C24A—C25A | 1.363 (15) |
C3—C4 | 1.410 (7) | C24A—C28A | 1.530 (13) |
C3—C8 | 1.502 (9) | C25A—C26A | 1.401 (14) |
C4—C5 | 1.356 (10) | C25A—H25A | 0.9300 |
C4—H4 | 0.9300 | C26A—C27A | 1.397 (10) |
C5—C6 | 1.376 (9) | C26A—C29A | 1.464 (13) |
C5—C9 | 1.514 (8) | C27A—H27A | 0.9300 |
C6—C7 | 1.399 (7) | C28A—H28A | 0.9600 |
C6—H6 | 0.9300 | C28A—H28B | 0.9600 |
C7—C10 | 1.502 (9) | C28A—H28C | 0.9600 |
C8—H8A | 0.9600 | C29A—H29A | 0.9600 |
C8—H8B | 0.9600 | C29A—H29B | 0.9600 |
C8—H8C | 0.9600 | C29A—H29C | 0.9600 |
C9—H9A | 0.9600 | C22B—C23B | 1.396 (16) |
C9—H9B | 0.9600 | C22B—C27B | 1.402 (17) |
C9—H9C | 0.9600 | C23B—C24B | 1.391 (16) |
C10—H10A | 0.9600 | C23B—H23B | 0.9300 |
C10—H10B | 0.9600 | C24B—C25B | 1.36 (2) |
C10—H10C | 0.9600 | C24B—C28B | 1.527 (18) |
C11—C12 | 1.406 (8) | C25B—C26B | 1.39 (2) |
C11—C16 | 1.408 (8) | C25B—H25B | 0.9300 |
C12—C13 | 1.382 (9) | C26B—C27B | 1.403 (16) |
C12—H12 | 0.9300 | C26B—C29B | 1.475 (19) |
C13—C14 | 1.387 (9) | C27B—H27B | 0.9300 |
C13—C17 | 1.514 (8) | C28B—H28D | 0.9600 |
C14—C15 | 1.387 (8) | C28B—H28E | 0.9600 |
C14—H14 | 0.9300 | C28B—H28F | 0.9600 |
C15—C16 | 1.397 (8) | C29B—H29D | 0.9600 |
C15—C18 | 1.501 (9) | C29B—H29E | 0.9600 |
C16—H16 | 0.9300 | C29B—H29F | 0.9600 |
C17—H17A | 0.9600 | C30—C31 | 1.527 (8) |
C17—H17B | 0.9600 | C30—C32 | 1.529 (7) |
C17—H17C | 0.9600 | C30—H30 | 0.9800 |
C18—H18A | 0.9600 | C31—H31A | 0.9600 |
C18—H18B | 0.9600 | C31—H31B | 0.9600 |
C18—H18C | 0.9600 | C31—H31C | 0.9600 |
C19A—C20A | 1.507 (12) | C32—H32A | 0.9600 |
C19A—C21A | 1.547 (12) | C32—H32B | 0.9600 |
C19A—H19A | 0.9800 | C32—H32C | 0.9600 |
C21A—H21D | 0.9600 | ||
N1i—Mo1—N3 | 128.66 (18) | H17A—C17—H17C | 109.5 |
N1i—Mo1—N2 | 86.9 (2) | H17B—C17—H17C | 109.5 |
N3—Mo1—N2 | 104.2 (2) | C15—C18—H18A | 109.5 |
N1i—Mo1—C1 | 101.24 (19) | C15—C18—H18B | 109.5 |
N3—Mo1—C1 | 117.2 (2) | H18A—C18—H18B | 109.5 |
N2—Mo1—C1 | 115.2 (2) | C15—C18—H18C | 109.5 |
N1i—Mo1—C1i | 36.16 (19) | H18A—C18—H18C | 109.5 |
N3—Mo1—C1i | 98.32 (19) | H18B—C18—H18C | 109.5 |
N2—Mo1—C1i | 115.9 (2) | N2—C19A—C20A | 110.0 (9) |
C1—Mo1—C1i | 105.19 (16) | N2—C19A—C21A | 116.8 (9) |
N1i—Mo1—N1 | 105.27 (16) | C20A—C19A—C21A | 110.1 (8) |
N3—Mo1—N1 | 90.58 (18) | N2—C19A—H19A | 106.4 |
N2—Mo1—N1 | 148.77 (18) | C20A—C19A—H19A | 106.4 |
C1—Mo1—N1 | 34.94 (18) | C21A—C19A—H19A | 106.4 |
C1i—Mo1—N1 | 88.27 (17) | N2—C19B—C21B | 111.2 (18) |
N1i—Mo1—Mo1i | 57.82 (13) | N2—C19B—C20B | 124 (2) |
N3—Mo1—Mo1i | 119.08 (14) | C21B—C19B—C20B | 107.7 (16) |
N2—Mo1—Mo1i | 135.20 (15) | N2—C19B—H19B | 103.9 |
C1—Mo1—Mo1i | 55.23 (14) | C21B—C19B—H19B | 103.9 |
C1i—Mo1—Mo1i | 49.97 (12) | C20B—C19B—H19B | 103.9 |
N1—Mo1—Mo1i | 47.46 (12) | C19B—C20B—H20A | 109.5 |
C1—N1—Mo1i | 81.3 (3) | C19B—C20B—H20B | 109.5 |
C1—N1—Mo1 | 63.5 (3) | H20A—C20B—H20B | 109.5 |
Mo1i—N1—Mo1 | 74.73 (16) | C19B—C20B—H20C | 109.5 |
C11—N2—C19A | 120.8 (6) | H20A—C20B—H20C | 109.5 |
C11—N2—C19B | 114.1 (12) | H20B—C20B—H20C | 109.5 |
C11—N2—Mo1 | 110.8 (4) | C19B—C21B—H21A | 109.5 |
C19A—N2—Mo1 | 128.2 (6) | C19B—C21B—H21B | 109.5 |
C19B—N2—Mo1 | 133.1 (13) | H21A—C21B—H21B | 109.5 |
C22A—N3—C30 | 116.4 (6) | C19B—C21B—H21C | 109.5 |
C22B—N3—C30 | 128.4 (13) | H21A—C21B—H21C | 109.5 |
C22A—N3—Mo1 | 129.6 (6) | H21B—C21B—H21C | 109.5 |
C22B—N3—Mo1 | 115.9 (11) | C23A—C22A—C27A | 117.9 (7) |
C30—N3—Mo1 | 113.9 (3) | C23A—C22A—N3 | 127.9 (8) |
N1—C1—C2 | 129.9 (5) | C27A—C22A—N3 | 114.2 (7) |
N1—C1—Mo1 | 81.6 (3) | C24A—C23A—C22A | 120.3 (9) |
C2—C1—Mo1 | 141.2 (4) | C24A—C23A—H23A | 119.9 |
N1—C1—Mo1i | 62.5 (3) | C22A—C23A—H23A | 119.9 |
C2—C1—Mo1i | 135.8 (4) | C25A—C24A—C23A | 120.8 (9) |
Mo1—C1—Mo1i | 74.81 (16) | C25A—C24A—C28A | 120.5 (8) |
C3—C2—C7 | 119.7 (5) | C23A—C24A—C28A | 118.7 (10) |
C3—C2—C1 | 119.8 (5) | C24A—C25A—C26A | 121.4 (8) |
C7—C2—C1 | 120.5 (5) | C24A—C25A—H25A | 119.3 |
C2—C3—C4 | 118.1 (6) | C26A—C25A—H25A | 119.3 |
C2—C3—C8 | 121.9 (5) | C27A—C26A—C25A | 117.3 (9) |
C4—C3—C8 | 120.0 (6) | C27A—C26A—C29A | 123.0 (10) |
C5—C4—C3 | 122.7 (6) | C25A—C26A—C29A | 119.7 (8) |
C5—C4—H4 | 118.7 | C26A—C27A—C22A | 122.3 (8) |
C3—C4—H4 | 118.7 | C26A—C27A—H27A | 118.8 |
C4—C5—C6 | 118.7 (5) | C22A—C27A—H27A | 118.8 |
C4—C5—C9 | 121.3 (7) | C23B—C22B—C27B | 119.5 (13) |
C6—C5—C9 | 120.0 (7) | C23B—C22B—N3 | 115.1 (14) |
C5—C6—C7 | 122.3 (6) | C27B—C22B—N3 | 125.2 (14) |
C5—C6—H6 | 118.9 | C24B—C23B—C22B | 120.6 (16) |
C7—C6—H6 | 118.9 | C24B—C23B—H23B | 119.7 |
C6—C7—C2 | 118.3 (6) | C22B—C23B—H23B | 119.7 |
C6—C7—C10 | 118.3 (6) | C25B—C24B—C23B | 118.2 (16) |
C2—C7—C10 | 123.4 (5) | C25B—C24B—C28B | 121.6 (16) |
C3—C8—H8A | 109.5 | C23B—C24B—C28B | 120.1 (18) |
C3—C8—H8B | 109.5 | C24B—C25B—C26B | 124.2 (15) |
H8A—C8—H8B | 109.5 | C24B—C25B—H25B | 117.9 |
C3—C8—H8C | 109.5 | C26B—C25B—H25B | 117.9 |
H8A—C8—H8C | 109.5 | C25B—C26B—C27B | 116.7 (16) |
H8B—C8—H8C | 109.5 | C25B—C26B—C29B | 122.8 (15) |
C5—C9—H9A | 109.5 | C27B—C26B—C29B | 120.4 (17) |
C5—C9—H9B | 109.5 | C22B—C27B—C26B | 120.7 (15) |
H9A—C9—H9B | 109.5 | C22B—C27B—H27B | 119.6 |
C5—C9—H9C | 109.5 | C26B—C27B—H27B | 119.6 |
H9A—C9—H9C | 109.5 | C24B—C28B—H28D | 109.5 |
H9B—C9—H9C | 109.5 | C24B—C28B—H28E | 109.5 |
C7—C10—H10A | 109.5 | H28D—C28B—H28E | 109.5 |
C7—C10—H10B | 109.5 | C24B—C28B—H28F | 109.5 |
H10A—C10—H10B | 109.5 | H28D—C28B—H28F | 109.5 |
C7—C10—H10C | 109.5 | H28E—C28B—H28F | 109.5 |
H10A—C10—H10C | 109.5 | C26B—C29B—H29D | 109.5 |
H10B—C10—H10C | 109.5 | C26B—C29B—H29E | 109.5 |
N2—C11—C12 | 125.1 (6) | H29D—C29B—H29E | 109.5 |
N2—C11—C16 | 118.4 (5) | C26B—C29B—H29F | 109.5 |
C12—C11—C16 | 116.5 (5) | H29D—C29B—H29F | 109.5 |
C13—C12—C11 | 121.6 (6) | H29E—C29B—H29F | 109.5 |
C13—C12—H12 | 119.2 | N3—C30—C31 | 116.4 (5) |
C11—C12—H12 | 119.2 | N3—C30—C32 | 111.2 (5) |
C12—C13—C14 | 119.7 (5) | C31—C30—C32 | 111.4 (5) |
C12—C13—C17 | 120.7 (7) | N3—C30—H30 | 105.7 |
C14—C13—C17 | 119.5 (6) | C31—C30—H30 | 105.7 |
C13—C14—C15 | 121.4 (6) | C32—C30—H30 | 105.7 |
C13—C14—H14 | 119.3 | C30—C31—H31A | 109.5 |
C15—C14—H14 | 119.3 | C30—C31—H31B | 109.5 |
C14—C15—C16 | 117.7 (6) | H31A—C31—H31B | 109.5 |
C14—C15—C18 | 122.3 (6) | C30—C31—H31C | 109.5 |
C16—C15—C18 | 120.0 (5) | H31A—C31—H31C | 109.5 |
C15—C16—C11 | 122.9 (5) | H31B—C31—H31C | 109.5 |
C15—C16—H16 | 118.5 | C30—C32—H32A | 109.5 |
C11—C16—H16 | 118.5 | C30—C32—H32B | 109.5 |
C13—C17—H17A | 109.5 | H32A—C32—H32B | 109.5 |
C13—C17—H17B | 109.5 | C30—C32—H32C | 109.5 |
H17A—C17—H17B | 109.5 | H32A—C32—H32C | 109.5 |
C13—C17—H17C | 109.5 | H32B—C32—H32C | 109.5 |
N1i—Mo1—N1—C1 | 87.8 (3) | C4—C5—C6—C7 | 3.0 (9) |
N3—Mo1—N1—C1 | −141.6 (3) | C9—C5—C6—C7 | −176.3 (6) |
N2—Mo1—N1—C1 | −22.3 (5) | C5—C6—C7—C2 | 0.3 (8) |
C1i—Mo1—N1—C1 | 120.1 (3) | C5—C6—C7—C10 | −177.1 (6) |
Mo1i—Mo1—N1—C1 | 87.8 (3) | C3—C2—C7—C6 | −4.2 (8) |
N1i—Mo1—N1—Mo1i | 0.0 | C1—C2—C7—C6 | 175.6 (5) |
N3—Mo1—N1—Mo1i | 130.57 (16) | C3—C2—C7—C10 | 173.0 (5) |
N2—Mo1—N1—Mo1i | −110.1 (3) | C1—C2—C7—C10 | −7.3 (8) |
C1—Mo1—N1—Mo1i | −87.8 (3) | C19A—N2—C11—C12 | 44.6 (9) |
C1i—Mo1—N1—Mo1i | 32.26 (16) | C19B—N2—C11—C12 | 64.3 (12) |
N1i—Mo1—N2—C11 | −178.4 (4) | Mo1—N2—C11—C12 | −129.7 (6) |
N3—Mo1—N2—C11 | 52.4 (4) | C19A—N2—C11—C16 | −138.3 (7) |
C1—Mo1—N2—C11 | −77.4 (4) | C19B—N2—C11—C16 | −118.6 (11) |
C1i—Mo1—N2—C11 | 159.2 (4) | Mo1—N2—C11—C16 | 47.4 (6) |
N1—Mo1—N2—C11 | −63.5 (5) | N2—C11—C12—C13 | 176.9 (6) |
Mo1i—Mo1—N2—C11 | −142.5 (3) | C16—C11—C12—C13 | −0.3 (9) |
N1i—Mo1—N2—C19A | 7.8 (6) | C11—C12—C13—C14 | −2.5 (10) |
N3—Mo1—N2—C19A | −121.3 (6) | C11—C12—C13—C17 | 177.8 (6) |
C1—Mo1—N2—C19A | 108.8 (6) | C12—C13—C14—C15 | 2.6 (9) |
C1i—Mo1—N2—C19A | −14.6 (7) | C17—C13—C14—C15 | −177.8 (6) |
N1—Mo1—N2—C19A | 122.7 (7) | C13—C14—C15—C16 | 0.2 (9) |
Mo1i—Mo1—N2—C19A | 43.7 (7) | C13—C14—C15—C18 | 178.4 (6) |
N1i—Mo1—N2—C19B | −15.9 (11) | C14—C15—C16—C11 | −3.2 (9) |
N3—Mo1—N2—C19B | −145.1 (11) | C18—C15—C16—C11 | 178.5 (6) |
C1—Mo1—N2—C19B | 85.1 (12) | N2—C11—C16—C15 | −174.1 (5) |
C1i—Mo1—N2—C19B | −38.3 (12) | C12—C11—C16—C15 | 3.3 (9) |
N1—Mo1—N2—C19B | 99.0 (12) | C11—N2—C19A—C20A | 38.5 (11) |
Mo1i—Mo1—N2—C19B | 19.9 (12) | C19B—N2—C19A—C20A | −35 (5) |
N1i—Mo1—N3—C22A | −14.6 (8) | Mo1—N2—C19A—C20A | −148.3 (6) |
N2—Mo1—N3—C22A | 82.9 (7) | C11—N2—C19A—C21A | −88.0 (10) |
C1—Mo1—N3—C22A | −148.4 (7) | C19B—N2—C19A—C21A | −162 (6) |
C1i—Mo1—N3—C22A | −36.5 (7) | Mo1—N2—C19A—C21A | 85.2 (11) |
N1—Mo1—N3—C22A | −124.9 (7) | C11—N2—C19B—C21B | −100.4 (19) |
Mo1i—Mo1—N3—C22A | −85.0 (7) | C19A—N2—C19B—C21B | 15 (4) |
N1i—Mo1—N3—C22B | −31.6 (15) | Mo1—N2—C19B—C21B | 98 (2) |
N2—Mo1—N3—C22B | 66.0 (15) | C11—N2—C19B—C20B | 31 (3) |
C1—Mo1—N3—C22B | −165.3 (15) | C19A—N2—C19B—C20B | 146 (7) |
C1i—Mo1—N3—C22B | −53.4 (15) | Mo1—N2—C19B—C20B | −131 (2) |
N1—Mo1—N3—C22B | −141.8 (15) | C22B—N3—C22A—C23A | −172 (7) |
Mo1i—Mo1—N3—C22B | −102.0 (15) | C30—N3—C22A—C23A | −40.2 (16) |
N1i—Mo1—N3—C30 | 162.3 (3) | Mo1—N3—C22A—C23A | 136.7 (11) |
N2—Mo1—N3—C30 | −100.1 (4) | C22B—N3—C22A—C27A | 10 (5) |
C1—Mo1—N3—C30 | 28.5 (4) | C30—N3—C22A—C27A | 141.9 (9) |
C1i—Mo1—N3—C30 | 140.4 (4) | Mo1—N3—C22A—C27A | −41.2 (14) |
N1—Mo1—N3—C30 | 52.1 (4) | C27A—C22A—C23A—C24A | 0.8 (18) |
Mo1i—Mo1—N3—C30 | 91.9 (3) | N3—C22A—C23A—C24A | −177.0 (11) |
Mo1i—N1—C1—C2 | −128.2 (5) | C22A—C23A—C24A—C25A | −0.4 (16) |
Mo1—N1—C1—C2 | 154.6 (6) | C22A—C23A—C24A—C28A | 178.3 (11) |
Mo1i—N1—C1—Mo1 | 77.19 (15) | C23A—C24A—C25A—C26A | 0.3 (14) |
Mo1—N1—C1—Mo1i | −77.19 (15) | C28A—C24A—C25A—C26A | −178.3 (9) |
N1i—Mo1—C1—N1 | −100.6 (3) | C24A—C25A—C26A—C27A | −0.7 (14) |
N3—Mo1—C1—N1 | 44.3 (4) | C24A—C25A—C26A—C29A | −179.6 (9) |
N2—Mo1—C1—N1 | 167.4 (3) | C25A—C26A—C27A—C22A | 1.1 (15) |
C1i—Mo1—C1—N1 | −63.7 (3) | C29A—C26A—C27A—C22A | 180.0 (11) |
Mo1i—Mo1—C1—N1 | −63.7 (3) | C23A—C22A—C27A—C26A | −1.2 (18) |
N1i—Mo1—C1—C2 | 111.1 (7) | N3—C22A—C27A—C26A | 176.9 (9) |
N3—Mo1—C1—C2 | −104.0 (7) | C22A—N3—C22B—C23B | 10 (4) |
N2—Mo1—C1—C2 | 19.1 (7) | C30—N3—C22B—C23B | −48 (3) |
C1i—Mo1—C1—C2 | 148.0 (8) | Mo1—N3—C22B—C23B | 148 (2) |
N1—Mo1—C1—C2 | −148.3 (9) | C22A—N3—C22B—C27B | −165 (9) |
Mo1i—Mo1—C1—C2 | 148.0 (8) | C30—N3—C22B—C27B | 136 (3) |
N1i—Mo1—C1—Mo1i | −36.96 (18) | Mo1—N3—C22B—C27B | −27 (4) |
N3—Mo1—C1—Mo1i | 107.96 (19) | C27B—C22B—C23B—C24B | 3 (5) |
N2—Mo1—C1—Mo1i | −128.88 (19) | N3—C22B—C23B—C24B | −173 (2) |
C1i—Mo1—C1—Mo1i | 0.0 | C22B—C23B—C24B—C25B | 0 (4) |
N1—Mo1—C1—Mo1i | 63.7 (3) | C22B—C23B—C24B—C28B | 178 (3) |
N1—C1—C2—C3 | 165.0 (5) | C23B—C24B—C25B—C26B | −2 (4) |
Mo1—C1—C2—C3 | −57.7 (8) | C28B—C24B—C25B—C26B | 179 (2) |
Mo1i—C1—C2—C3 | 75.2 (7) | C24B—C25B—C26B—C27B | 2 (4) |
N1—C1—C2—C7 | −14.8 (8) | C24B—C25B—C26B—C29B | −178 (2) |
Mo1—C1—C2—C7 | 122.6 (6) | C23B—C22B—C27B—C26B | −3 (5) |
Mo1i—C1—C2—C7 | −104.6 (6) | N3—C22B—C27B—C26B | 173 (3) |
C7—C2—C3—C4 | 4.8 (8) | C25B—C26B—C27B—C22B | 1 (4) |
C1—C2—C3—C4 | −174.9 (5) | C29B—C26B—C27B—C22B | −179 (3) |
C7—C2—C3—C8 | −173.3 (5) | C22A—N3—C30—C31 | 72.3 (8) |
C1—C2—C3—C8 | 7.0 (8) | C22B—N3—C30—C31 | 90.8 (15) |
C2—C3—C4—C5 | −1.6 (9) | Mo1—N3—C30—C31 | −105.1 (4) |
C8—C3—C4—C5 | 176.5 (6) | C22A—N3—C30—C32 | −56.7 (8) |
C3—C4—C5—C6 | −2.3 (9) | C22B—N3—C30—C32 | −38.2 (16) |
C3—C4—C5—C9 | 176.9 (6) | Mo1—N3—C30—C32 | 125.9 (4) |
Symmetry code: (i) −x+2, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mo2(C11H16N)4(C10H11N)2] |
Mr | 1131.27 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 13.262 (2), 17.090 (3), 13.306 (2) |
β (°) | 109.387 (2) |
V (Å3) | 2844.7 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.49 |
Crystal size (mm) | 0.15 × 0.1 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2009) |
Tmin, Tmax | 0.459, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 55443, 7345, 4190 |
Rint | 0.119 |
(sin θ/λ)max (Å−1) | 0.675 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.172, 1.08 |
No. of reflections | 7345 |
No. of parameters | 375 |
No. of restraints | 63 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0372P)2 + 14.5221P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.54, −1.51 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
This material is based upon work supported by the National Science Foundation under grants CHE-1111357 (CCC) and CHE-0750140 (ERA).
References
Britton, D. (1979). Cryst. Struct. Commun. 8, 667–670. CAS Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Curley, J. J., Cook, T. R., Reece, S. Y., Muller, P. & Cummins, C. C. (2008). J. Am. Chem. Soc. 130, 9394–9405. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Figueroa, J. S. & Cummins, C. C. (2003). J. Am. Chem. Soc. 125, 4020–4021. Web of Science CSD CrossRef PubMed CAS Google Scholar
Germain, M. E., Temprado, M., Castonguay, A., Kryatova, O. P., Rybak-Akimova, E. V., Curley, J. J., Mendiratta, A., Tsai, Y.-C., Cummins, C. C., Prabhakar, R., McDonough, J. E. & Hoff, C. D. (2009). J. Am. Chem. Soc. 131, 15412–15423. Web of Science CSD CrossRef PubMed CAS Google Scholar
Johnson, M. J. A., Lee, P. M., Odom, A. L., Davis, W. M. & Cummins, C. C. (1997). Angew. Chem. Int. Ed. 36, 87–91. CrossRef CAS Google Scholar
Li, B., Xu, S., Song, H. & Wang, B. (2008). J. Organomet. Chem. 693, 87–96. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2009). SADABS. University of Göttingen, Germany. Google Scholar
Tsai, Y.-C., Johnson, M. J. A., Mindiola, D. J., Cummins, C. C., Klooster, W. T. & Koetzle, T. F. (1999). J. Am. Chem. Soc. 121, 10426–10427. Web of Science CSD CrossRef CAS Google Scholar
Tsai, Y.-C., Stephens, F. H., Meyer, K., Mendiratta, A., Gheorghiu, M. D. & Cummins, C. C. (2003). Organometallics, 22, 2902–2913. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
For more than fifteen years, low-coordinate molybdenum(III) tris-anilide complexes, [Mo(N{R1}Ar)3] and [HMo(η2-Me2CNAr)(N{R2}Ar)2] (where R1 = t-Bu; R2 = i-Pr or CH(CD3)2; Ar = 3,5-C6H3Me2), have attracted the attention of inorganic chemists and crystallographers due to their unusual coordination geometries and their remarkable ability to activate small molecules, including triply-bonded dinitrogen (Tsai et al., 1999; Curley et al., 2008; Germain et al., 2009). It was previously shown that N2 cleavage with the sterically bulky [Mo(N{t-Bu}Ar)3] affords a terminal nitride, ([(N)Mo(N{t-Bu}Ar)3]), while the less bulky [HMo(η2-(CD3)2CNAr)(N{CH(CD3)2}Ar)2] yields a µ2-N bridged dinuclear complex ([µ2-(N){Mo(N{CH(CD3)2}Ar)3}2]). Furthermore, the rate of N2 uptake increases in the presence of bases such as 1-methyl-imidazole, 2,6-dimethylpyrazine or pyridine (Tsai et al., 2003). Thus, the study of molybdenum tris-anilide adducts with additional ligands will help in understanding the N2 uptake, a critical step in the overall N2 cleavage mechanism. Additionally, molecules with element-element triple bonds, such as nitriles, can be viewed as dinitrogen surrogates, and provide structural information on molybdenum interacting with multiply bonded substrates in cases when N2 binding affinity is too low, and N2 complexes cannot be isolated and crystallized.
In this report, we discuss the molecular structure of the dinuclear [µ2-η2-η2-(MesCN)2{Mo(N{i-Pr}Ar)2}2] molybdenum compound (Figure 1 and 2) obtained from the reaction between mesityl nitrile and the pyrazine adduct of [HMo(η2-Me2CNAr)(N{i-Pr}Ar)2] mixed in 2:1 stoichiometric ratio. The title compound crystallizes in the monoclinic space group P21/n and consists of neutral molecules; inter-molecular interactions include a number of van der Waals contacts. The crystal packing diagram reveals that molecules of the title compound form layers in the xz plane (Figure 3). The molybdenum centers have distorted tetrahedral geometries; the coordination polyhedron is formed by two N atoms belonging to the anilide residues and two bridging η2-CN groups from MesCN molecules. Additionally, short metal-metal separation (2.5946 (8) Å) indicates the presence of a formal single Mo···Mo' bond. The bridging η2-η2– coordination of MesCN results in an elongation of the C—N bond in the molecule. Its value is typical for a double C—N bond (1.318 (7) Å) and longer than the CN triple bond in free MesCN (1.160 Å, Britton, 1979) and for the case of η2-coordination to a single Nb center (1.258 (4) Å, Figueroa et al., 2003) but very close to the value reported for µ2-η2-η2 benzonitrile coordinated to two molybdenum atoms (1.299 (3) Å) (Li, et al., 2008). The Mo—N bond lengths are comparable to the previously reported [Mo(N{R}Ar)3] complexes (Geometric parameters table) (Johnson et al., 1997), and the other C—C, C—N bond length values in the anilide and mesityl ligands have their typical values.