metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-n-butyl­ammonium tricyanido[N-(2-pyridyl­carbon­yl)pyridine-2-carbox­imidato]ferrate(III) dihydrate

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: xiaopingshen@163.com

(Received 7 November 2011; accepted 19 November 2011; online 30 November 2011)

In the title compound, (C16H36N)[Fe(C12H8N3O2)(CN)3]·2H2O, the tetra-n-butyl­ammonium ion has a tetra­hedral configuration around the N atom, while the FeIII atom of the tricyanido[N-(2-pyridyl­carbon­yl)pyridine-2-carboximidato]iron(III) anion adopts a distorted octa­hedral geometry. O—H⋯O and O—H⋯N hydrogen bonds link the components in the crystal structure.

Related literature

For related structures of the [Fe(bpca)(CN)3] anion (bpca is bis(2-pyridylcarbonyl)amidate) with different cations, see: Lescouëzec et al. (2004[Lescouëzec, R., Vaissermann, J., Toma, L. M., Carrasco, R., Lloret, F. & Julve, M. (2004). Inorg. Chem. 43, 2234-2236.]); Ouahab et al. (2005[Ouahab, L., Setifi, F., Golhen, S., Imakubo, T., Lescouëzec, R., Lloret, F., Julve, M. & Swietlik, R. (2005). C. R. Chim. 8, 1286-1297.]). For related cyanido-bridged complexes with [Fe(bpca)(CN)3] as a building block, see: Lescouëzec et al. (2004[Lescouëzec, R., Vaissermann, J., Toma, L. M., Carrasco, R., Lloret, F. & Julve, M. (2004). Inorg. Chem. 43, 2234-2236.]); Wen et al. (2006[Wen, H. R., Wang, C. F., Zuo, J. L., Song, Y., Zeng, X. R. & You, X. Z. (2006). Inorg. Chem. 45, 582-590.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H36N)[Fe(C12H8N3O2)(CN)3]·2H2O

  • Mr = 638.61

  • Monoclinic, P 21 /n

  • a = 13.142 (2) Å

  • b = 15.663 (3) Å

  • c = 17.097 (3) Å

  • β = 90.48 (3)°

  • V = 3519.0 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 173 K

  • 0.21 × 0.16 × 0.12 mm

Data collection
  • Rigaku Saturn 724 CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Coporation, Tokyo, Japan.]) Tmin = 0.887, Tmax = 0.904

  • 17432 measured reflections

  • 6359 independent reflections

  • 4300 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.135

  • S = 1.05

  • 6359 reflections

  • 392 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1X⋯O1i 0.85 2.12 2.964 (10) 173
O1W—H1Y⋯O2W 0.85 2.25 3.058 (10) 158
O2W—H2X⋯N2ii 0.85 2.04 2.895 (10) 180
O2W—H2Y⋯N3 0.85 2.18 3.029 (11) 174
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

[Fe(bpca)(CN)3]- {bpca = [N-(2-pyridylcarbonyl) pyridine-2-carboximidate}, a low-spin ironIII complex with three cyanide ligands and a tridentate N-donor ligand around ironIII in a mer arrangement, is an interesting building block because it can not only coordinate to transition metal ions to form various polynuclear and one-dimensional structures with fascinating magnetic properties (Lescouëzec et al., 2004; Wen et al., 2006), but also combine with functionalized organic donors such as DIET and DIEDO (DIET = diiodoethylenedithotetrathiavalene and DIEDO = diiodoethylenedioxotetrathiavalene) to form charge transfer salts, which showed interesting electrical conducting and magnetic behaviors (Ouahab et al., 2005). In a previous study, the crystal structure of the mononuclear complex PPh4[FeIII(bpca)(CN)3].H2O (PPh4 = tetraphenylphosphonium) has been reported by Lescouëzec and his coworkers (Lescouëzec et al., 2004). Recently, we have synthesized the compound [(n-C4H9)4N][FeIII(bpca)(CN)3].2H2O, which is an analog of PPh4[FeIII(bpca)(CN)3].H2O with the same anion. Herein, the crystal structure of the obtained complex is presented.

The structure of the title compound is similar to that of PPh4[FeIII(bpca)(CN)3].H2O except with different cations. The asymmetric unit of the title complex consists of a [(n-C4H9)4N]+ cation, a [FeIII(bpca)(CN)3]- anion and two H2O molecules (Fig. 1). As usual, the [(n-C4H9)4N]+ cation has a tetrahedral configuration around the N atom. In the [FeIII(bpca)(CN)3]- anion, the FeIII ion is coordinated by three carbon atoms of cyanide groups and three N-donors from bpca ligand in a mer-arrangement, which results in a distorted octahedral geometry. The Fe1—N(bpca) bond distances vary in the range of 1.735 (8)–1.959 (7) Å, which are close to those (1.893 (2)–1.959 (2) Å) found in the complex of PPh4[FeIII(bpca)(CN)3].H2O (Lescouëzec et al., 2004). The Fe1—C(cyano) bond lengths (1.933 (10)–1.966 (10) Å) are also similar to those [1.937 (3)–1.951 (3) Å] reported for PPh4[FeIII(bpca)(CN)3].H2O.

There are some hydrogen-bonding interactions between water molecules, between water and ligand bpca, and between water and the N atom of cyano groups, which hold two adjacent [FeIII(bpca)(CN)3]- together by H-bonds (Table 1, Fig. 2).

Related literature top

For related structures of the [Fe(bpca)(CN)3]- anion with different cations, see: Lescouëzec et al. (2004); Ouahab et al. (2005). For related cyano-bridged complexes with [Fe(bpca)(CN)3]- as a building block, see: Lescouëzec et al. (2004); Wen et al. (2006).

Experimental top

The complex of Bu4N[FeIII(bpca)(CN)3].H2O was prepared according to a literature method (Wen et al., 2006). Then, 0.1 mmoL (62 mg) of Bu4N[FeIII(bpca)(CN)3].H2O was added to a MeCN/H2O [4/1(V/V), 20 ml] mixture with stirring, The resulting solution was filtered and the filtrate was left to allow slow evaporation in the dark at room temperature. Yellow block-shaped crystals of the title complex suitable for single-crystal X-ray diffraction were obtained after two weeks. Anal. Calc. for C31H48Fe1N7O4: C, 58.30; H, 7.58; N, 15.35; Fe, 8.75%. Found: C, 58.56; H, 7.73; N, 15.01; Fe, 8.98%.

Refinement top

All non-H atoms were refined with anisotropic thermal parameters. All H atoms from the ligand bpca and [(n-C4H9)4N]+ cation were calculated in idealized positions and included in the refinement in a riding mode with Uiso for H assigned as 1.2 or 1.5 times Ueq of the attached atoms. The H atoms bound to oxygen atoms from crystallized water molecules were located from difference maps, initially refined with O—H and H—H restraints (O—H = 0.850 (1) Å, H—H > 1.300 (1) Å), and then as riding, with Uiso(H) = 1.2Ueq(O).

Structure description top

[Fe(bpca)(CN)3]- {bpca = [N-(2-pyridylcarbonyl) pyridine-2-carboximidate}, a low-spin ironIII complex with three cyanide ligands and a tridentate N-donor ligand around ironIII in a mer arrangement, is an interesting building block because it can not only coordinate to transition metal ions to form various polynuclear and one-dimensional structures with fascinating magnetic properties (Lescouëzec et al., 2004; Wen et al., 2006), but also combine with functionalized organic donors such as DIET and DIEDO (DIET = diiodoethylenedithotetrathiavalene and DIEDO = diiodoethylenedioxotetrathiavalene) to form charge transfer salts, which showed interesting electrical conducting and magnetic behaviors (Ouahab et al., 2005). In a previous study, the crystal structure of the mononuclear complex PPh4[FeIII(bpca)(CN)3].H2O (PPh4 = tetraphenylphosphonium) has been reported by Lescouëzec and his coworkers (Lescouëzec et al., 2004). Recently, we have synthesized the compound [(n-C4H9)4N][FeIII(bpca)(CN)3].2H2O, which is an analog of PPh4[FeIII(bpca)(CN)3].H2O with the same anion. Herein, the crystal structure of the obtained complex is presented.

The structure of the title compound is similar to that of PPh4[FeIII(bpca)(CN)3].H2O except with different cations. The asymmetric unit of the title complex consists of a [(n-C4H9)4N]+ cation, a [FeIII(bpca)(CN)3]- anion and two H2O molecules (Fig. 1). As usual, the [(n-C4H9)4N]+ cation has a tetrahedral configuration around the N atom. In the [FeIII(bpca)(CN)3]- anion, the FeIII ion is coordinated by three carbon atoms of cyanide groups and three N-donors from bpca ligand in a mer-arrangement, which results in a distorted octahedral geometry. The Fe1—N(bpca) bond distances vary in the range of 1.735 (8)–1.959 (7) Å, which are close to those (1.893 (2)–1.959 (2) Å) found in the complex of PPh4[FeIII(bpca)(CN)3].H2O (Lescouëzec et al., 2004). The Fe1—C(cyano) bond lengths (1.933 (10)–1.966 (10) Å) are also similar to those [1.937 (3)–1.951 (3) Å] reported for PPh4[FeIII(bpca)(CN)3].H2O.

There are some hydrogen-bonding interactions between water molecules, between water and ligand bpca, and between water and the N atom of cyano groups, which hold two adjacent [FeIII(bpca)(CN)3]- together by H-bonds (Table 1, Fig. 2).

For related structures of the [Fe(bpca)(CN)3]- anion with different cations, see: Lescouëzec et al. (2004); Ouahab et al. (2005). For related cyano-bridged complexes with [Fe(bpca)(CN)3]- as a building block, see: Lescouëzec et al. (2004); Wen et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title complex with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title complex, showing the hydrogen-bonding interactions. The [(n-C4H9)4N]+ cations have been omitted for clarity. Symmetry codes: (i) x + 1/2, -y + 1/2, z - 1/2; (ii) - x + 3/2, y - 1/2, -z + 1/2.
Tetra-n-butylammonium tricyanido[N-(2-pyridylcarbonyl)pyridine-2-carboximidato]ferrate(III) dihydrate top
Crystal data top
(C16H36N)[Fe(C12H8N3O2)(CN)3]·2H2OF(000) = 1364
Mr = 638.61Dx = 1.205 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4928 reflections
a = 13.142 (2) Åθ = 2.1–24.8°
b = 15.663 (3) ŵ = 0.47 mm1
c = 17.097 (3) ÅT = 173 K
β = 90.48 (3)°Block, yellow
V = 3519.0 (11) Å30.21 × 0.16 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn 724 CCD
diffractometer
6359 independent reflections
Radiation source: fine-focus sealed tube4300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
φ and ω scansθmax = 25.3°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1513
Tmin = 0.887, Tmax = 0.904k = 1318
17432 measured reflectionsl = 1220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.034P]
where P = (Fo2 + 2Fc2)/3
6359 reflections(Δ/σ)max < 0.001
392 parametersΔρmax = 0.30 e Å3
6 restraintsΔρmin = 0.31 e Å3
Crystal data top
(C16H36N)[Fe(C12H8N3O2)(CN)3]·2H2OV = 3519.0 (11) Å3
Mr = 638.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.142 (2) ŵ = 0.47 mm1
b = 15.663 (3) ÅT = 173 K
c = 17.097 (3) Å0.21 × 0.16 × 0.12 mm
β = 90.48 (3)°
Data collection top
Rigaku Saturn 724 CCD
diffractometer
6359 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4300 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.904Rint = 0.063
17432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0606 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
6359 reflectionsΔρmin = 0.31 e Å3
392 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7225 (7)0.4358 (6)0.0451 (5)0.041 (2)
C20.7239 (7)0.3334 (6)0.1624 (6)0.039 (2)
C30.6909 (7)0.4886 (6)0.0945 (6)0.043 (2)
C40.9232 (7)0.4724 (6)0.0962 (6)0.046 (2)
H40.88350.51920.11390.055*
C51.0283 (7)0.4770 (6)0.0993 (6)0.050 (2)
H51.06060.52700.11880.059*
C61.0860 (7)0.4090 (7)0.0742 (6)0.051 (3)
H61.15820.41140.07680.061*
C71.0393 (7)0.3399 (6)0.0463 (5)0.044 (2)
H71.07990.29410.02770.053*
C80.9346 (7)0.3315 (6)0.0429 (6)0.043 (2)
C90.8779 (8)0.2534 (6)0.0144 (6)0.050 (2)
C100.6997 (7)0.2185 (6)0.0096 (6)0.046 (2)
C110.5957 (6)0.2496 (5)0.0048 (5)0.0338 (19)
C120.5061 (7)0.2080 (6)0.0132 (6)0.046 (2)
H120.50730.15160.03350.055*
C130.4141 (7)0.2496 (6)0.0013 (6)0.040 (2)
H130.35210.22110.01350.048*
C140.4115 (6)0.3322 (6)0.0283 (5)0.041 (2)
H140.34850.36050.03610.049*
C150.5029 (6)0.3725 (6)0.0463 (6)0.039 (2)
H150.50240.42880.06710.047*
C160.5319 (7)0.4149 (5)0.7455 (5)0.0369 (19)
H16A0.47300.42330.78040.044*
H16B0.59410.41710.77850.044*
C170.5240 (7)0.3253 (6)0.7090 (6)0.043 (2)
H17A0.46160.32030.67650.052*
H17B0.58380.31340.67580.052*
C180.5204 (8)0.2630 (6)0.7782 (6)0.051 (2)
H18A0.57670.27790.81460.061*
H18B0.45600.27300.80640.061*
C190.5275 (8)0.1699 (7)0.7611 (7)0.058 (3)
H19A0.49180.15740.71190.087*
H19B0.49620.13750.80360.087*
H19C0.59920.15350.75650.087*
C200.4472 (7)0.4901 (6)0.6316 (5)0.043 (2)
H20A0.45270.54110.59770.051*
H20B0.45120.43910.59760.051*
C210.3459 (7)0.4911 (6)0.6706 (6)0.050 (3)
H21A0.34210.54050.70670.060*
H21B0.33740.43830.70170.060*
C220.2616 (8)0.4973 (6)0.6096 (7)0.054 (3)
H22A0.26630.44910.57240.065*
H22B0.26790.55130.57990.065*
C230.1598 (7)0.4947 (7)0.6519 (7)0.057 (3)
H23A0.17190.49090.70840.086*
H23B0.12090.44480.63430.086*
H23C0.12130.54680.64010.086*
C240.5404 (7)0.5681 (6)0.7370 (5)0.041 (2)
H24A0.60130.56480.77130.050*
H24B0.47980.57010.77090.050*
C250.5454 (7)0.6510 (6)0.6889 (6)0.047 (2)
H25A0.60000.64660.64960.057*
H25B0.48000.66000.66090.057*
C260.5662 (7)0.7246 (6)0.7426 (6)0.045 (2)
H26A0.63340.71700.76820.054*
H26B0.51390.72660.78390.054*
C270.5649 (8)0.8075 (6)0.6969 (7)0.054 (3)
H27A0.60760.80160.65050.081*
H27B0.59120.85370.72990.081*
H27C0.49490.82070.68070.081*
C280.6286 (7)0.4810 (6)0.6329 (6)0.043 (2)
H28A0.62290.42620.60440.052*
H28B0.62460.52730.59360.052*
C290.7327 (7)0.4846 (6)0.6714 (6)0.045 (2)
H29A0.74750.54340.68960.054*
H29B0.73530.44580.71710.054*
C300.8095 (7)0.4574 (6)0.6112 (6)0.044 (2)
H30A0.79610.39740.59620.053*
H30B0.80090.49310.56380.053*
C310.9170 (7)0.4649 (7)0.6398 (7)0.054 (3)
H31D0.91800.49310.69090.081*
H31E0.95650.49870.60250.081*
H31F0.94690.40780.64460.081*
Fe10.72938 (9)0.37769 (8)0.05494 (8)0.0383 (4)
N10.7165 (6)0.4653 (5)0.1095 (5)0.047 (2)
N20.7152 (5)0.3071 (5)0.2246 (5)0.0452 (19)
N30.6753 (6)0.5540 (6)0.1211 (5)0.051 (2)
N40.8754 (5)0.3996 (5)0.0672 (4)0.0392 (17)
N50.7711 (5)0.2806 (5)0.0184 (4)0.0405 (18)
N60.5944 (5)0.3314 (5)0.0340 (4)0.0371 (17)
N70.5353 (5)0.4892 (4)0.6877 (4)0.0375 (17)
O10.9148 (4)0.1857 (4)0.0004 (4)0.0468 (16)
O20.7099 (5)0.1495 (4)0.0387 (4)0.0491 (17)
O1W0.8661 (5)0.8573 (5)0.0106 (4)0.061 (2)
H1X0.92740.84050.00770.073*
H1Y0.82870.82760.04040.073*
O2W0.7877 (5)0.7228 (4)0.1248 (4)0.0450 (16)
H2X0.78680.74740.16910.054*
H2Y0.75760.67500.12000.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (5)0.047 (5)0.032 (5)0.018 (4)0.000 (4)0.010 (4)
C20.042 (5)0.041 (5)0.035 (5)0.002 (4)0.006 (4)0.008 (4)
C30.051 (5)0.038 (5)0.039 (5)0.002 (4)0.009 (4)0.019 (4)
C40.041 (5)0.049 (5)0.047 (6)0.007 (4)0.001 (4)0.023 (5)
C50.047 (5)0.053 (6)0.048 (6)0.009 (4)0.010 (5)0.020 (5)
C60.038 (5)0.061 (6)0.053 (6)0.010 (4)0.011 (4)0.018 (5)
C70.045 (5)0.054 (5)0.032 (5)0.003 (4)0.005 (4)0.014 (4)
C80.041 (5)0.042 (5)0.046 (6)0.001 (4)0.003 (4)0.022 (4)
C90.062 (6)0.043 (5)0.044 (6)0.015 (4)0.014 (5)0.008 (5)
C100.041 (5)0.039 (5)0.059 (7)0.003 (4)0.008 (4)0.011 (5)
C110.030 (4)0.036 (4)0.036 (5)0.001 (3)0.003 (3)0.009 (4)
C120.047 (5)0.043 (5)0.048 (6)0.009 (4)0.001 (4)0.014 (5)
C130.037 (5)0.042 (5)0.041 (5)0.008 (4)0.007 (4)0.019 (4)
C140.034 (4)0.051 (5)0.037 (5)0.003 (4)0.005 (4)0.014 (4)
C150.035 (4)0.041 (5)0.042 (5)0.003 (3)0.003 (4)0.001 (4)
C160.046 (5)0.038 (5)0.027 (4)0.014 (4)0.004 (4)0.002 (4)
C170.051 (5)0.041 (5)0.038 (6)0.007 (4)0.004 (4)0.018 (4)
C180.055 (6)0.051 (6)0.048 (6)0.002 (4)0.007 (5)0.015 (5)
C190.070 (7)0.052 (6)0.054 (7)0.006 (5)0.029 (5)0.016 (5)
C200.058 (6)0.043 (5)0.028 (5)0.016 (4)0.004 (4)0.011 (4)
C210.058 (6)0.046 (5)0.046 (6)0.021 (4)0.012 (5)0.020 (5)
C220.060 (6)0.045 (5)0.057 (7)0.012 (4)0.008 (5)0.016 (5)
C230.050 (6)0.055 (6)0.067 (8)0.017 (4)0.002 (5)0.032 (6)
C240.053 (5)0.044 (5)0.027 (5)0.001 (4)0.003 (4)0.006 (4)
C250.052 (6)0.048 (5)0.042 (6)0.009 (4)0.006 (4)0.010 (5)
C260.047 (5)0.048 (5)0.039 (5)0.020 (4)0.005 (4)0.014 (4)
C270.065 (6)0.048 (6)0.048 (6)0.006 (4)0.020 (5)0.005 (5)
C280.054 (5)0.038 (5)0.037 (5)0.018 (4)0.012 (4)0.007 (4)
C290.057 (6)0.041 (5)0.038 (5)0.011 (4)0.021 (4)0.010 (4)
C300.045 (5)0.040 (5)0.048 (6)0.012 (4)0.008 (4)0.001 (4)
C310.054 (6)0.054 (6)0.054 (7)0.003 (4)0.012 (5)0.017 (5)
Fe10.0407 (7)0.0414 (8)0.0326 (7)0.0164 (5)0.0082 (5)0.0165 (6)
N10.045 (4)0.047 (4)0.048 (5)0.021 (3)0.000 (4)0.014 (4)
N20.041 (4)0.054 (5)0.041 (5)0.006 (3)0.004 (3)0.011 (4)
N30.055 (5)0.054 (5)0.045 (5)0.015 (4)0.005 (4)0.014 (4)
N40.037 (4)0.049 (4)0.032 (4)0.010 (3)0.003 (3)0.012 (3)
N50.037 (4)0.054 (4)0.031 (4)0.010 (3)0.006 (3)0.023 (4)
N60.038 (4)0.041 (4)0.032 (4)0.002 (3)0.002 (3)0.014 (3)
N70.046 (4)0.041 (4)0.026 (4)0.008 (3)0.006 (3)0.008 (3)
O10.042 (3)0.051 (4)0.047 (4)0.014 (3)0.002 (3)0.012 (3)
O20.052 (4)0.045 (4)0.050 (4)0.017 (3)0.008 (3)0.002 (3)
O1W0.065 (5)0.066 (5)0.052 (5)0.026 (3)0.007 (4)0.020 (4)
O2W0.053 (4)0.044 (3)0.038 (4)0.019 (3)0.012 (3)0.015 (3)
Geometric parameters (Å, º) top
C1—N11.195 (12)C20—N71.497 (11)
C1—Fe11.940 (9)C20—H20A0.9900
C2—N21.146 (11)C20—H20B0.9900
C2—Fe11.966 (10)C21—C221.518 (14)
C3—N31.140 (12)C21—H21A0.9900
C3—Fe11.933 (11)C21—H21B0.9900
C4—C51.383 (13)C22—C231.526 (15)
C4—N41.391 (12)C22—H22A0.9900
C4—H40.9500C22—H22B0.9900
C5—C61.379 (15)C23—H23A0.9800
C5—H50.9500C23—H23B0.9800
C6—C71.331 (14)C23—H23C0.9800
C6—H60.9500C24—N71.497 (11)
C7—C81.383 (12)C24—C251.539 (14)
C7—H70.9500C24—H24A0.9900
C8—N41.386 (12)C24—H24B0.9900
C8—C91.511 (14)C25—C261.499 (12)
C9—O11.192 (11)C25—H25A0.9900
C9—N51.470 (12)C25—H25B0.9900
C10—O21.197 (11)C26—C271.515 (14)
C10—N51.431 (12)C26—H26A0.9900
C10—C111.474 (12)C26—H26B0.9900
C11—N61.375 (11)C27—H27A0.9800
C11—C121.378 (12)C27—H27B0.9800
C12—C131.390 (13)C27—H27C0.9800
C12—H120.9500C28—C291.515 (14)
C13—C141.390 (13)C28—N71.555 (11)
C13—H130.9500C28—H28A0.9900
C14—C151.389 (12)C28—H28B0.9900
C14—H140.9500C29—C301.510 (12)
C15—N61.383 (11)C29—H29A0.9900
C15—H150.9500C29—H29B0.9900
C16—N71.528 (11)C30—C311.495 (14)
C16—C171.540 (13)C30—H30A0.9900
C16—H16A0.9900C30—H30B0.9900
C16—H16B0.9900C31—H31D0.9800
C17—C181.536 (13)C31—H31E0.9800
C17—H17A0.9900C31—H31F0.9800
C17—H17B0.9900Fe1—N51.734 (8)
C18—C191.490 (15)Fe1—N61.946 (7)
C18—H18A0.9900Fe1—N41.959 (7)
C18—H18B0.9900O1W—H1X0.8500
C19—H19A0.9800O1W—H1Y0.8500
C19—H19B0.9800O2W—H2X0.8502
C19—H19C0.9800O2W—H2Y0.8499
C20—C211.494 (14)
N1—C1—Fe1174.6 (8)C22—C23—H23C109.5
N2—C2—Fe1176.4 (8)H23A—C23—H23C109.5
N3—C3—Fe1174.6 (8)H23B—C23—H23C109.5
C5—C4—N4120.3 (9)N7—C24—C25113.4 (7)
C5—C4—H4119.9N7—C24—H24A108.9
N4—C4—H4119.9C25—C24—H24A108.9
C6—C5—C4120.0 (9)N7—C24—H24B108.9
C6—C5—H5120.0C25—C24—H24B108.9
C4—C5—H5120.0H24A—C24—H24B107.7
C7—C6—C5119.1 (9)C26—C25—C24109.3 (8)
C7—C6—H6120.4C26—C25—H25A109.8
C5—C6—H6120.4C24—C25—H25A109.8
C6—C7—C8123.2 (10)C26—C25—H25B109.8
C6—C7—H7118.4C24—C25—H25B109.8
C8—C7—H7118.4H25A—C25—H25B108.3
C7—C8—N4118.4 (8)C25—C26—C27110.0 (8)
C7—C8—C9125.3 (9)C25—C26—H26A109.7
N4—C8—C9116.3 (8)C27—C26—H26A109.7
O1—C9—N5131.2 (9)C25—C26—H26B109.7
O1—C9—C8125.8 (9)C27—C26—H26B109.7
N5—C9—C8102.6 (7)H26A—C26—H26B108.2
O2—C10—N5132.7 (9)C26—C27—H27A109.5
O2—C10—C11118.3 (8)C26—C27—H27B109.5
N5—C10—C11109.0 (8)H27A—C27—H27B109.5
N6—C11—C12120.6 (8)C26—C27—H27C109.5
N6—C11—C10112.5 (7)H27A—C27—H27C109.5
C12—C11—C10126.7 (9)H27B—C27—H27C109.5
C11—C12—C13119.3 (9)C29—C28—N7116.7 (8)
C11—C12—H12120.4C29—C28—H28A108.1
C13—C12—H12120.4N7—C28—H28A108.1
C14—C13—C12120.8 (8)C29—C28—H28B108.1
C14—C13—H13119.6N7—C28—H28B108.1
C12—C13—H13119.6H28A—C28—H28B107.3
C15—C14—C13118.7 (8)C30—C29—C28107.4 (8)
C15—C14—H14120.6C30—C29—H29A110.2
C13—C14—H14120.6C28—C29—H29A110.2
N6—C15—C14120.4 (8)C30—C29—H29B110.2
N6—C15—H15119.8C28—C29—H29B110.2
C14—C15—H15119.8H29A—C29—H29B108.5
N7—C16—C17115.7 (7)C31—C30—C29112.9 (9)
N7—C16—H16A108.4C31—C30—H30A109.0
C17—C16—H16A108.4C29—C30—H30A109.0
N7—C16—H16B108.4C31—C30—H30B109.0
C17—C16—H16B108.4C29—C30—H30B109.0
H16A—C16—H16B107.4H30A—C30—H30B107.8
C18—C17—C16105.6 (8)C30—C31—H31D109.5
C18—C17—H17A110.6C30—C31—H31E109.5
C16—C17—H17A110.6H31D—C31—H31E109.5
C18—C17—H17B110.6C30—C31—H31F109.5
C16—C17—H17B110.6H31D—C31—H31F109.5
H17A—C17—H17B108.8H31E—C31—H31F109.5
C19—C18—C17117.9 (9)N5—Fe1—C3176.6 (4)
C19—C18—H18A107.8N5—Fe1—C196.1 (4)
C17—C18—H18A107.8C3—Fe1—C182.9 (4)
C19—C18—H18B107.8N5—Fe1—N684.1 (3)
C17—C18—H18B107.8C3—Fe1—N699.1 (4)
H18A—C18—H18B107.2C1—Fe1—N688.7 (3)
C18—C19—H19A109.5N5—Fe1—N483.1 (3)
C18—C19—H19B109.5C3—Fe1—N493.6 (4)
H19A—C19—H19B109.5C1—Fe1—N492.9 (3)
C18—C19—H19C109.5N6—Fe1—N4167.2 (3)
H19A—C19—H19C109.5N5—Fe1—C292.4 (4)
H19B—C19—H19C109.5C3—Fe1—C288.8 (4)
C21—C20—N7113.7 (8)C1—Fe1—C2171.2 (4)
C21—C20—H20A108.8N6—Fe1—C290.0 (3)
N7—C20—H20A108.8N4—Fe1—C290.3 (3)
C21—C20—H20B108.8C8—N4—C4119.0 (7)
N7—C20—H20B108.8C8—N4—Fe1112.6 (6)
H20A—C20—H20B107.7C4—N4—Fe1128.4 (6)
C20—C21—C22110.0 (9)C10—N5—C9114.2 (8)
C20—C21—H21A109.7C10—N5—Fe1120.6 (6)
C22—C21—H21A109.7C9—N5—Fe1125.2 (6)
C20—C21—H21B109.7C11—N6—C15120.1 (7)
C22—C21—H21B109.7C11—N6—Fe1113.6 (5)
H21A—C21—H21B108.2C15—N6—Fe1126.3 (6)
C21—C22—C23108.1 (9)C24—N7—C20112.6 (6)
C21—C22—H22A110.1C24—N7—C16105.4 (7)
C23—C22—H22A110.1C20—N7—C16113.3 (7)
C21—C22—H22B110.1C24—N7—C28112.0 (7)
C23—C22—H22B110.1C20—N7—C28103.0 (7)
H22A—C22—H22B108.4C16—N7—C28110.7 (6)
C22—C23—H23A109.5H1X—O1W—H1Y114.6
C22—C23—H23B109.5H2X—O2W—H2Y118.5
H23A—C23—H23B109.5
N4—C4—C5—C60.5 (14)C11—C10—N5—C9174.3 (8)
C4—C5—C6—C70.8 (15)O2—C10—N5—Fe1177.8 (10)
C5—C6—C7—C81.8 (15)C11—C10—N5—Fe14.6 (10)
C6—C7—C8—N42.3 (14)O1—C9—N5—C109.8 (15)
C6—C7—C8—C9177.7 (9)C8—C9—N5—C10177.0 (7)
C7—C8—C9—O19.8 (17)O1—C9—N5—Fe1169.0 (9)
N4—C8—C9—O1170.2 (10)C8—C9—N5—Fe14.1 (10)
C7—C8—C9—N5176.5 (9)C1—Fe1—N5—C1086.2 (7)
N4—C8—C9—N53.4 (11)N6—Fe1—N5—C101.8 (7)
O2—C10—C11—N6176.4 (9)N4—Fe1—N5—C10178.4 (7)
N5—C10—C11—N65.5 (11)C2—Fe1—N5—C1091.6 (7)
O2—C10—C11—C121.4 (15)C1—Fe1—N5—C995.0 (8)
N5—C10—C11—C12179.5 (8)N6—Fe1—N5—C9176.9 (8)
N6—C11—C12—C130.2 (13)N4—Fe1—N5—C92.8 (7)
C10—C11—C12—C13174.8 (9)C2—Fe1—N5—C987.2 (8)
C11—C12—C13—C140.1 (14)C12—C11—N6—C150.5 (12)
C12—C13—C14—C150.3 (13)C10—C11—N6—C15175.9 (8)
C13—C14—C15—N60.7 (13)C12—C11—N6—Fe1179.8 (7)
N7—C16—C17—C18179.2 (7)C10—C11—N6—Fe14.5 (9)
C16—C17—C18—C19171.5 (8)C14—C15—N6—C110.8 (13)
N7—C20—C21—C22176.7 (7)C14—C15—N6—Fe1179.6 (6)
C20—C21—C22—C23177.9 (8)N5—Fe1—N6—C111.7 (6)
N7—C24—C25—C26171.5 (7)C3—Fe1—N6—C11179.5 (6)
C24—C25—C26—C27176.6 (8)C1—Fe1—N6—C1197.9 (6)
N7—C28—C29—C30168.5 (7)N4—Fe1—N6—C110.5 (17)
C28—C29—C30—C31175.3 (7)C2—Fe1—N6—C1190.7 (6)
C7—C8—N4—C41.9 (12)N5—Fe1—N6—C15178.7 (8)
C9—C8—N4—C4178.2 (8)C3—Fe1—N6—C150.2 (8)
C7—C8—N4—Fe1178.1 (7)C1—Fe1—N6—C1582.4 (8)
C9—C8—N4—Fe11.9 (10)N4—Fe1—N6—C15179.9 (12)
C5—C4—N4—C81.1 (13)C2—Fe1—N6—C1588.9 (7)
C5—C4—N4—Fe1178.9 (7)C25—C24—N7—C2056.5 (10)
N5—Fe1—N4—C80.3 (6)C25—C24—N7—C16179.5 (7)
C3—Fe1—N4—C8179.2 (6)C25—C24—N7—C2859.0 (9)
C1—Fe1—N4—C896.1 (7)C21—C20—N7—C2463.4 (10)
N6—Fe1—N4—C80.8 (17)C21—C20—N7—C1656.0 (9)
C2—Fe1—N4—C892.0 (6)C21—C20—N7—C28175.7 (7)
N5—Fe1—N4—C4179.6 (8)C17—C16—N7—C24178.7 (7)
C3—Fe1—N4—C40.7 (8)C17—C16—N7—C2055.2 (9)
C1—Fe1—N4—C483.8 (8)C17—C16—N7—C2859.9 (9)
N6—Fe1—N4—C4179.2 (12)C29—C28—N7—C2454.5 (10)
C2—Fe1—N4—C488.0 (8)C29—C28—N7—C20175.7 (7)
O2—C10—N5—C93.4 (15)C29—C28—N7—C1662.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1X···O1i0.852.122.964 (10)173
O1W—H1Y···O2W0.852.253.058 (10)158
O2W—H2X···N2ii0.852.042.895 (10)180
O2W—H2Y···N30.852.183.029 (11)174
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C16H36N)[Fe(C12H8N3O2)(CN)3]·2H2O
Mr638.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)13.142 (2), 15.663 (3), 17.097 (3)
β (°) 90.48 (3)
V3)3519.0 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.21 × 0.16 × 0.12
Data collection
DiffractometerRigaku Saturn 724 CCD
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.887, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
17432, 6359, 4300
Rint0.063
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.135, 1.05
No. of reflections6359
No. of parameters392
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.31

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1X···O1i0.852.122.964 (10)173
O1W—H1Y···O2W0.852.253.058 (10)158
O2W—H2X···N2ii0.852.042.895 (10)180
O2W—H2Y···N30.852.183.029 (11)174
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Jiangsu Province (No. BK2009196) for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Coporation, Tokyo, Japan.  Google Scholar
First citationLescouëzec, R., Vaissermann, J., Toma, L. M., Carrasco, R., Lloret, F. & Julve, M. (2004). Inorg. Chem. 43, 2234–2236.  Web of Science PubMed Google Scholar
First citationOuahab, L., Setifi, F., Golhen, S., Imakubo, T., Lescouëzec, R., Lloret, F., Julve, M. & Swietlik, R. (2005). C. R. Chim. 8, 1286–1297.  CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, H. R., Wang, C. F., Zuo, J. L., Song, Y., Zeng, X. R. & You, X. Z. (2006). Inorg. Chem. 45, 582–590.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds