metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ2-η2:η2-2,4,6-tri­methyl­benzo­nitrile)­bis­­[(N-iso­propyl-3,5-di­methyl­anilido)molybdenum(III)](MoMo)

aDepartment of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA, and bDepartment of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
*Correspondence e-mail: elena.rybak-akimova@tufts.edu

(Received 28 September 2011; accepted 25 October 2011; online 2 November 2011)

The title compound, [Mo2(C11H16N)4(C10H11N)2], is a dinuclear molybdenum complex with a formal metal–metal bond [Mo⋯Mo separation = 2.5946 (8) Å], four anilide-type ligands and two bridging mesityl nitrile groups. There are two inversion symmetric mol­ecules in the unit cell (an inversion center is localized at the mid-point of the Mo—Mo bond), each with approximate non-crystallographic C2h symmetry. The mol­ecules contain disordered isopropyl and 3,5-C6H3Me2 groups on different anilido ligands; the major component having an occupancy of 0.683 (7). The complex was obtained in low yield as the product from the reaction between the bridging pyrazine adduct of molybdenum tris­-anilide ([μ2-(C4H4N2){Mo(C11H16N)3}2]) and mesityl nitrile with a loss of one anilido ligand.

Related literature

For the synthesis of molybdenum(III) tris­-anilide nitrides and structures of similar complexes, see: Johnson et al. (1997[Johnson, M. J. A., Lee, P. M., Odom, A. L., Davis, W. M. & Cummins, C. C. (1997). Angew. Chem. Int. Ed. 36, 87-91.]); Tsai et al. (1999[Tsai, Y.-C., Johnson, M. J. A., Mindiola, D. J., Cummins, C. C., Klooster, W. T. & Koetzle, T. F. (1999). J. Am. Chem. Soc. 121, 10426-10427.]). For reactions of three-coordinate Mo(III) complexes with dinitro­gen, organic nitriles and isocyanides, including a base-catalysed dinitro­gen cleavage, see: Tsai et al. (2003[Tsai, Y.-C., Stephens, F. H., Meyer, K., Mendiratta, A., Gheorghiu, M. D. & Cummins, C. C. (2003). Organometallics, 22, 2902-2913.]); Curley et al. (2008[Curley, J. J., Cook, T. R., Reece, S. Y., Muller, P. & Cummins, C. C. (2008). J. Am. Chem. Soc. 130, 9394-9405.]); Germain et al. (2009[Germain, M. E., Temprado, M., Castonguay, A., Kryatova, O. P., Rybak-Akimova, E. V., Curley, J. J., Mendiratta, A., Tsai, Y.-C., Cummins, C. C., Prabhakar, R., McDonough, J. E. & Hoff, C. D. (2009). J. Am. Chem. Soc. 131, 15412-15423.]). For the structural parameters of mesityl nitrile and its complexes, see: Britton (1979[Britton, D. (1979). Cryst. Struct. Commun. 8, 667-670.]); Figueroa & Cummins (2003[Figueroa, J. S. & Cummins, C. C. (2003). J. Am. Chem. Soc. 125, 4020-4021.]). For the structural parameters of molybdenum complexes with μ2-η2-η2 bridging benzonitrile, see: Li et al. (2008[Li, B., Xu, S., Song, H. & Wang, B. (2008). J. Organomet. Chem. 693, 87-96.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo2(C11H16N)4(C10H11N)2]

  • Mr = 1131.27

  • Monoclinic, P 21 /n

  • a = 13.262 (2) Å

  • b = 17.090 (3) Å

  • c = 13.306 (2) Å

  • β = 109.387 (2)°

  • V = 2844.7 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 100 K

  • 0.15 × 0.1 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2009[Sheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.]) Tmin = 0.459, Tmax = 0.746

  • 55443 measured reflections

  • 7345 independent reflections

  • 4190 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.172

  • S = 1.08

  • 7345 reflections

  • 375 parameters

  • 63 restraints

  • H-atom parameters constrained

  • Δρmax = 1.54 e Å−3

  • Δρmin = −1.51 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

For more than fifteen years, low-coordinate molybdenum(III) tris-anilide complexes, [Mo(N{R1}Ar)3] and [HMo(η2-Me2CNAr)(N{R2}Ar)2] (where R1 = t-Bu; R2 = i-Pr or CH(CD3)2; Ar = 3,5-C6H3Me2), have attracted the attention of inorganic chemists and crystallographers due to their unusual coordination geometries and their remarkable ability to activate small molecules, including triply-bonded dinitrogen (Tsai et al., 1999; Curley et al., 2008; Germain et al., 2009). It was previously shown that N2 cleavage with the sterically bulky [Mo(N{t-Bu}Ar)3] affords a terminal nitride, ([(N)Mo(N{t-Bu}Ar)3]), while the less bulky [HMo(η2-(CD3)2CNAr)(N{CH(CD3)2}Ar)2] yields a µ2-N bridged dinuclear complex ([µ2-(N){Mo(N{CH(CD3)2}Ar)3}2]). Furthermore, the rate of N2 uptake increases in the presence of bases such as 1-methyl-imidazole, 2,6-dimethylpyrazine or pyridine (Tsai et al., 2003). Thus, the study of molybdenum tris-anilide adducts with additional ligands will help in understanding the N2 uptake, a critical step in the overall N2 cleavage mechanism. Additionally, molecules with element-element triple bonds, such as nitriles, can be viewed as dinitrogen surrogates, and provide structural information on molybdenum interacting with multiply bonded substrates in cases when N2 binding affinity is too low, and N2 complexes cannot be isolated and crystallized.

In this report, we discuss the molecular structure of the dinuclear [µ2-η2-η2-(MesCN)2{Mo(N{i-Pr}Ar)2}2] molybdenum compound (Figure 1 and 2) obtained from the reaction between mesityl nitrile and the pyrazine adduct of [HMo(η2-Me2CNAr)(N{i-Pr}Ar)2] mixed in 2:1 stoichiometric ratio. The title compound crystallizes in the monoclinic space group P21/n and consists of neutral molecules; inter-molecular interactions include a number of van der Waals contacts. The crystal packing diagram reveals that molecules of the title compound form layers in the xz plane (Figure 3). The molybdenum centers have distorted tetrahedral geometries; the coordination polyhedron is formed by two N atoms belonging to the anilide residues and two bridging η2-CN groups from MesCN molecules. Additionally, short metal-metal separation (2.5946 (8) Å) indicates the presence of a formal single Mo···Mo' bond. The bridging η2-η2– coordination of MesCN results in an elongation of the C—N bond in the molecule. Its value is typical for a double C—N bond (1.318 (7) Å) and longer than the CN triple bond in free MesCN (1.160 Å, Britton, 1979) and for the case of η2-coordination to a single Nb center (1.258 (4) Å, Figueroa et al., 2003) but very close to the value reported for µ2-η2-η2 benzonitrile coordinated to two molybdenum atoms (1.299 (3) Å) (Li, et al., 2008). The Mo—N bond lengths are comparable to the previously reported [Mo(N{R}Ar)3] complexes (Geometric parameters table) (Johnson et al., 1997), and the other C—C, C—N bond length values in the anilide and mesityl ligands have their typical values.

Related literature top

For the synthesis of molybdenum(III) tris-anilide nitrides and structures of similar complexes, see: Johnson et al. (1997); Tsai et al. (1999). For reactions of three-coordinate Mo(III) complexes with dinitrogen, organic nitriles and isocyanides, including a base-catalysed dinitrogen cleavage, see: Tsai et al. (2003); Curley et al. (2008); Germain et al. (2009). For the structural parameters of mesityl nitrile and its complexes, see: Britton (1979); Figueroa & Cummins (2003). For the structural parameters of molybdenum complexes with µ2-η2-η2 bridging benzonitrile, see: Li et al. (2008).

Experimental top

All synthetic operations were performed in an air-free MBraun drybox under an argon atmosphere. Compound [µ2-η2-η2-(C10N1H11)2{Mo(C11N1H16)2}2] was obtained in two steps. [µ2-(pyrazine){Mo(N{i-Pr}Ar)3}2] was synthesized in situ: 0.002 g (0.03 mmol) of pyrazine in 2 ml of dry THF was added to a solution of molybdenum complex, [HMo(η2-Me2CNAr)(N{i-Pr}Ar)2] (0.03 g, 0.05 mmol) in dry diethyl ether (3 ml). The resulting dark blue mixture was stirred for 20 min, followed by solvent evaporation under reduced pressure. In the second step the crude product was redissolved in diethyl ether and 0.008 g (0.06 mmol) of mesityl nitrile was added. The mixture was stirred for 30 min, then the solvent was evaporated under reduced pressure. The product was redissolved twice in dry n-hexane to remove the traces of the THF, then the solvent was again evaporated and the solid was dissolved in dry n-pentane (2 ml) and left for crystallization at 238 K (-35 °C) inside the glove box. Dark blue crystals suitable for X-ray analysis formed after one week (Yield (crude): 20%). 1H NMR (500 MHz, 298 K, C6D6): δ -8.94, -1.79, 0.62, 3.06, 8.84, 9.02, 15.96 ppm.

Refinement top

Methyl H atoms were placed in geometrically idealized positions allowing the initial torsion angle to be determined by a difference Fourier analysis [C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C)]. Other H atoms were placed in geometrically idealized positions and included as riding atoms [C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C)]. Disordered i-Pr and disordered aryl groups reside next to each other in the unit cell which causes a correlation in the model of the disorder, the ratios between the two components were refined freely. The geometries of the two PARTs of the disordered i-Pr and aryl groups were kept similar using the SAME command of the program Shelxtl (Sheldrick, 2008); additionally, SADI restraints were used to restrain N2—C19A, N2—C19B and N3—C22A, N3—C22B bond distances. This allowed the 1,2- and 1,3-distances of corresponding atoms to be equal within determined standard deviations (0.02 Å for 1,2- and 0.04 for 1,3-distances). Rigid bond restraints for anisotropic displacement parameters of atoms of the disordered i-Pr and disordered aryl group were applied using the DELU command (standard deviation is 0.01 Å). In addition, anisotropic displacement parameters of the pairs of overlapping disordered atoms of the major and minor components of the disorder were made equal using the EADP constraint.

Structure description top

For more than fifteen years, low-coordinate molybdenum(III) tris-anilide complexes, [Mo(N{R1}Ar)3] and [HMo(η2-Me2CNAr)(N{R2}Ar)2] (where R1 = t-Bu; R2 = i-Pr or CH(CD3)2; Ar = 3,5-C6H3Me2), have attracted the attention of inorganic chemists and crystallographers due to their unusual coordination geometries and their remarkable ability to activate small molecules, including triply-bonded dinitrogen (Tsai et al., 1999; Curley et al., 2008; Germain et al., 2009). It was previously shown that N2 cleavage with the sterically bulky [Mo(N{t-Bu}Ar)3] affords a terminal nitride, ([(N)Mo(N{t-Bu}Ar)3]), while the less bulky [HMo(η2-(CD3)2CNAr)(N{CH(CD3)2}Ar)2] yields a µ2-N bridged dinuclear complex ([µ2-(N){Mo(N{CH(CD3)2}Ar)3}2]). Furthermore, the rate of N2 uptake increases in the presence of bases such as 1-methyl-imidazole, 2,6-dimethylpyrazine or pyridine (Tsai et al., 2003). Thus, the study of molybdenum tris-anilide adducts with additional ligands will help in understanding the N2 uptake, a critical step in the overall N2 cleavage mechanism. Additionally, molecules with element-element triple bonds, such as nitriles, can be viewed as dinitrogen surrogates, and provide structural information on molybdenum interacting with multiply bonded substrates in cases when N2 binding affinity is too low, and N2 complexes cannot be isolated and crystallized.

In this report, we discuss the molecular structure of the dinuclear [µ2-η2-η2-(MesCN)2{Mo(N{i-Pr}Ar)2}2] molybdenum compound (Figure 1 and 2) obtained from the reaction between mesityl nitrile and the pyrazine adduct of [HMo(η2-Me2CNAr)(N{i-Pr}Ar)2] mixed in 2:1 stoichiometric ratio. The title compound crystallizes in the monoclinic space group P21/n and consists of neutral molecules; inter-molecular interactions include a number of van der Waals contacts. The crystal packing diagram reveals that molecules of the title compound form layers in the xz plane (Figure 3). The molybdenum centers have distorted tetrahedral geometries; the coordination polyhedron is formed by two N atoms belonging to the anilide residues and two bridging η2-CN groups from MesCN molecules. Additionally, short metal-metal separation (2.5946 (8) Å) indicates the presence of a formal single Mo···Mo' bond. The bridging η2-η2– coordination of MesCN results in an elongation of the C—N bond in the molecule. Its value is typical for a double C—N bond (1.318 (7) Å) and longer than the CN triple bond in free MesCN (1.160 Å, Britton, 1979) and for the case of η2-coordination to a single Nb center (1.258 (4) Å, Figueroa et al., 2003) but very close to the value reported for µ2-η2-η2 benzonitrile coordinated to two molybdenum atoms (1.299 (3) Å) (Li, et al., 2008). The Mo—N bond lengths are comparable to the previously reported [Mo(N{R}Ar)3] complexes (Geometric parameters table) (Johnson et al., 1997), and the other C—C, C—N bond length values in the anilide and mesityl ligands have their typical values.

For the synthesis of molybdenum(III) tris-anilide nitrides and structures of similar complexes, see: Johnson et al. (1997); Tsai et al. (1999). For reactions of three-coordinate Mo(III) complexes with dinitrogen, organic nitriles and isocyanides, including a base-catalysed dinitrogen cleavage, see: Tsai et al. (2003); Curley et al. (2008); Germain et al. (2009). For the structural parameters of mesityl nitrile and its complexes, see: Britton (1979); Figueroa & Cummins (2003). For the structural parameters of molybdenum complexes with µ2-η2-η2 bridging benzonitrile, see: Li et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, with displacement ellipsoids shown at the 40% probability level (Hydrogen atoms are omitted for clarity). The minor component of the disordered Ar and i-Pr groups is shown with line bonds. Symmetry transformations used to generate equivalent atoms: -x+2, -y+2, -z+1.
[Figure 2] Fig. 2. An ORTEP view of the title compound, with displacement ellipsoids shown at the 40% probability level (Hydrogen atoms and the minor component of the disordered Ar and i-Pr groups are omitted for clarity). Symmetry transformations used to generate equivalent atoms: -x+2, -y+2, -z+1.
[Figure 3] Fig. 3. A packing diagram for the title compound viewed along the [001] axis (H atoms and the minor component of the disordered Ar and i-Pr groups are omitted for clarity).
Bis(µ2-η2:η2-2,4,6-trimethylbenzonitrile)bis[(N-isopropyl- 3,5-dimethylanilido)molybdenum(III)](MoMo) top
Crystal data top
[Mo2(C11H16N)4(C10H11N)2]F(000) = 1192
Mr = 1131.27Dx = 1.321 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 55443 reflections
a = 13.262 (2) Åθ = 1.9–28.7°
b = 17.090 (3) ŵ = 0.49 mm1
c = 13.306 (2) ÅT = 100 K
β = 109.387 (2)°Plate, dark blue
V = 2844.7 (8) Å30.15 × 0.1 × 0.07 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
7345 independent reflections
Radiation source: fine-focus sealed tube4190 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
φ and ω scansθmax = 28.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
h = 1717
Tmin = 0.459, Tmax = 0.746k = 2323
55443 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0372P)2 + 14.5221P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
7345 reflectionsΔρmax = 1.54 e Å3
375 parametersΔρmin = 1.51 e Å3
63 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0011 (2)
Crystal data top
[Mo2(C11H16N)4(C10H11N)2]V = 2844.7 (8) Å3
Mr = 1131.27Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.262 (2) ŵ = 0.49 mm1
b = 17.090 (3) ÅT = 100 K
c = 13.306 (2) Å0.15 × 0.1 × 0.07 mm
β = 109.387 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
7345 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
4190 reflections with I > 2σ(I)
Tmin = 0.459, Tmax = 0.746Rint = 0.119
55443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06763 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0372P)2 + 14.5221P]
where P = (Fo2 + 2Fc2)/3
7345 reflectionsΔρmax = 1.54 e Å3
375 parametersΔρmin = 1.51 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Methyl H atoms were placed in geometrically idealized positions allowing the initial torsion angle to be determined by a difference Fourier analysis [C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C)]. Other H atoms were placed in geometrically idealized positions and included as riding atoms [C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C)]. Disordered i-Pr and disordered aryl group reside next to each other in the unit cell which causes a correlation in the model of the disorder, the ratios between the two components were refined freely. The geometries of the two PARTs of the disordered groups were kept similar using the SAME (it was applied for all atoms in the disordered i-Pr and disordered aryl groups) and SADI (it was used to restrain N2–C19A, N2–C19B and N3–C22A, N3–C22B bond distances) restraints of the program Shelxtl (Sheldrick, 2008) which allowed the 1,2- and 1,3- distances of corresponding atoms to be equal within determined standard deviations (0.02 Å for 1,2- and 0.04 for 1,3-distances); rigid bond restraints for anisotropic displacement parameters of atoms of the disordered i-Pr and disordered aryl group were applied using the DELU command (standart deviation is 0.01 Å). In addition, anisotropic displacement parameters of the pairs of overlapping disordered atoms of the major and minor components of the disorder were made equal using the EADP constraint.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.94612 (3)0.99741 (3)0.56542 (3)0.02648 (14)
N11.0387 (3)0.9050 (3)0.5088 (3)0.0293 (11)
N20.9342 (4)1.0655 (3)0.6828 (4)0.0372 (12)
N30.8204 (3)0.9260 (3)0.5336 (4)0.0347 (12)
C11.0935 (4)0.9466 (3)0.5926 (4)0.0265 (12)
C21.1925 (4)0.9270 (4)0.6799 (4)0.0297 (12)
C31.2509 (4)0.9866 (4)0.7474 (4)0.0341 (14)
C41.3495 (4)0.9667 (4)0.8245 (5)0.0423 (16)
H41.38941.00600.86830.051*
C51.3885 (4)0.8927 (4)0.8374 (5)0.0446 (17)
C61.3278 (4)0.8341 (4)0.7753 (5)0.0406 (15)
H61.35280.78290.78640.049*
C71.2296 (4)0.8488 (4)0.6962 (4)0.0319 (13)
C81.2093 (5)1.0688 (4)0.7414 (5)0.0432 (15)
H8A1.18011.08460.66810.065*
H8B1.26661.10340.77840.065*
H8C1.15441.07110.77360.065*
C91.4973 (5)0.8740 (5)0.9173 (6)0.070 (3)
H9A1.55170.88580.88670.105*
H9B1.50050.81950.93550.105*
H9C1.50850.90490.98030.105*
C101.1667 (5)0.7804 (4)0.6362 (5)0.0432 (15)
H10A1.15720.78580.56180.065*
H10B1.09810.77890.64590.065*
H10C1.20470.73280.66270.065*
C110.9237 (5)1.0201 (4)0.7667 (4)0.0363 (15)
C120.8446 (5)1.0306 (4)0.8144 (5)0.0437 (16)
H120.79661.07190.79230.052*
C130.8364 (5)0.9810 (5)0.8934 (4)0.049 (2)
C140.9048 (5)0.9175 (4)0.9242 (4)0.0412 (15)
H140.89690.88310.97530.049*
C150.9845 (4)0.9039 (4)0.8803 (4)0.0370 (14)
C160.9941 (4)0.9569 (4)0.8040 (4)0.0326 (13)
H161.04960.95000.77660.039*
C170.7532 (5)0.9951 (5)0.9464 (5)0.059 (2)
H17A0.78411.02521.01010.089*
H17B0.72880.94580.96420.089*
H17C0.69391.02320.89850.089*
C181.0611 (5)0.8367 (4)0.9145 (5)0.0465 (16)
H18A1.11060.84670.98450.070*
H18B1.09960.83080.86530.070*
H18C1.02210.78960.91560.070*
C19A0.9254 (8)1.1512 (5)0.6841 (9)0.038 (2)0.683 (7)
H19A0.96721.17150.64130.046*0.683 (7)
C21A0.8119 (8)1.1862 (8)0.6359 (10)0.051 (3)0.683 (7)
H21D0.76901.17040.67790.076*0.683 (7)
H21E0.77991.16760.56420.076*0.683 (7)
H21F0.81651.24220.63560.076*0.683 (7)
C20A0.9781 (9)1.1816 (9)0.7956 (9)0.046 (2)0.683 (7)
H20D0.93471.16880.83850.069*0.683 (7)
H20E0.98591.23730.79360.069*0.683 (7)
H20F1.04721.15790.82590.069*0.683 (7)
C19B0.9603 (19)1.1499 (10)0.711 (2)0.038 (2)0.317 (7)
H19B1.00361.16510.66710.046*0.317 (7)
C20B1.0263 (19)1.179 (2)0.8245 (19)0.046 (2)0.317 (7)
H20A0.98411.17460.87050.069*0.317 (7)
H20B1.04561.23300.82090.069*0.317 (7)
H20C1.08991.14820.85220.069*0.317 (7)
C21B0.8616 (17)1.2008 (18)0.670 (2)0.051 (3)0.317 (7)
H21A0.82701.19120.59520.076*0.317 (7)
H21B0.88201.25490.68070.076*0.317 (7)
H21C0.81341.18870.70780.076*0.317 (7)
C22A0.7116 (6)0.9388 (6)0.4677 (9)0.027 (2)0.683 (7)
C23A0.6437 (7)0.8872 (7)0.3947 (7)0.033 (2)0.683 (7)
H23A0.66720.83700.38690.040*0.683 (7)
C24A0.5414 (6)0.9106 (7)0.3335 (7)0.037 (2)0.683 (7)
C25A0.5053 (6)0.9838 (7)0.3441 (8)0.040 (2)0.683 (7)
H25A0.43640.99800.30250.048*0.683 (7)
C26A0.5698 (7)1.0379 (6)0.4161 (8)0.0344 (18)0.683 (7)
C27A0.6723 (6)1.0137 (6)0.4776 (7)0.0295 (19)0.683 (7)
H27A0.71611.04830.52690.035*0.683 (7)
C28A0.4706 (7)0.8532 (8)0.2521 (8)0.057 (3)0.683 (7)
H28A0.40250.84900.26230.086*0.683 (7)
H28B0.50430.80280.26150.086*0.683 (7)
H28C0.46060.87190.18140.086*0.683 (7)
C29A0.5277 (8)1.1158 (7)0.4255 (8)0.050 (2)0.683 (7)
H29A0.48001.13210.35730.074*0.683 (7)
H29B0.58581.15230.44990.074*0.683 (7)
H29C0.48981.11400.47560.074*0.683 (7)
C22B0.7171 (14)0.9624 (13)0.490 (2)0.027 (2)0.317 (7)
C23B0.6383 (14)0.9158 (13)0.4197 (18)0.033 (2)0.317 (7)
H23B0.65260.86350.41060.040*0.317 (7)
C24B0.5386 (14)0.9470 (13)0.3635 (17)0.037 (2)0.317 (7)
C25B0.5201 (15)1.0238 (12)0.3792 (18)0.040 (2)0.317 (7)
H25B0.45421.04480.33970.048*0.317 (7)
C26B0.5936 (14)1.0727 (11)0.4507 (16)0.0344 (18)0.317 (7)
C27B0.6937 (14)1.0403 (12)0.5068 (18)0.0295 (19)0.317 (7)
H27B0.74501.07070.55580.035*0.317 (7)
C28B0.4540 (16)0.8961 (16)0.2848 (18)0.057 (3)0.317 (7)
H28D0.38440.91050.28600.086*0.317 (7)
H28E0.46730.84210.30460.086*0.317 (7)
H28F0.45700.90360.21440.086*0.317 (7)
C29B0.5700 (17)1.1550 (12)0.468 (2)0.050 (2)0.317 (7)
H29D0.59781.18850.42540.074*0.317 (7)
H29E0.60271.16810.54180.074*0.317 (7)
H29F0.49401.16210.44770.074*0.317 (7)
C300.8460 (4)0.8482 (4)0.5816 (4)0.0321 (13)
H300.91890.85220.63240.039*
C310.8491 (5)0.7815 (4)0.5064 (5)0.0420 (15)
H31A0.77740.76630.46580.063*
H31B0.88620.73760.54720.063*
H31C0.88560.79850.45890.063*
C320.7753 (4)0.8279 (4)0.6483 (5)0.0417 (16)
H32A0.77850.86950.69770.062*
H32B0.80020.78030.68670.062*
H32C0.70290.82120.60220.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01402 (18)0.0447 (3)0.02243 (19)0.0035 (2)0.00838 (13)0.0022 (3)
N10.0137 (17)0.055 (3)0.018 (2)0.006 (2)0.0045 (16)0.004 (2)
N20.035 (3)0.054 (3)0.031 (2)0.011 (2)0.022 (2)0.002 (2)
N30.0090 (19)0.061 (4)0.034 (2)0.003 (2)0.0058 (17)0.005 (2)
C10.011 (2)0.044 (3)0.025 (2)0.007 (2)0.0070 (18)0.004 (2)
C20.016 (2)0.051 (4)0.023 (2)0.002 (2)0.009 (2)0.001 (2)
C30.018 (2)0.056 (5)0.027 (2)0.002 (3)0.0058 (18)0.007 (3)
C40.022 (3)0.071 (5)0.030 (3)0.009 (3)0.003 (2)0.008 (3)
C50.017 (3)0.069 (5)0.042 (3)0.001 (3)0.002 (2)0.019 (3)
C60.020 (3)0.059 (4)0.042 (3)0.005 (3)0.008 (2)0.016 (3)
C70.017 (2)0.049 (4)0.033 (3)0.004 (2)0.012 (2)0.004 (3)
C80.035 (3)0.053 (4)0.036 (3)0.006 (3)0.004 (3)0.002 (3)
C90.024 (3)0.084 (6)0.078 (5)0.006 (4)0.016 (3)0.034 (5)
C100.033 (3)0.045 (4)0.050 (4)0.015 (3)0.012 (3)0.006 (3)
C110.032 (3)0.052 (4)0.028 (3)0.002 (3)0.014 (2)0.003 (2)
C120.036 (3)0.066 (5)0.034 (3)0.007 (3)0.018 (3)0.001 (3)
C130.026 (3)0.098 (6)0.023 (3)0.005 (3)0.009 (2)0.007 (3)
C140.033 (3)0.064 (5)0.028 (3)0.011 (3)0.013 (2)0.000 (3)
C150.028 (3)0.058 (4)0.024 (3)0.001 (3)0.007 (2)0.001 (3)
C160.028 (3)0.050 (4)0.023 (3)0.002 (3)0.013 (2)0.000 (2)
C170.032 (3)0.111 (6)0.043 (3)0.004 (4)0.024 (3)0.004 (5)
C180.047 (4)0.058 (4)0.036 (3)0.002 (3)0.016 (3)0.003 (3)
C19A0.037 (7)0.054 (5)0.027 (6)0.015 (4)0.016 (5)0.010 (4)
C21A0.036 (6)0.061 (7)0.064 (7)0.017 (6)0.029 (5)0.007 (6)
C20A0.047 (7)0.057 (5)0.041 (6)0.005 (7)0.024 (5)0.010 (5)
C19B0.037 (7)0.054 (5)0.027 (6)0.015 (4)0.016 (5)0.010 (4)
C20B0.047 (7)0.057 (5)0.041 (6)0.005 (7)0.024 (5)0.010 (5)
C21B0.036 (6)0.061 (7)0.064 (7)0.017 (6)0.029 (5)0.007 (6)
C22A0.012 (2)0.045 (6)0.024 (6)0.004 (3)0.007 (2)0.002 (4)
C23A0.018 (3)0.048 (6)0.026 (5)0.008 (3)0.002 (3)0.003 (4)
C24A0.016 (3)0.063 (6)0.026 (5)0.008 (4)0.001 (3)0.006 (4)
C25A0.015 (3)0.068 (6)0.035 (5)0.001 (4)0.006 (3)0.016 (4)
C26A0.019 (4)0.056 (6)0.032 (6)0.006 (4)0.014 (3)0.010 (4)
C27A0.016 (3)0.047 (6)0.028 (5)0.002 (4)0.011 (3)0.001 (4)
C28A0.027 (4)0.090 (9)0.038 (6)0.015 (5)0.012 (4)0.005 (5)
C29A0.035 (5)0.068 (6)0.052 (6)0.020 (4)0.023 (5)0.010 (4)
C22B0.012 (2)0.045 (6)0.024 (6)0.004 (3)0.007 (2)0.002 (4)
C23B0.018 (3)0.048 (6)0.026 (5)0.008 (3)0.002 (3)0.003 (4)
C24B0.016 (3)0.063 (6)0.026 (5)0.008 (4)0.001 (3)0.006 (4)
C25B0.015 (3)0.068 (6)0.035 (5)0.001 (4)0.006 (3)0.016 (4)
C26B0.019 (4)0.056 (6)0.032 (6)0.006 (4)0.014 (3)0.010 (4)
C27B0.016 (3)0.047 (6)0.028 (5)0.002 (4)0.011 (3)0.001 (4)
C28B0.027 (4)0.090 (9)0.038 (6)0.015 (5)0.012 (4)0.005 (5)
C29B0.035 (5)0.068 (6)0.052 (6)0.020 (4)0.023 (5)0.010 (4)
C300.015 (2)0.055 (4)0.025 (3)0.002 (2)0.006 (2)0.004 (3)
C310.027 (3)0.057 (4)0.039 (3)0.008 (3)0.008 (2)0.007 (3)
C320.021 (3)0.068 (5)0.034 (3)0.006 (3)0.008 (2)0.008 (3)
Geometric parameters (Å, º) top
Mo1—N1i1.982 (5)C21A—H21E0.9600
Mo1—N31.995 (5)C21A—H21F0.9600
Mo1—N21.995 (5)C20A—H20D0.9600
Mo1—C12.059 (5)C20A—H20E0.9600
Mo1—C1i2.208 (5)C20A—H20F0.9600
Mo1—N12.276 (5)C19B—C21B1.515 (18)
Mo1—Mo1i2.5946 (8)C19B—C20B1.558 (19)
N1—C11.318 (7)C19B—H19B0.9800
N1—Mo1i1.982 (5)C20B—H20A0.9600
N2—C111.404 (7)C20B—H20B0.9600
N2—C19A1.469 (10)C20B—H20C0.9600
N2—C19B1.500 (17)C21B—H21A0.9600
N3—C22A1.435 (8)C21B—H21B0.9600
N3—C22B1.440 (13)C21B—H21C0.9600
N3—C301.465 (8)C22A—C23A1.397 (10)
C1—C21.474 (7)C22A—C27A1.404 (11)
C1—Mo1i2.208 (5)C23A—C24A1.389 (10)
C2—C31.408 (8)C23A—H23A0.9300
C2—C71.416 (8)C24A—C25A1.363 (15)
C3—C41.410 (7)C24A—C28A1.530 (13)
C3—C81.502 (9)C25A—C26A1.401 (14)
C4—C51.356 (10)C25A—H25A0.9300
C4—H40.9300C26A—C27A1.397 (10)
C5—C61.376 (9)C26A—C29A1.464 (13)
C5—C91.514 (8)C27A—H27A0.9300
C6—C71.399 (7)C28A—H28A0.9600
C6—H60.9300C28A—H28B0.9600
C7—C101.502 (9)C28A—H28C0.9600
C8—H8A0.9600C29A—H29A0.9600
C8—H8B0.9600C29A—H29B0.9600
C8—H8C0.9600C29A—H29C0.9600
C9—H9A0.9600C22B—C23B1.396 (16)
C9—H9B0.9600C22B—C27B1.402 (17)
C9—H9C0.9600C23B—C24B1.391 (16)
C10—H10A0.9600C23B—H23B0.9300
C10—H10B0.9600C24B—C25B1.36 (2)
C10—H10C0.9600C24B—C28B1.527 (18)
C11—C121.406 (8)C25B—C26B1.39 (2)
C11—C161.408 (8)C25B—H25B0.9300
C12—C131.382 (9)C26B—C27B1.403 (16)
C12—H120.9300C26B—C29B1.475 (19)
C13—C141.387 (9)C27B—H27B0.9300
C13—C171.514 (8)C28B—H28D0.9600
C14—C151.387 (8)C28B—H28E0.9600
C14—H140.9300C28B—H28F0.9600
C15—C161.397 (8)C29B—H29D0.9600
C15—C181.501 (9)C29B—H29E0.9600
C16—H160.9300C29B—H29F0.9600
C17—H17A0.9600C30—C311.527 (8)
C17—H17B0.9600C30—C321.529 (7)
C17—H17C0.9600C30—H300.9800
C18—H18A0.9600C31—H31A0.9600
C18—H18B0.9600C31—H31B0.9600
C18—H18C0.9600C31—H31C0.9600
C19A—C20A1.507 (12)C32—H32A0.9600
C19A—C21A1.547 (12)C32—H32B0.9600
C19A—H19A0.9800C32—H32C0.9600
C21A—H21D0.9600
N1i—Mo1—N3128.66 (18)H17A—C17—H17C109.5
N1i—Mo1—N286.9 (2)H17B—C17—H17C109.5
N3—Mo1—N2104.2 (2)C15—C18—H18A109.5
N1i—Mo1—C1101.24 (19)C15—C18—H18B109.5
N3—Mo1—C1117.2 (2)H18A—C18—H18B109.5
N2—Mo1—C1115.2 (2)C15—C18—H18C109.5
N1i—Mo1—C1i36.16 (19)H18A—C18—H18C109.5
N3—Mo1—C1i98.32 (19)H18B—C18—H18C109.5
N2—Mo1—C1i115.9 (2)N2—C19A—C20A110.0 (9)
C1—Mo1—C1i105.19 (16)N2—C19A—C21A116.8 (9)
N1i—Mo1—N1105.27 (16)C20A—C19A—C21A110.1 (8)
N3—Mo1—N190.58 (18)N2—C19A—H19A106.4
N2—Mo1—N1148.77 (18)C20A—C19A—H19A106.4
C1—Mo1—N134.94 (18)C21A—C19A—H19A106.4
C1i—Mo1—N188.27 (17)N2—C19B—C21B111.2 (18)
N1i—Mo1—Mo1i57.82 (13)N2—C19B—C20B124 (2)
N3—Mo1—Mo1i119.08 (14)C21B—C19B—C20B107.7 (16)
N2—Mo1—Mo1i135.20 (15)N2—C19B—H19B103.9
C1—Mo1—Mo1i55.23 (14)C21B—C19B—H19B103.9
C1i—Mo1—Mo1i49.97 (12)C20B—C19B—H19B103.9
N1—Mo1—Mo1i47.46 (12)C19B—C20B—H20A109.5
C1—N1—Mo1i81.3 (3)C19B—C20B—H20B109.5
C1—N1—Mo163.5 (3)H20A—C20B—H20B109.5
Mo1i—N1—Mo174.73 (16)C19B—C20B—H20C109.5
C11—N2—C19A120.8 (6)H20A—C20B—H20C109.5
C11—N2—C19B114.1 (12)H20B—C20B—H20C109.5
C11—N2—Mo1110.8 (4)C19B—C21B—H21A109.5
C19A—N2—Mo1128.2 (6)C19B—C21B—H21B109.5
C19B—N2—Mo1133.1 (13)H21A—C21B—H21B109.5
C22A—N3—C30116.4 (6)C19B—C21B—H21C109.5
C22B—N3—C30128.4 (13)H21A—C21B—H21C109.5
C22A—N3—Mo1129.6 (6)H21B—C21B—H21C109.5
C22B—N3—Mo1115.9 (11)C23A—C22A—C27A117.9 (7)
C30—N3—Mo1113.9 (3)C23A—C22A—N3127.9 (8)
N1—C1—C2129.9 (5)C27A—C22A—N3114.2 (7)
N1—C1—Mo181.6 (3)C24A—C23A—C22A120.3 (9)
C2—C1—Mo1141.2 (4)C24A—C23A—H23A119.9
N1—C1—Mo1i62.5 (3)C22A—C23A—H23A119.9
C2—C1—Mo1i135.8 (4)C25A—C24A—C23A120.8 (9)
Mo1—C1—Mo1i74.81 (16)C25A—C24A—C28A120.5 (8)
C3—C2—C7119.7 (5)C23A—C24A—C28A118.7 (10)
C3—C2—C1119.8 (5)C24A—C25A—C26A121.4 (8)
C7—C2—C1120.5 (5)C24A—C25A—H25A119.3
C2—C3—C4118.1 (6)C26A—C25A—H25A119.3
C2—C3—C8121.9 (5)C27A—C26A—C25A117.3 (9)
C4—C3—C8120.0 (6)C27A—C26A—C29A123.0 (10)
C5—C4—C3122.7 (6)C25A—C26A—C29A119.7 (8)
C5—C4—H4118.7C26A—C27A—C22A122.3 (8)
C3—C4—H4118.7C26A—C27A—H27A118.8
C4—C5—C6118.7 (5)C22A—C27A—H27A118.8
C4—C5—C9121.3 (7)C23B—C22B—C27B119.5 (13)
C6—C5—C9120.0 (7)C23B—C22B—N3115.1 (14)
C5—C6—C7122.3 (6)C27B—C22B—N3125.2 (14)
C5—C6—H6118.9C24B—C23B—C22B120.6 (16)
C7—C6—H6118.9C24B—C23B—H23B119.7
C6—C7—C2118.3 (6)C22B—C23B—H23B119.7
C6—C7—C10118.3 (6)C25B—C24B—C23B118.2 (16)
C2—C7—C10123.4 (5)C25B—C24B—C28B121.6 (16)
C3—C8—H8A109.5C23B—C24B—C28B120.1 (18)
C3—C8—H8B109.5C24B—C25B—C26B124.2 (15)
H8A—C8—H8B109.5C24B—C25B—H25B117.9
C3—C8—H8C109.5C26B—C25B—H25B117.9
H8A—C8—H8C109.5C25B—C26B—C27B116.7 (16)
H8B—C8—H8C109.5C25B—C26B—C29B122.8 (15)
C5—C9—H9A109.5C27B—C26B—C29B120.4 (17)
C5—C9—H9B109.5C22B—C27B—C26B120.7 (15)
H9A—C9—H9B109.5C22B—C27B—H27B119.6
C5—C9—H9C109.5C26B—C27B—H27B119.6
H9A—C9—H9C109.5C24B—C28B—H28D109.5
H9B—C9—H9C109.5C24B—C28B—H28E109.5
C7—C10—H10A109.5H28D—C28B—H28E109.5
C7—C10—H10B109.5C24B—C28B—H28F109.5
H10A—C10—H10B109.5H28D—C28B—H28F109.5
C7—C10—H10C109.5H28E—C28B—H28F109.5
H10A—C10—H10C109.5C26B—C29B—H29D109.5
H10B—C10—H10C109.5C26B—C29B—H29E109.5
N2—C11—C12125.1 (6)H29D—C29B—H29E109.5
N2—C11—C16118.4 (5)C26B—C29B—H29F109.5
C12—C11—C16116.5 (5)H29D—C29B—H29F109.5
C13—C12—C11121.6 (6)H29E—C29B—H29F109.5
C13—C12—H12119.2N3—C30—C31116.4 (5)
C11—C12—H12119.2N3—C30—C32111.2 (5)
C12—C13—C14119.7 (5)C31—C30—C32111.4 (5)
C12—C13—C17120.7 (7)N3—C30—H30105.7
C14—C13—C17119.5 (6)C31—C30—H30105.7
C13—C14—C15121.4 (6)C32—C30—H30105.7
C13—C14—H14119.3C30—C31—H31A109.5
C15—C14—H14119.3C30—C31—H31B109.5
C14—C15—C16117.7 (6)H31A—C31—H31B109.5
C14—C15—C18122.3 (6)C30—C31—H31C109.5
C16—C15—C18120.0 (5)H31A—C31—H31C109.5
C15—C16—C11122.9 (5)H31B—C31—H31C109.5
C15—C16—H16118.5C30—C32—H32A109.5
C11—C16—H16118.5C30—C32—H32B109.5
C13—C17—H17A109.5H32A—C32—H32B109.5
C13—C17—H17B109.5C30—C32—H32C109.5
H17A—C17—H17B109.5H32A—C32—H32C109.5
C13—C17—H17C109.5H32B—C32—H32C109.5
N1i—Mo1—N1—C187.8 (3)C4—C5—C6—C73.0 (9)
N3—Mo1—N1—C1141.6 (3)C9—C5—C6—C7176.3 (6)
N2—Mo1—N1—C122.3 (5)C5—C6—C7—C20.3 (8)
C1i—Mo1—N1—C1120.1 (3)C5—C6—C7—C10177.1 (6)
Mo1i—Mo1—N1—C187.8 (3)C3—C2—C7—C64.2 (8)
N1i—Mo1—N1—Mo1i0.0C1—C2—C7—C6175.6 (5)
N3—Mo1—N1—Mo1i130.57 (16)C3—C2—C7—C10173.0 (5)
N2—Mo1—N1—Mo1i110.1 (3)C1—C2—C7—C107.3 (8)
C1—Mo1—N1—Mo1i87.8 (3)C19A—N2—C11—C1244.6 (9)
C1i—Mo1—N1—Mo1i32.26 (16)C19B—N2—C11—C1264.3 (12)
N1i—Mo1—N2—C11178.4 (4)Mo1—N2—C11—C12129.7 (6)
N3—Mo1—N2—C1152.4 (4)C19A—N2—C11—C16138.3 (7)
C1—Mo1—N2—C1177.4 (4)C19B—N2—C11—C16118.6 (11)
C1i—Mo1—N2—C11159.2 (4)Mo1—N2—C11—C1647.4 (6)
N1—Mo1—N2—C1163.5 (5)N2—C11—C12—C13176.9 (6)
Mo1i—Mo1—N2—C11142.5 (3)C16—C11—C12—C130.3 (9)
N1i—Mo1—N2—C19A7.8 (6)C11—C12—C13—C142.5 (10)
N3—Mo1—N2—C19A121.3 (6)C11—C12—C13—C17177.8 (6)
C1—Mo1—N2—C19A108.8 (6)C12—C13—C14—C152.6 (9)
C1i—Mo1—N2—C19A14.6 (7)C17—C13—C14—C15177.8 (6)
N1—Mo1—N2—C19A122.7 (7)C13—C14—C15—C160.2 (9)
Mo1i—Mo1—N2—C19A43.7 (7)C13—C14—C15—C18178.4 (6)
N1i—Mo1—N2—C19B15.9 (11)C14—C15—C16—C113.2 (9)
N3—Mo1—N2—C19B145.1 (11)C18—C15—C16—C11178.5 (6)
C1—Mo1—N2—C19B85.1 (12)N2—C11—C16—C15174.1 (5)
C1i—Mo1—N2—C19B38.3 (12)C12—C11—C16—C153.3 (9)
N1—Mo1—N2—C19B99.0 (12)C11—N2—C19A—C20A38.5 (11)
Mo1i—Mo1—N2—C19B19.9 (12)C19B—N2—C19A—C20A35 (5)
N1i—Mo1—N3—C22A14.6 (8)Mo1—N2—C19A—C20A148.3 (6)
N2—Mo1—N3—C22A82.9 (7)C11—N2—C19A—C21A88.0 (10)
C1—Mo1—N3—C22A148.4 (7)C19B—N2—C19A—C21A162 (6)
C1i—Mo1—N3—C22A36.5 (7)Mo1—N2—C19A—C21A85.2 (11)
N1—Mo1—N3—C22A124.9 (7)C11—N2—C19B—C21B100.4 (19)
Mo1i—Mo1—N3—C22A85.0 (7)C19A—N2—C19B—C21B15 (4)
N1i—Mo1—N3—C22B31.6 (15)Mo1—N2—C19B—C21B98 (2)
N2—Mo1—N3—C22B66.0 (15)C11—N2—C19B—C20B31 (3)
C1—Mo1—N3—C22B165.3 (15)C19A—N2—C19B—C20B146 (7)
C1i—Mo1—N3—C22B53.4 (15)Mo1—N2—C19B—C20B131 (2)
N1—Mo1—N3—C22B141.8 (15)C22B—N3—C22A—C23A172 (7)
Mo1i—Mo1—N3—C22B102.0 (15)C30—N3—C22A—C23A40.2 (16)
N1i—Mo1—N3—C30162.3 (3)Mo1—N3—C22A—C23A136.7 (11)
N2—Mo1—N3—C30100.1 (4)C22B—N3—C22A—C27A10 (5)
C1—Mo1—N3—C3028.5 (4)C30—N3—C22A—C27A141.9 (9)
C1i—Mo1—N3—C30140.4 (4)Mo1—N3—C22A—C27A41.2 (14)
N1—Mo1—N3—C3052.1 (4)C27A—C22A—C23A—C24A0.8 (18)
Mo1i—Mo1—N3—C3091.9 (3)N3—C22A—C23A—C24A177.0 (11)
Mo1i—N1—C1—C2128.2 (5)C22A—C23A—C24A—C25A0.4 (16)
Mo1—N1—C1—C2154.6 (6)C22A—C23A—C24A—C28A178.3 (11)
Mo1i—N1—C1—Mo177.19 (15)C23A—C24A—C25A—C26A0.3 (14)
Mo1—N1—C1—Mo1i77.19 (15)C28A—C24A—C25A—C26A178.3 (9)
N1i—Mo1—C1—N1100.6 (3)C24A—C25A—C26A—C27A0.7 (14)
N3—Mo1—C1—N144.3 (4)C24A—C25A—C26A—C29A179.6 (9)
N2—Mo1—C1—N1167.4 (3)C25A—C26A—C27A—C22A1.1 (15)
C1i—Mo1—C1—N163.7 (3)C29A—C26A—C27A—C22A180.0 (11)
Mo1i—Mo1—C1—N163.7 (3)C23A—C22A—C27A—C26A1.2 (18)
N1i—Mo1—C1—C2111.1 (7)N3—C22A—C27A—C26A176.9 (9)
N3—Mo1—C1—C2104.0 (7)C22A—N3—C22B—C23B10 (4)
N2—Mo1—C1—C219.1 (7)C30—N3—C22B—C23B48 (3)
C1i—Mo1—C1—C2148.0 (8)Mo1—N3—C22B—C23B148 (2)
N1—Mo1—C1—C2148.3 (9)C22A—N3—C22B—C27B165 (9)
Mo1i—Mo1—C1—C2148.0 (8)C30—N3—C22B—C27B136 (3)
N1i—Mo1—C1—Mo1i36.96 (18)Mo1—N3—C22B—C27B27 (4)
N3—Mo1—C1—Mo1i107.96 (19)C27B—C22B—C23B—C24B3 (5)
N2—Mo1—C1—Mo1i128.88 (19)N3—C22B—C23B—C24B173 (2)
C1i—Mo1—C1—Mo1i0.0C22B—C23B—C24B—C25B0 (4)
N1—Mo1—C1—Mo1i63.7 (3)C22B—C23B—C24B—C28B178 (3)
N1—C1—C2—C3165.0 (5)C23B—C24B—C25B—C26B2 (4)
Mo1—C1—C2—C357.7 (8)C28B—C24B—C25B—C26B179 (2)
Mo1i—C1—C2—C375.2 (7)C24B—C25B—C26B—C27B2 (4)
N1—C1—C2—C714.8 (8)C24B—C25B—C26B—C29B178 (2)
Mo1—C1—C2—C7122.6 (6)C23B—C22B—C27B—C26B3 (5)
Mo1i—C1—C2—C7104.6 (6)N3—C22B—C27B—C26B173 (3)
C7—C2—C3—C44.8 (8)C25B—C26B—C27B—C22B1 (4)
C1—C2—C3—C4174.9 (5)C29B—C26B—C27B—C22B179 (3)
C7—C2—C3—C8173.3 (5)C22A—N3—C30—C3172.3 (8)
C1—C2—C3—C87.0 (8)C22B—N3—C30—C3190.8 (15)
C2—C3—C4—C51.6 (9)Mo1—N3—C30—C31105.1 (4)
C8—C3—C4—C5176.5 (6)C22A—N3—C30—C3256.7 (8)
C3—C4—C5—C62.3 (9)C22B—N3—C30—C3238.2 (16)
C3—C4—C5—C9176.9 (6)Mo1—N3—C30—C32125.9 (4)
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Mo2(C11H16N)4(C10H11N)2]
Mr1131.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.262 (2), 17.090 (3), 13.306 (2)
β (°) 109.387 (2)
V3)2844.7 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.15 × 0.1 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2009)
Tmin, Tmax0.459, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
55443, 7345, 4190
Rint0.119
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.172, 1.08
No. of reflections7345
No. of parameters375
No. of restraints63
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0372P)2 + 14.5221P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.54, 1.51

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This material is based upon work supported by the National Science Foundation under grants CHE-1111357 (CCC) and CHE-0750140 (ERA).

References

First citationBritton, D. (1979). Cryst. Struct. Commun. 8, 667–670.  CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCurley, J. J., Cook, T. R., Reece, S. Y., Muller, P. & Cummins, C. C. (2008). J. Am. Chem. Soc. 130, 9394–9405.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFigueroa, J. S. & Cummins, C. C. (2003). J. Am. Chem. Soc. 125, 4020–4021.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGermain, M. E., Temprado, M., Castonguay, A., Kryatova, O. P., Rybak-Akimova, E. V., Curley, J. J., Mendiratta, A., Tsai, Y.-C., Cummins, C. C., Prabhakar, R., McDonough, J. E. & Hoff, C. D. (2009). J. Am. Chem. Soc. 131, 15412–15423.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJohnson, M. J. A., Lee, P. M., Odom, A. L., Davis, W. M. & Cummins, C. C. (1997). Angew. Chem. Int. Ed. 36, 87–91.  CrossRef CAS Google Scholar
First citationLi, B., Xu, S., Song, H. & Wang, B. (2008). J. Organomet. Chem. 693, 87–96.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.  Google Scholar
First citationTsai, Y.-C., Johnson, M. J. A., Mindiola, D. J., Cummins, C. C., Klooster, W. T. & Koetzle, T. F. (1999). J. Am. Chem. Soc. 121, 10426–10427.  Web of Science CSD CrossRef CAS Google Scholar
First citationTsai, Y.-C., Stephens, F. H., Meyer, K., Mendiratta, A., Gheorghiu, M. D. & Cummins, C. C. (2003). Organometallics, 22, 2902–2913.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds