metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[3-(Isonicotino­yl­oxy)propoxycarbon­yl]pyridinium di­iodidoargentate(I)

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, cInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and dInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain.
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 3 November 2011; accepted 8 November 2011; online 12 November 2011)

The structure of the title compound, (C15H15N2O4)[AgI2], consists of an organic 4-[3-(isonicotino­yloxy)propoxycarbon­yl]pyridinium cation which has a gauchegauche (O/C/C/C—O/C/C/C or GG') conformation and lies on a twofold rotation axis, which passes through the central C atom of the aliphatic chain, and an inorganic [AgI2] anion. In the complex anion, the Ag+ cation is bound to two I anions in a linear geometry. The anion was modelled assuming disorder around a crystallographic inversion centre near the location of the Ag+ cation. The crystal packing is stabilized by a strong inter­molecular N—H⋯N hydrogen bond, which links the cations into zigzag chains with graph-set notation C(16) running along the face diagonal of the ac plane. The N-bound H atom is disordered over two equally occupied symmetry-equivalent sites, so that the mol­ecule has a pyridinium ring at one end and a pyridine ring at the other.

Related literature

For a related structure, see: Brito et al. (2010[Brito, I., Vallejos, J., Bolte, M., López-Rodríguez, M. & Cárdenas, A. (2010). Acta Cryst. E66, o1015.]). For conformation definitions, see: Carlucci et al. (2002[Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 22, 121-129.]). For coordination polymers, see: Brito et al. (2011[Brito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M., Bolte, M. & Llanos, J. (2011). Inorg. Chem. Commun. 14, 897-901.]); Albanez et al. (2011[Albanez, J., Brito, I., Cárdenas, A. & López-Rodríguez, M. (2011). Acta Cryst. E67, m1339-m1340.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For polymeric organic-inorganic materials, see: Blake et al. (1999[Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.]). For mol­ecular geometry calculations, see: Macrae et al. (2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

[Scheme 1]

Experimental

Crystal data
  • (C15H15N2O4)[AgI2]

  • Mr = 648.96

  • Monoclinic, C 2/c

  • a = 14.8788 (7) Å

  • b = 5.4712 (3) Å

  • c = 24.5008 (11) Å

  • β = 95.347 (4)°

  • V = 1985.81 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.14 mm−1

  • T = 173 K

  • 0.22 × 0.13 × 0.10 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.463, Tmax = 0.682

  • 9000 measured reflections

  • 2158 independent reflections

  • 1821 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.03

  • 2158 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14⋯N14i 0.88 1.80 2.684 (7) 176
Symmetry code: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+2].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design of polymeric organic-inorganic materials with novel topologies and structural motifs is of current interest in the field of coordination chemistry (Blake et al., 1999). This paper forms part of our continuing study of the synthesis, structural characterization and physical properties of coordination polymers (Brito et al., 2011, Albanez et al., 2011). The title compound, (I), was isolated during attempts to synthesize a coordination polymer by a self-assembly reaction between propane-1,3-diyl bis(pyridine-4-carboxylate) and AgI. The structure of the title compound, (I) consist of an organic 4-{[3-isonicotinoyloxy)propoxy]carbonyl}pyridinium cation which has a gauche-gauche (O/C/C/C—O/C/C/C or GG') conformation (Carlucci et al., 2002) and lies on a twofold rotation axis, which passes through the central C atom of the aliphatic chain, and an inorganic (AgI2)- anion, Fig, 1. In the anion, each silver atom is bound to two iodine atoms in a linear geometry. The anion was modelled assuming disorder around a crystallographic inversion centre near the location of the silver atom. The crystal packing is stabilized by a strong intermolecular N—H···N hydrogen bond, which links the cations into zigzag chains with graph-set notation C(16) (Bernstein et al., 1995) running along the face diagonal of the ac plane (Fig. 2 and Table 1). There are only slight variations in the geometrical and conformational parameters between the cation complex of (I) and the unprotonated compound (Brito et al., 2010), (II) so when both compounds are superimposed all related atoms fit within an RMSD of 0.0810 Å, Fig. 3 (Macrae et al., 2008).

Related literature top

For a related structure, see: Brito et al. (2010). For conformation definitions, see: Carlucci et al. (2002). For coordination polymers, see: Brito et al. (2011); Albanez et al. (2011). For graph-set notation, see: Bernstein et al. (1995). For polymeric organic-inorganic materials, see: Blake et al. (1999). For molecular geometry calculations, see: Macrae et al. (2008).

Experimental top

A solution of AgI (23.5 mg, 0.1 mmol) in water was slowly added to a solution of propane-1,3-diyl bis(pyridine-4-carboxylate) (28.6 mg, 0.1 mmol) in acetonitrile (4 ml), in presence of an excess of KI. Red single crystals suitable for X-ray analysis were obtained after a few days. Only a few single crystals were obtained due to low yield of the reaction, and no spectroscopic data were recorded.

Refinement top

H atoms were located in a difference map but finally geometrically positioned and refined using a riding model with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C, N) and with Caromatic—H= 0.95 Å, N—H = 0.88 Å and Cmethylene—H = 0.99 Å]. The H atom bonded to N is disordered over two equally occupied sites. The (AgI2)- anion was modelled assuming disorder around an inversion center. Reflections (1 1 2) and (0 0 4), were omitted due to their large disagreement between Fobs and Fcalc.

Structure description top

The design of polymeric organic-inorganic materials with novel topologies and structural motifs is of current interest in the field of coordination chemistry (Blake et al., 1999). This paper forms part of our continuing study of the synthesis, structural characterization and physical properties of coordination polymers (Brito et al., 2011, Albanez et al., 2011). The title compound, (I), was isolated during attempts to synthesize a coordination polymer by a self-assembly reaction between propane-1,3-diyl bis(pyridine-4-carboxylate) and AgI. The structure of the title compound, (I) consist of an organic 4-{[3-isonicotinoyloxy)propoxy]carbonyl}pyridinium cation which has a gauche-gauche (O/C/C/C—O/C/C/C or GG') conformation (Carlucci et al., 2002) and lies on a twofold rotation axis, which passes through the central C atom of the aliphatic chain, and an inorganic (AgI2)- anion, Fig, 1. In the anion, each silver atom is bound to two iodine atoms in a linear geometry. The anion was modelled assuming disorder around a crystallographic inversion centre near the location of the silver atom. The crystal packing is stabilized by a strong intermolecular N—H···N hydrogen bond, which links the cations into zigzag chains with graph-set notation C(16) (Bernstein et al., 1995) running along the face diagonal of the ac plane (Fig. 2 and Table 1). There are only slight variations in the geometrical and conformational parameters between the cation complex of (I) and the unprotonated compound (Brito et al., 2010), (II) so when both compounds are superimposed all related atoms fit within an RMSD of 0.0810 Å, Fig. 3 (Macrae et al., 2008).

For a related structure, see: Brito et al. (2010). For conformation definitions, see: Carlucci et al. (2002). For coordination polymers, see: Brito et al. (2011); Albanez et al. (2011). For graph-set notation, see: Bernstein et al. (1995). For polymeric organic-inorganic materials, see: Blake et al. (1999). For molecular geometry calculations, see: Macrae et al. (2008).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing symmetry-complete molecules. Displacement ellipsoids are drawn at the 50% probability level. Symmetry operator for generating equivalent atoms: (A) (-x, y ,3/2 -z ). The two equally occupied components of the disordered AgI2 anion are drawn will full and open bonds.(symmetry code: A: -x,-y+1,-z+1).
[Figure 2] Fig. 2. Packing diagram of the title compound, with a view approximately along the b axis. N—H···N hydrogen bonds are shown as dashed lines, and H atoms not involved in these interactions have been omitted. For clarity, only one of the disordered components of the AgI2 anions is shown.
[Figure 3] Fig. 3. Superimposed structures for (I) and (II) (color code: green: (I); red: (II))
4-[3-(Isonicotinoyloxy)propoxycarbonyl]pyridinium diiodidoargentate(I) top
Crystal data top
(C15H15N2O4)[AgI2]F(000) = 1216
Mr = 648.96Dx = 2.171 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9489 reflections
a = 14.8788 (7) Åθ = 2.8–27.5°
b = 5.4712 (3) ŵ = 4.14 mm1
c = 24.5008 (11) ÅT = 173 K
β = 95.347 (4)°Plate, red
V = 1985.81 (17) Å30.22 × 0.13 × 0.10 mm
Z = 4
Data collection top
Stoe IPDS II two-circle
diffractometer
2158 independent reflections
Radiation source: fine-focus sealed tube1821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 27.1°, θmin = 2.8°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1818
Tmin = 0.463, Tmax = 0.682k = 66
9000 measured reflectionsl = 2731
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0748P)2 + 3.0902P]
where P = (Fo2 + 2Fc2)/3
2158 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
(C15H15N2O4)[AgI2]V = 1985.81 (17) Å3
Mr = 648.96Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.8788 (7) ŵ = 4.14 mm1
b = 5.4712 (3) ÅT = 173 K
c = 24.5008 (11) Å0.22 × 0.13 × 0.10 mm
β = 95.347 (4)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2158 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
1821 reflections with I > 2σ(I)
Tmin = 0.463, Tmax = 0.682Rint = 0.053
9000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 1.23 e Å3
2158 reflectionsΔρmin = 0.76 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.0035 (2)0.5344 (4)0.50664 (10)0.0480 (4)0.50
I10.0644 (2)0.7876 (5)0.60644 (12)0.0697 (6)0.50
I20.0570 (2)0.2745 (6)0.40629 (12)0.0707 (6)0.50
O10.10823 (19)0.3522 (6)0.79400 (11)0.0484 (6)
O20.1809 (2)0.0578 (5)0.75220 (11)0.0488 (7)
C10.1569 (2)0.1523 (7)0.79293 (15)0.0378 (7)
C20.0819 (3)0.4755 (8)0.74215 (17)0.0467 (9)
H2A0.06790.35390.71260.056*
H2B0.13150.58130.73180.056*
C30.00000.6262 (11)0.75000.0485 (12)
H3A0.01330.73290.71760.058*
C110.1794 (2)0.0487 (7)0.84926 (15)0.0389 (7)
C120.2319 (3)0.1588 (8)0.85514 (16)0.0466 (8)
H120.25210.23690.82390.056*
C130.2549 (4)0.2519 (8)0.90675 (19)0.0539 (10)
H130.29260.39210.91100.065*
N140.2250 (3)0.1481 (8)0.95113 (14)0.0548 (9)
H140.23950.21130.98380.066*0.50
C150.1735 (3)0.0493 (9)0.94599 (18)0.0554 (10)
H150.15310.12000.97800.066*
C160.1487 (3)0.1559 (9)0.89617 (17)0.0496 (9)
H160.11180.29800.89350.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0385 (5)0.0570 (12)0.0501 (11)0.0024 (7)0.0122 (7)0.0237 (7)
I10.0575 (7)0.0881 (15)0.0641 (12)0.0079 (8)0.0091 (7)0.0217 (8)
I20.0617 (7)0.0853 (14)0.0660 (13)0.0011 (7)0.0104 (8)0.0195 (8)
O10.0526 (15)0.0558 (16)0.0368 (13)0.0087 (13)0.0033 (11)0.0008 (12)
O20.0654 (18)0.0475 (15)0.0346 (13)0.0040 (13)0.0098 (12)0.0017 (12)
C10.0356 (16)0.0426 (18)0.0354 (17)0.0036 (14)0.0042 (13)0.0003 (15)
C20.043 (2)0.052 (2)0.045 (2)0.0030 (16)0.0026 (16)0.0053 (17)
C30.041 (3)0.048 (3)0.056 (3)0.0000.003 (2)0.000
C110.0388 (17)0.0441 (18)0.0345 (17)0.0064 (14)0.0069 (13)0.0018 (15)
C120.056 (2)0.046 (2)0.0383 (19)0.0009 (17)0.0077 (16)0.0010 (16)
C130.071 (3)0.047 (2)0.043 (2)0.0023 (18)0.0070 (19)0.0031 (17)
N140.067 (2)0.061 (2)0.0355 (17)0.0051 (19)0.0039 (15)0.0048 (16)
C150.060 (2)0.072 (3)0.0348 (19)0.003 (2)0.0105 (17)0.006 (2)
C160.051 (2)0.061 (2)0.0378 (19)0.0045 (19)0.0076 (15)0.0029 (18)
Geometric parameters (Å, º) top
Ag1—I12.882 (3)C11—C121.378 (6)
Ag1—I22.909 (3)C11—C161.404 (5)
O1—C11.313 (5)C12—C131.376 (6)
O1—C21.459 (5)C12—H120.9500
O2—C11.207 (5)C13—N141.339 (6)
C1—C111.501 (5)C13—H130.9500
C2—C31.498 (5)N14—C151.322 (6)
C2—H2A0.9900N14—H140.8800
C2—H2B0.9900C15—C161.372 (6)
C3—C2i1.498 (5)C15—H150.9500
C3—H3A0.9900C16—H160.9500
I1—Ag1—I2179.44 (19)C16—C11—C1122.2 (4)
C1—O1—C2118.1 (3)C13—C12—C11119.4 (4)
O2—C1—O1125.4 (3)C13—C12—H12120.3
O2—C1—C11122.8 (3)C11—C12—H12120.3
O1—C1—C11111.9 (3)N14—C13—C12121.1 (4)
O1—C2—C3107.4 (3)N14—C13—H13119.5
O1—C2—H2A110.2C12—C13—H13119.5
C3—C2—H2A110.2C15—N14—C13120.2 (4)
O1—C2—H2B110.2C15—N14—H14119.9
C3—C2—H2B110.2C13—N14—H14119.9
H2A—C2—H2B108.5N14—C15—C16122.5 (4)
C2—C3—C2i113.2 (5)N14—C15—H15118.8
C2—C3—H3A109.0C16—C15—H15118.8
C2i—C3—H3A108.8C15—C16—C11118.0 (4)
C12—C11—C16118.9 (4)C15—C16—H16121.0
C12—C11—C1118.9 (3)C11—C16—H16121.0
C2—O1—C1—O21.3 (6)C16—C11—C12—C131.7 (6)
C2—O1—C1—C11179.4 (3)C1—C11—C12—C13178.3 (4)
C1—O1—C2—C3157.3 (4)C11—C12—C13—N141.9 (7)
O1—C2—C3—C2i68.0 (3)C12—C13—N14—C151.0 (7)
O2—C1—C11—C122.1 (6)C13—N14—C15—C160.0 (7)
O1—C1—C11—C12178.6 (3)N14—C15—C16—C110.2 (7)
O2—C1—C11—C16177.9 (4)C12—C11—C16—C150.7 (6)
O1—C1—C11—C161.4 (5)C1—C11—C16—C15179.3 (4)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···N14ii0.881.802.684 (7)176
Symmetry code: (ii) x+1/2, y1/2, z+2.

Experimental details

Crystal data
Chemical formula(C15H15N2O4)[AgI2]
Mr648.96
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)14.8788 (7), 5.4712 (3), 24.5008 (11)
β (°) 95.347 (4)
V3)1985.81 (17)
Z4
Radiation typeMo Kα
µ (mm1)4.14
Crystal size (mm)0.22 × 0.13 × 0.10
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.463, 0.682
No. of measured, independent and
observed [I > 2σ(I)] reflections
9000, 2158, 1821
Rint0.053
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.03
No. of reflections2158
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 0.76

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···N14i0.881.802.684 (7)176.3
Symmetry code: (i) x+1/2, y1/2, z+2.
 

Acknowledgements

Thanks are given to the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a license for the use of the Cambridge Structural Database (CSD). JV thanks the Universidad de Antofagasta for a PhD fellowship.

References

First citationAlbanez, J., Brito, I., Cárdenas, A. & López-Rodríguez, M. (2011). Acta Cryst. E67, m1339–m1340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrito, I., Vallejos, J., Bolte, M., López-Rodríguez, M. & Cárdenas, A. (2010). Acta Cryst. E66, o1015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M., Bolte, M. & Llanos, J. (2011). Inorg. Chem. Commun. 14, 897–901.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 22, 121–129.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds