metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Anhydrous penta­guanidinium di­hydrogen nona­vanado(IV)platinate(IV)

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, bCenter for Nanobio Chemical Materials (WCU), Department of Chemistry & Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Republic of Korea, and cDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 7 November 2011; accepted 18 November 2011; online 23 November 2011)

The title compound, (CH6N3)5[H2PtV9O28], containing the nona­vanadoplatinate(IV) polyanion, was obtained by hydro­thermal reaction. The polyanion has approximate C2v symmetry. The two Pt-bound μ2-O atoms are protonated in the polyanion. The heteropolyanions form inversion-generated dimers, {[H2PtV9O28]2}10−, held together by each of the two μ2-O—H⋯μ2-O and μ2-O—H⋯μ3-O hydrogen bonds. The guanidinium cations are hydrogen bonded with the μ2- and terminal O atoms of the polyanion, connecting the polyanions into a three-dimensional network.

Related literature

For a structural study of a deca­vanadate, see: Lee (2006[Lee, U. (2006). Acta Cryst. E62, i176-i178.]). For the structure of the sodium salt of the title compound, see: Lee et al. (2008[Lee, U., Joo, H.-J., Park, K.-M., Mal, S. S., Kortz, U., Keita, B. & Nadjo, L. (2008). Angew. Chem. Int. Ed. 47, 793-796.]). For a related heteropolyoxidometalate, TBA4[HTeV9O28]·2CH3CN (TBA = tetra-n-butylammonium), see: Konaka et al. (2011[Konaka, S., Ozawa, Y., Shonaka, T., Watanabe, S. & Yagasaki, A. (2011). Inorg. Chem. 50, 6183-6188.]).

[Scheme 1]

Experimental

Crystal data
  • (CH6N3)5[H2PtV9O28]

  • Mr = 1404.01

  • Monoclinic, P 21 /n

  • a = 12.8861 (3) Å

  • b = 18.5137 (5) Å

  • c = 15.2299 (4) Å

  • β = 91.143 (1)°

  • V = 3632.67 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.15 mm−1

  • T = 147 K

  • 0.09 × 0.06 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.187, Tmax = 0.305

  • 35027 measured reflections

  • 9026 independent reflections

  • 7369 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.04

  • 9026 reflections

  • 531 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.02 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O19i 0.73 (6) 2.06 (6) 2.718 (4) 152 (7)
O8—H8⋯O4i 0.77 (7) 1.87 (8) 2.626 (4) 165 (8)
N1—H1A⋯O26ii 0.88 2.11 2.916 (5) 153
N1—H1B⋯O17iii 0.88 2.18 2.970 (5) 149
N2—H2A⋯O25ii 0.88 1.99 2.863 (5) 173
N2—H2B⋯O12 0.88 2.39 3.105 (5) 138
N3—H3A⋯O22iii 0.88 2.19 2.973 (5) 148
N3—H3B⋯O21 0.88 2.23 3.018 (5) 149
N4—H4A⋯O15iii 0.88 2.44 3.224 (5) 149
N4—H4B⋯O28iv 0.88 2.30 2.985 (5) 134
N5—H5A⋯O14 0.88 2.06 2.932 (5) 173
N5—H5B⋯O28iv 0.88 2.10 2.830 (5) 140
N6—H6A⋯O12 0.88 2.07 2.899 (5) 156
N6—H6B⋯O9iii 0.88 1.86 2.737 (5) 171
N7—H7A⋯O21ii 0.88 2.35 3.084 (5) 142
N7—H7B⋯O26v 0.88 2.36 3.179 (5) 154
N8—H8A⋯O20 0.88 2.12 2.942 (5) 154
N8—H8B⋯O13ii 0.88 2.04 2.890 (4) 161
N9—H9A⋯O11 0.88 2.20 3.025 (5) 157
N9—H9B⋯O15v 0.88 2.19 2.936 (5) 142
N10—H10A⋯O3 0.88 2.07 2.892 (5) 156
N10—H10B⋯N7iv 0.88 2.62 3.349 (6) 141
N11—H11A⋯O23vi 0.88 2.40 3.171 (5) 147
N11—H11B⋯O23vii 0.88 2.06 2.923 (6) 168
N12—H12A⋯O26 0.88 2.46 3.159 (5) 137
N12—H12B⋯O18vii 0.88 2.24 3.063 (5) 157
N13—H13A⋯O6 0.88 2.42 3.216 (5) 150
N13—H13B⋯O16viii 0.88 2.14 2.892 (5) 143
N14—H14A⋯O10 0.88 2.02 2.876 (5) 165
N14—H14B⋯O14v 0.88 2.17 2.947 (5) 147
N15—H15A⋯O25v 0.88 2.17 3.034 (5) 169
N15—H15B⋯O22viii 0.88 2.05 2.911 (5) 167
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z; (vi) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Two heteropolyanions that belong to the decavanadate structure system have recently been reported: the tellurium derivative [HTeV9O28]4-, described by Konaka et al. (2011), and the platinum heteropolyoxovanadate, [H2PtV9O28]5-, reported by our group in the form of its sodium salt (Lee et al., 2008). The guanidinium ion is a useful precipitating reagent to enforce separation of polyoxometalates (POMs) species because of the insolubility of its salts in aqueous solution. Since all replaceable counter-cations in POMs can be completely exchanged by guanidinium ions, it is possible to obtain stable POMs by precipitation from aqueous solution with guanidinium salts. We herein report the structure of the title compound as its anhydrous guanidinium salt, obtained by cation exchange from its hydrated sodium salt Na5[H2PtV9O28].21H2O (Lee et al., 2008).

Fig. 1 shows the structure of the title compound. The geometry of the anion agrees well with that in Na5[H2PtV9O28].21H2O (Lee et al., 2008). The nine [VO6] octahedra in the polyanion are distorted {ranges of V—O (Å): 1.598 (3)–2.395 (2)}, while the [PtO6] octahedron is relatively regular {ranges of Pt—O (Å): 1.981 (2)–2.012 (2)}. The two platinum bound µ2-O atoms are protonated in the polyanion. These protons are particularly important in the solid state as they lead to the formation of a dimeric assembly, {[H2PtV9O28]2}10-, through each of the two µ2-O7–H···µ2-O19 and µ2-O8–H···µ3-O4 interanion hydrogen bonds (Fig. 2 & Table 1). The guanidinium cations are hydrogen bonded with µ2 and µ3-O atoms of the polyanion, with the exceptions of µ3-O5, µ2-O7, µ2-O8, µ2-O19, terminal-O24 and terminal-O27 atoms. The polyanion dimers are connected into a three dimensional network by these hydrogen bonds (Fig. 3 & Table 1).

Related literature top

For a structural study of decavanadate, see: Lee (2006). For the structure of the sodium salt of title compound, see: Lee et al. (2008). For the related heteropolyoxometalate TBA4[HTeV9O28].2CH3CN, see: Konaka et al. (2011).

Experimental top

A pale-brown powder of the title compound was obtained by addition a small excess stoichiometric quantity of guanidinium chloride CH6N3Cl to a solution of pentasodium nonavanadoplatinate hydrate Na5[H2PtV9O28].21H2O (Lee et al., 2008). Single crystals were obtained by recrystallization of the crude powder from a boiling aqueous solution.

Refinement top

All H atoms of guanidinium ions were positioned geometrically and refined using a riding model, with N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N). The H7 & H8 atoms bound to µ2-O7 and µ2-O8, respectively, on the polyanion were found in a difference Fourier map and were refined freely. The unusually short distance of µ2-O17···terminal-O21i {2.869 (4) Å, symmetry code as in Fig. 2.} is caused by the neighboring hydrogen bonds between the polyanions of the dimer as shown in Fig. 2. The highest peak in the difference map is 0.85 Å from Pt1 and the largest hole is 0.64 Å from Pt1.

Structure description top

Two heteropolyanions that belong to the decavanadate structure system have recently been reported: the tellurium derivative [HTeV9O28]4-, described by Konaka et al. (2011), and the platinum heteropolyoxovanadate, [H2PtV9O28]5-, reported by our group in the form of its sodium salt (Lee et al., 2008). The guanidinium ion is a useful precipitating reagent to enforce separation of polyoxometalates (POMs) species because of the insolubility of its salts in aqueous solution. Since all replaceable counter-cations in POMs can be completely exchanged by guanidinium ions, it is possible to obtain stable POMs by precipitation from aqueous solution with guanidinium salts. We herein report the structure of the title compound as its anhydrous guanidinium salt, obtained by cation exchange from its hydrated sodium salt Na5[H2PtV9O28].21H2O (Lee et al., 2008).

Fig. 1 shows the structure of the title compound. The geometry of the anion agrees well with that in Na5[H2PtV9O28].21H2O (Lee et al., 2008). The nine [VO6] octahedra in the polyanion are distorted {ranges of V—O (Å): 1.598 (3)–2.395 (2)}, while the [PtO6] octahedron is relatively regular {ranges of Pt—O (Å): 1.981 (2)–2.012 (2)}. The two platinum bound µ2-O atoms are protonated in the polyanion. These protons are particularly important in the solid state as they lead to the formation of a dimeric assembly, {[H2PtV9O28]2}10-, through each of the two µ2-O7–H···µ2-O19 and µ2-O8–H···µ3-O4 interanion hydrogen bonds (Fig. 2 & Table 1). The guanidinium cations are hydrogen bonded with µ2 and µ3-O atoms of the polyanion, with the exceptions of µ3-O5, µ2-O7, µ2-O8, µ2-O19, terminal-O24 and terminal-O27 atoms. The polyanion dimers are connected into a three dimensional network by these hydrogen bonds (Fig. 3 & Table 1).

For a structural study of decavanadate, see: Lee (2006). For the structure of the sodium salt of title compound, see: Lee et al. (2008). For the related heteropolyoxometalate TBA4[HTeV9O28].2CH3CN, see: Konaka et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Polyhedral view of the inter-anion hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry code: (i) -x+1, -y+1, -z+1.]
[Figure 3] Fig. 3. Partial N–H···O hydrogen bond interactions (dotted lines) of guanidinium cations with the O atoms of polyanions.
pentaguanidinium dihydrogen nonavanado(IV)platinate(IV) top
Crystal data top
(CH6N3)5[H2PtV9O28]F(000) = 2704
Mr = 1404.01Dx = 2.567 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9860 reflections
a = 12.8861 (3) Åθ = 2.3–28.3°
b = 18.5137 (5) ŵ = 6.15 mm1
c = 15.2299 (4) ÅT = 147 K
β = 91.143 (1)°Tetragonal prism, dark brown
V = 3632.67 (16) Å30.09 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
9026 independent reflections
Radiation source: rotating anode7369 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.029
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.7°
φ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2420
Tmin = 0.187, Tmax = 0.305l = 2019
35027 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0349P)2 + 5.3131P]
where P = (Fo2 + 2Fc2)/3
9026 reflections(Δ/σ)max = 0.002
531 parametersΔρmax = 2.02 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
(CH6N3)5[H2PtV9O28]V = 3632.67 (16) Å3
Mr = 1404.01Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.8861 (3) ŵ = 6.15 mm1
b = 18.5137 (5) ÅT = 147 K
c = 15.2299 (4) Å0.09 × 0.06 × 0.05 mm
β = 91.143 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
9026 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7369 reflections with I > 2σ(I)
Tmin = 0.187, Tmax = 0.305Rint = 0.029
35027 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 2.02 e Å3
9026 reflectionsΔρmin = 0.75 e Å3
531 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.542736 (11)0.577998 (8)0.369297 (9)0.01566 (5)
V10.30209 (5)0.57189 (4)0.38280 (4)0.01817 (14)
V20.78344 (5)0.58912 (4)0.36257 (4)0.02039 (14)
V30.77187 (5)0.53187 (4)0.16922 (4)0.02286 (15)
V40.53009 (5)0.52416 (3)0.17333 (4)0.01602 (13)
V50.29080 (5)0.51648 (4)0.18896 (4)0.02100 (14)
V60.40522 (5)0.66390 (4)0.23543 (4)0.01871 (14)
V70.64474 (5)0.67109 (4)0.22351 (4)0.01951 (14)
V80.66979 (5)0.44125 (3)0.31842 (4)0.01746 (14)
V90.42847 (5)0.43285 (3)0.32721 (4)0.01673 (13)
O10.43349 (19)0.54929 (14)0.28217 (15)0.0164 (5)
O20.63984 (19)0.55714 (13)0.27333 (16)0.0162 (5)
O30.53101 (19)0.67636 (13)0.31501 (16)0.0176 (5)
O40.55291 (18)0.47198 (13)0.39721 (16)0.0148 (5)
O50.52143 (19)0.62722 (14)0.16275 (15)0.0179 (5)
O60.54281 (19)0.43699 (13)0.23975 (16)0.0170 (5)
O70.6651 (2)0.60548 (16)0.44559 (18)0.0190 (6)
H70.683 (5)0.582 (3)0.481 (4)0.06 (2)*
O80.4300 (2)0.59913 (15)0.45402 (18)0.0175 (6)
H80.435 (6)0.572 (4)0.492 (5)0.10 (3)*
O90.8507 (2)0.56308 (15)0.26057 (18)0.0238 (6)
O100.6318 (2)0.51241 (14)0.10732 (16)0.0203 (6)
O110.4210 (2)0.50265 (14)0.11669 (16)0.0208 (6)
O120.22238 (19)0.54062 (14)0.28785 (17)0.0200 (6)
O130.32205 (19)0.66140 (14)0.33012 (16)0.0191 (6)
O140.3137 (2)0.61527 (15)0.16496 (17)0.0217 (6)
O150.7300 (2)0.63003 (15)0.14740 (17)0.0228 (6)
O160.7424 (2)0.67589 (14)0.31362 (17)0.0214 (6)
O170.76362 (19)0.48980 (14)0.38500 (16)0.0196 (6)
O180.7499 (2)0.44365 (15)0.21814 (17)0.0228 (6)
O190.34106 (19)0.47514 (14)0.40544 (16)0.0185 (5)
O200.3327 (2)0.42802 (14)0.23860 (17)0.0206 (6)
O210.2156 (2)0.58921 (15)0.45354 (18)0.0246 (6)
O220.8783 (2)0.61015 (16)0.42779 (18)0.0266 (6)
O230.8536 (2)0.51757 (17)0.09315 (18)0.0314 (7)
O240.2018 (2)0.49432 (17)0.12069 (19)0.0316 (7)
O250.3944 (2)0.74581 (15)0.20034 (17)0.0264 (6)
O260.6351 (2)0.75336 (15)0.18928 (18)0.0262 (6)
O270.6792 (2)0.35837 (15)0.34966 (18)0.0246 (6)
O280.4378 (2)0.35126 (15)0.36174 (18)0.0244 (6)
C10.0305 (3)0.4275 (2)0.3703 (3)0.0292 (10)
N10.0557 (3)0.3905 (2)0.3781 (3)0.0364 (9)
H1A0.05810.34490.36200.044*
H1B0.11120.41130.39940.044*
N20.1144 (3)0.3970 (2)0.3384 (3)0.0491 (12)
H2A0.11290.35140.32210.059*
H2B0.17180.42230.33350.059*
N30.0348 (3)0.4953 (2)0.3973 (3)0.0426 (10)
H3A0.02010.51550.42040.051*
H3B0.09250.52020.39220.051*
C20.0401 (3)0.6765 (2)0.1762 (3)0.0333 (10)
N40.0499 (3)0.7121 (2)0.1651 (3)0.0395 (10)
H4A0.10810.69280.18320.047*
H4B0.05070.75480.13970.047*
N50.1275 (3)0.7054 (2)0.1472 (3)0.0427 (11)
H5A0.18650.68190.15340.051*
H5B0.12620.74820.12190.051*
N60.0416 (3)0.6132 (2)0.2138 (3)0.0480 (12)
H6A0.10050.58960.22010.058*
H6B0.01640.59420.23290.058*
C30.3111 (4)0.3016 (2)0.0616 (3)0.0318 (10)
N70.2769 (3)0.2520 (2)0.0042 (2)0.0444 (11)
H7A0.24820.21200.02310.053*
H7B0.28320.25950.05260.053*
N80.3014 (3)0.2900 (2)0.1461 (2)0.0404 (10)
H8A0.32330.32250.18430.048*
H8B0.27290.24970.16450.048*
N90.3535 (4)0.3616 (2)0.0331 (2)0.0456 (11)
H9A0.37570.39450.07070.055*
H9B0.35970.36890.02370.055*
C40.5247 (4)0.8411 (3)0.4233 (3)0.0425 (12)
N100.4694 (4)0.7839 (2)0.4415 (3)0.0556 (13)
H10A0.48260.74240.41580.067*
H10B0.41900.78690.47950.067*
N110.5065 (4)0.9033 (3)0.4640 (3)0.0655 (16)
H11A0.45730.90600.50310.079*
H11B0.54370.94180.45180.079*
N120.6001 (4)0.8374 (3)0.3668 (3)0.0661 (16)
H12A0.61390.79610.34080.079*
H12B0.63680.87610.35500.079*
C50.6277 (5)0.3113 (3)0.0507 (3)0.0429 (13)
N130.6377 (4)0.3018 (2)0.1358 (3)0.0543 (13)
H13A0.63690.33920.17140.065*
H13B0.64520.25790.15730.065*
N140.6164 (4)0.3759 (2)0.0178 (2)0.0523 (13)
H14A0.61540.41380.05280.063*
H14B0.60970.38170.03940.063*
N150.6325 (5)0.2548 (2)0.0020 (3)0.085 (2)
H15A0.62810.26080.05930.102*
H15B0.64010.21120.02020.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01953 (8)0.01330 (8)0.01412 (7)0.00077 (6)0.00017 (5)0.00008 (6)
V10.0179 (3)0.0203 (4)0.0163 (3)0.0029 (3)0.0006 (2)0.0005 (3)
V20.0192 (3)0.0218 (4)0.0201 (3)0.0011 (3)0.0010 (3)0.0034 (3)
V30.0228 (3)0.0259 (4)0.0200 (3)0.0002 (3)0.0048 (3)0.0037 (3)
V40.0198 (3)0.0153 (3)0.0130 (3)0.0006 (2)0.0003 (2)0.0014 (2)
V50.0207 (3)0.0236 (4)0.0186 (3)0.0002 (3)0.0039 (3)0.0023 (3)
V60.0240 (3)0.0144 (3)0.0177 (3)0.0029 (3)0.0027 (3)0.0025 (3)
V70.0247 (3)0.0151 (3)0.0188 (3)0.0024 (3)0.0025 (3)0.0018 (3)
V80.0191 (3)0.0148 (3)0.0185 (3)0.0024 (2)0.0001 (2)0.0004 (2)
V90.0192 (3)0.0124 (3)0.0186 (3)0.0006 (2)0.0003 (2)0.0004 (2)
O10.0196 (13)0.0152 (13)0.0142 (12)0.0014 (10)0.0025 (10)0.0002 (10)
O20.0193 (13)0.0152 (13)0.0143 (12)0.0001 (10)0.0028 (10)0.0004 (10)
O30.0234 (13)0.0134 (14)0.0158 (12)0.0008 (10)0.0003 (10)0.0006 (10)
O40.0167 (12)0.0118 (13)0.0158 (12)0.0018 (10)0.0018 (10)0.0007 (10)
O50.0251 (14)0.0149 (14)0.0136 (12)0.0003 (11)0.0013 (10)0.0029 (10)
O60.0207 (13)0.0150 (14)0.0153 (12)0.0005 (10)0.0024 (10)0.0033 (10)
O70.0231 (14)0.0194 (15)0.0142 (13)0.0022 (11)0.0032 (11)0.0002 (12)
O80.0196 (13)0.0180 (14)0.0149 (13)0.0005 (11)0.0009 (10)0.0001 (11)
O90.0218 (14)0.0248 (16)0.0249 (14)0.0007 (11)0.0031 (11)0.0016 (12)
O100.0272 (14)0.0189 (14)0.0147 (12)0.0017 (11)0.0031 (11)0.0012 (11)
O110.0281 (14)0.0189 (15)0.0154 (13)0.0003 (11)0.0021 (11)0.0006 (11)
O120.0194 (13)0.0189 (15)0.0216 (13)0.0015 (11)0.0032 (11)0.0003 (11)
O130.0225 (13)0.0164 (14)0.0182 (13)0.0054 (11)0.0022 (10)0.0001 (11)
O140.0241 (14)0.0205 (15)0.0201 (13)0.0022 (11)0.0046 (11)0.0010 (11)
O150.0280 (15)0.0220 (15)0.0186 (13)0.0042 (12)0.0044 (11)0.0002 (11)
O160.0230 (14)0.0189 (15)0.0223 (14)0.0037 (11)0.0008 (11)0.0016 (11)
O170.0194 (13)0.0204 (15)0.0189 (13)0.0016 (11)0.0013 (10)0.0019 (11)
O180.0237 (14)0.0227 (15)0.0221 (14)0.0035 (11)0.0022 (11)0.0043 (12)
O190.0202 (13)0.0168 (14)0.0183 (13)0.0008 (10)0.0002 (10)0.0017 (11)
O200.0227 (14)0.0187 (15)0.0204 (13)0.0014 (11)0.0029 (11)0.0007 (11)
O210.0217 (14)0.0289 (17)0.0235 (14)0.0026 (12)0.0033 (11)0.0014 (12)
O220.0227 (14)0.0270 (16)0.0298 (15)0.0001 (12)0.0026 (12)0.0061 (13)
O230.0305 (16)0.0401 (19)0.0238 (15)0.0005 (14)0.0083 (12)0.0053 (14)
O240.0302 (16)0.0362 (19)0.0279 (15)0.0004 (14)0.0098 (13)0.0047 (14)
O250.0356 (16)0.0198 (15)0.0235 (14)0.0047 (12)0.0037 (12)0.0046 (12)
O260.0352 (16)0.0154 (15)0.0280 (15)0.0031 (12)0.0031 (12)0.0029 (12)
O270.0257 (14)0.0180 (15)0.0299 (15)0.0038 (11)0.0010 (12)0.0001 (12)
O280.0285 (15)0.0156 (15)0.0293 (15)0.0004 (11)0.0015 (12)0.0022 (12)
C10.026 (2)0.022 (2)0.039 (2)0.0003 (18)0.0003 (18)0.0003 (19)
N10.0246 (19)0.027 (2)0.057 (3)0.0022 (16)0.0011 (17)0.0084 (19)
N20.039 (2)0.021 (2)0.089 (4)0.0033 (18)0.025 (2)0.006 (2)
N30.027 (2)0.023 (2)0.077 (3)0.0018 (16)0.001 (2)0.008 (2)
C20.023 (2)0.028 (3)0.050 (3)0.0027 (18)0.001 (2)0.002 (2)
N40.0244 (19)0.029 (2)0.065 (3)0.0039 (16)0.0051 (18)0.008 (2)
N50.0214 (19)0.030 (2)0.077 (3)0.0020 (16)0.0051 (19)0.008 (2)
N60.0207 (19)0.043 (3)0.080 (3)0.0048 (18)0.005 (2)0.025 (2)
C30.049 (3)0.025 (2)0.021 (2)0.006 (2)0.0003 (19)0.0023 (18)
N70.084 (3)0.029 (2)0.0205 (18)0.022 (2)0.0038 (19)0.0022 (16)
N80.067 (3)0.034 (2)0.0209 (18)0.024 (2)0.0022 (18)0.0029 (17)
N90.088 (3)0.025 (2)0.024 (2)0.019 (2)0.005 (2)0.0013 (17)
C40.059 (3)0.031 (3)0.038 (3)0.001 (2)0.001 (2)0.008 (2)
N100.065 (3)0.040 (3)0.062 (3)0.014 (2)0.014 (2)0.019 (2)
N110.081 (4)0.036 (3)0.082 (4)0.010 (2)0.040 (3)0.021 (3)
N120.094 (4)0.043 (3)0.064 (3)0.012 (3)0.039 (3)0.024 (2)
C50.083 (4)0.024 (3)0.022 (2)0.002 (2)0.001 (2)0.0014 (19)
N130.111 (4)0.027 (2)0.024 (2)0.011 (2)0.010 (2)0.0010 (18)
N140.120 (4)0.019 (2)0.0175 (19)0.011 (2)0.003 (2)0.0009 (16)
N150.211 (7)0.017 (2)0.027 (2)0.014 (3)0.008 (3)0.0019 (19)
Geometric parameters (Å, º) top
Pt1—O21.981 (2)V7—O161.846 (3)
Pt1—O11.988 (2)V7—O51.995 (3)
Pt1—O82.001 (3)V7—O32.045 (2)
Pt1—O32.004 (2)V7—O22.243 (3)
Pt1—O72.005 (3)V8—O271.610 (3)
Pt1—O42.012 (2)V8—O171.803 (3)
Pt1—V63.1116 (6)V8—O181.861 (3)
Pt1—V23.1122 (7)V8—O62.010 (3)
Pt1—V13.1139 (6)V8—O42.026 (2)
Pt1—V83.1212 (6)V8—O22.283 (3)
Pt1—V73.1216 (6)V8—V93.1192 (9)
Pt1—V93.1245 (6)V9—O281.603 (3)
V1—O211.598 (3)V9—O201.813 (3)
V1—O121.850 (3)V9—O191.832 (2)
V1—O131.861 (3)V9—O62.007 (2)
V1—O191.890 (3)V9—O42.041 (3)
V1—O82.019 (3)V9—O12.263 (3)
V1—O12.344 (2)O7—H70.73 (6)
V1—V53.1259 (9)O8—H80.77 (7)
V1—V63.1343 (9)O17—O21i2.869 (4)
V1—V93.1701 (9)C1—N11.313 (5)
V2—O221.608 (3)C1—N21.321 (5)
V2—O161.844 (3)C1—N31.321 (6)
V2—O91.857 (3)N1—H1A0.8800
V2—O171.888 (3)N1—H1B0.8800
V2—O72.024 (3)N2—H2A0.8800
V2—O22.350 (3)N2—H2B0.8800
V2—V33.1303 (9)N3—H3A0.8800
V2—V73.1355 (10)N3—H3B0.8800
V2—V83.1705 (9)C2—N61.303 (6)
V3—O231.603 (3)C2—N51.330 (5)
V3—O91.801 (3)C2—N41.342 (5)
V3—O181.820 (3)N4—H4A0.8800
V3—O151.923 (3)N4—H4B0.8800
V3—O102.051 (3)N5—H5A0.8800
V3—O22.395 (2)N5—H5B0.8800
V3—V43.1207 (9)N6—H6A0.8800
V3—V83.1349 (9)N6—H6B0.8800
V3—V73.1724 (9)C3—N81.313 (5)
V4—O101.682 (2)C3—N91.316 (5)
V4—O111.683 (3)C3—N71.337 (5)
V4—O61.910 (3)N7—H7A0.8800
V4—O51.918 (3)N7—H7B0.8800
V4—O12.144 (2)N8—H8A0.8800
V4—O22.146 (3)N8—H8B0.8800
V4—V53.1007 (9)N9—H9A0.8800
V4—V73.1813 (9)N9—H9B0.8800
V4—V93.1917 (8)C4—N101.310 (6)
V4—V83.2127 (9)C4—N121.312 (6)
V5—O241.586 (3)C4—N111.331 (6)
V5—O121.816 (3)N10—H10A0.8800
V5—O201.878 (3)N10—H10B0.8800
V5—O141.890 (3)N11—H11A0.8800
V5—O112.041 (3)N11—H11B0.8800
V5—O12.379 (3)N12—H12A0.8800
V5—V93.1350 (9)N12—H12B0.8800
V5—V63.1752 (10)C5—N141.304 (6)
V6—O251.613 (3)C5—N131.313 (6)
V6—O131.814 (2)C5—N151.321 (6)
V6—O141.817 (3)N13—H13A0.8800
V6—O51.999 (2)N13—H13B0.8800
V6—O32.018 (3)N14—H14A0.8800
V6—O12.265 (3)N14—H14B0.8800
V6—V73.0983 (9)N15—H15A0.8800
V7—O261.614 (3)N15—H15B0.8800
V7—O151.783 (3)
O2—Pt1—O184.53 (10)O24—V5—Pt1178.05 (11)
O2—Pt1—O8172.49 (11)O12—V5—Pt177.36 (8)
O1—Pt1—O888.24 (10)O20—V5—Pt176.70 (8)
O2—Pt1—O385.20 (10)O14—V5—Pt175.62 (8)
O1—Pt1—O385.47 (10)O11—V5—Pt176.28 (7)
O8—Pt1—O392.21 (11)O1—V5—Pt12.55 (6)
O2—Pt1—O788.64 (11)V4—V5—Pt146.173 (14)
O1—Pt1—O7173.15 (10)V1—V5—Pt145.540 (14)
O8—Pt1—O798.57 (11)V9—V5—Pt145.729 (14)
O3—Pt1—O793.47 (11)V6—V5—Pt145.470 (14)
O2—Pt1—O485.77 (10)O25—V6—O13103.81 (13)
O1—Pt1—O485.55 (10)O25—V6—O14102.67 (14)
O8—Pt1—O495.72 (10)O13—V6—O1494.04 (12)
O3—Pt1—O4167.82 (10)O25—V6—O5101.34 (12)
O7—Pt1—O494.47 (11)O13—V6—O5153.19 (11)
O2—Pt1—V688.63 (7)O14—V6—O589.37 (11)
O1—Pt1—V646.58 (7)O25—V6—O398.90 (13)
O8—Pt1—V684.91 (8)O13—V6—O390.32 (11)
O3—Pt1—V639.48 (7)O14—V6—O3156.26 (12)
O7—Pt1—V6132.91 (9)O5—V6—O376.68 (10)
O4—Pt1—V6132.13 (7)O25—V6—O1175.61 (12)
O2—Pt1—V249.00 (8)O13—V6—O179.64 (10)
O1—Pt1—V2133.53 (7)O14—V6—O179.62 (11)
O8—Pt1—V2138.17 (8)O5—V6—O174.83 (9)
O3—Pt1—V289.62 (7)O3—V6—O178.23 (10)
O7—Pt1—V239.63 (8)O25—V6—V791.14 (11)
O4—Pt1—V290.61 (7)O13—V6—V7130.73 (9)
V6—Pt1—V2119.971 (17)O14—V6—V7128.46 (9)
O2—Pt1—V1133.33 (8)O5—V6—V739.09 (7)
O1—Pt1—V148.80 (7)O3—V6—V740.62 (7)
O8—Pt1—V139.44 (8)O1—V6—V784.52 (6)
O3—Pt1—V189.61 (7)O25—V6—Pt1137.90 (11)
O7—Pt1—V1138.01 (8)O13—V6—Pt178.69 (8)
O4—Pt1—V190.65 (7)O14—V6—Pt1119.21 (9)
V6—Pt1—V160.459 (17)O5—V6—Pt176.47 (7)
V2—Pt1—V1177.448 (17)O3—V6—Pt139.16 (7)
O2—Pt1—V846.88 (7)O1—V6—Pt139.60 (6)
O1—Pt1—V889.16 (7)V7—V6—Pt160.354 (17)
O8—Pt1—V8135.23 (8)O25—V6—V1135.49 (10)
O3—Pt1—V8132.08 (7)O13—V6—V131.94 (8)
O7—Pt1—V886.53 (8)O14—V6—V182.78 (9)
O4—Pt1—V839.54 (7)O5—V6—V1123.02 (8)
V6—Pt1—V8123.136 (17)O3—V6—V188.80 (7)
V2—Pt1—V861.145 (17)O1—V6—V148.22 (6)
V1—Pt1—V8120.993 (17)V7—V6—V1120.16 (3)
O2—Pt1—V745.71 (7)Pt1—V6—V159.808 (16)
O1—Pt1—V788.59 (7)O25—V6—V5134.23 (11)
O8—Pt1—V7132.24 (8)O13—V6—V582.89 (9)
O3—Pt1—V740.03 (7)O14—V6—V531.74 (9)
O7—Pt1—V786.26 (8)O5—V6—V586.23 (8)
O4—Pt1—V7131.48 (7)O3—V6—V5126.59 (8)
V6—Pt1—V759.613 (17)O1—V6—V548.39 (6)
V2—Pt1—V760.396 (18)V7—V6—V5118.85 (3)
V1—Pt1—V7120.068 (17)Pt1—V6—V587.86 (2)
V8—Pt1—V792.341 (17)V1—V6—V559.39 (2)
O2—Pt1—V989.03 (7)O26—V7—O15103.70 (13)
O1—Pt1—V946.24 (7)O26—V7—O16103.99 (14)
O8—Pt1—V987.44 (8)O15—V7—O1694.81 (12)
O3—Pt1—V9131.71 (7)O26—V7—O5100.30 (13)
O7—Pt1—V9134.34 (9)O15—V7—O591.17 (11)
O4—Pt1—V939.90 (7)O16—V7—O5152.79 (11)
V6—Pt1—V992.592 (17)O26—V7—O397.09 (12)
V2—Pt1—V9121.067 (17)O15—V7—O3157.33 (12)
V1—Pt1—V961.082 (17)O16—V7—O388.77 (11)
V8—Pt1—V959.923 (16)O5—V7—O376.14 (10)
V7—Pt1—V9122.162 (17)O26—V7—O2173.88 (12)
O21—V1—O12101.90 (13)O15—V7—O280.84 (11)
O21—V1—O13102.48 (13)O16—V7—O279.47 (11)
O12—V1—O1391.21 (12)O5—V7—O275.32 (10)
O21—V1—O19104.68 (13)O3—V7—O277.81 (9)
O12—V1—O1989.28 (12)O26—V7—V689.37 (10)
O13—V1—O19152.12 (11)O15—V7—V6130.34 (9)
O21—V1—O899.23 (13)O16—V7—V6128.61 (8)
O12—V1—O8158.87 (11)O5—V7—V639.17 (7)
O13—V1—O883.73 (12)O3—V7—V639.98 (7)
O19—V1—O885.85 (12)O2—V7—V684.55 (7)
O21—V1—O1177.76 (13)O26—V7—Pt1136.05 (10)
O12—V1—O180.22 (10)O15—V7—Pt1120.04 (9)
O13—V1—O176.66 (10)O16—V7—Pt177.78 (8)
O19—V1—O175.96 (10)O5—V7—Pt176.26 (7)
O8—V1—O178.65 (10)O3—V7—Pt139.09 (7)
O21—V1—Pt1138.24 (11)O2—V7—Pt139.20 (6)
O12—V1—Pt1119.86 (8)V6—V7—Pt160.033 (16)
O13—V1—Pt178.04 (8)O26—V7—V2135.58 (11)
O19—V1—Pt177.59 (8)O15—V7—V283.25 (9)
O8—V1—Pt139.01 (7)O16—V7—V231.79 (8)
O1—V1—Pt139.65 (6)O5—V7—V2123.65 (8)
O21—V1—V5133.06 (11)O3—V7—V288.25 (7)
O12—V1—V531.18 (8)O2—V7—V248.39 (7)
O13—V1—V583.65 (8)V6—V7—V2119.65 (2)
O19—V1—V582.44 (8)Pt1—V7—V259.655 (17)
O8—V1—V5127.69 (8)O26—V7—V3136.01 (10)
O1—V1—V549.05 (6)O15—V7—V332.45 (9)
Pt1—V1—V588.695 (19)O16—V7—V383.39 (8)
O21—V1—V6133.24 (11)O5—V7—V387.65 (8)
O12—V1—V681.20 (8)O3—V7—V3126.67 (8)
O13—V1—V631.05 (8)O2—V7—V348.87 (6)
O19—V1—V6122.06 (8)V6—V7—V3120.04 (3)
O8—V1—V684.01 (8)Pt1—V7—V387.92 (2)
O1—V1—V646.11 (6)V2—V7—V359.50 (2)
Pt1—V1—V659.733 (16)O26—V7—V4134.18 (11)
V5—V1—V660.96 (2)O15—V7—V476.62 (9)
O21—V1—V9135.39 (11)O16—V7—V4121.76 (9)
O12—V1—V979.48 (8)O5—V7—V434.81 (7)
O13—V1—V9122.12 (8)O3—V7—V482.46 (7)
O19—V1—V931.04 (7)O2—V7—V442.36 (7)
O8—V1—V985.87 (8)V6—V7—V461.25 (2)
O1—V1—V945.48 (6)Pt1—V7—V459.913 (16)
Pt1—V1—V959.623 (16)V2—V7—V490.24 (2)
V5—V1—V959.72 (2)V3—V7—V458.83 (2)
V6—V1—V991.30 (2)O27—V8—O17105.25 (13)
O21—V1—V4176.81 (11)O27—V8—O18103.02 (13)
O12—V1—V475.10 (8)O17—V8—O1894.17 (12)
O13—V1—V476.69 (8)O27—V8—O6101.22 (13)
O19—V1—V476.51 (7)O17—V8—O6152.09 (11)
O8—V1—V483.77 (7)O18—V8—O688.30 (11)
O1—V1—V45.14 (6)O27—V8—O498.35 (12)
Pt1—V1—V444.779 (11)O17—V8—O491.43 (11)
V5—V1—V443.920 (16)O18—V8—O4155.59 (12)
V6—V1—V445.732 (16)O6—V8—O476.00 (10)
V9—V1—V445.584 (16)O27—V8—O2174.58 (12)
O22—V2—O16104.30 (14)O17—V8—O278.93 (11)
O22—V2—O9102.60 (13)O18—V8—O279.87 (11)
O16—V2—O991.29 (12)O6—V8—O274.15 (10)
O22—V2—O17103.18 (14)O4—V8—O277.94 (9)
O16—V2—O17151.97 (12)O27—V8—V990.54 (10)
O9—V2—O1788.03 (12)O17—V8—V9131.21 (8)
O22—V2—O798.69 (13)O18—V8—V9127.33 (9)
O16—V2—O784.76 (12)O6—V8—V939.03 (7)
O9—V2—O7158.66 (12)O4—V8—V940.09 (7)
O17—V2—O785.78 (11)O2—V8—V984.09 (6)
O22—V2—O2177.18 (12)O27—V8—Pt1137.43 (10)
O16—V2—O276.68 (10)O17—V8—Pt178.76 (8)
O9—V2—O279.97 (11)O18—V8—Pt1119.13 (9)
O17—V2—O275.62 (10)O6—V8—Pt175.82 (7)
O7—V2—O278.71 (10)O4—V8—Pt139.22 (7)
O22—V2—Pt1137.88 (10)O2—V8—Pt139.29 (6)
O16—V2—Pt178.07 (8)V9—V8—Pt160.091 (16)
O9—V2—Pt1119.48 (9)O27—V8—V3133.93 (10)
O17—V2—Pt177.95 (8)O17—V8—V381.63 (8)
O7—V2—Pt139.20 (8)O18—V8—V331.21 (9)
O2—V2—Pt139.51 (6)O6—V8—V386.41 (7)
O22—V2—V3133.20 (10)O4—V8—V3127.35 (8)
O16—V2—V384.65 (8)O2—V8—V349.46 (6)
O9—V2—V330.64 (9)V9—V8—V3119.40 (3)
O17—V2—V380.59 (8)Pt1—V8—V388.60 (2)
O7—V2—V3128.03 (8)O27—V8—V2136.74 (10)
O2—V2—V349.34 (6)O17—V8—V231.60 (8)
Pt1—V2—V388.84 (2)O18—V8—V283.79 (9)
O22—V2—V7135.75 (11)O6—V8—V2121.82 (8)
O16—V2—V731.83 (8)O4—V8—V288.72 (7)
O9—V2—V780.20 (9)O2—V8—V247.70 (7)
O17—V2—V7121.07 (8)V9—V8—V2119.38 (2)
O7—V2—V785.58 (9)Pt1—V8—V259.289 (17)
O2—V2—V745.54 (6)V3—V8—V259.53 (2)
Pt1—V2—V759.949 (17)O27—V8—V4134.15 (10)
V3—V2—V760.84 (2)O17—V8—V4120.60 (9)
O22—V2—V8133.04 (11)O18—V8—V474.73 (9)
O16—V2—V8122.62 (9)O6—V8—V433.95 (7)
O9—V2—V879.61 (9)O4—V8—V481.96 (7)
O17—V2—V830.01 (8)O2—V8—V441.85 (7)
O7—V2—V884.89 (8)V9—V8—V460.519 (19)
O2—V2—V845.95 (6)Pt1—V8—V459.579 (16)
Pt1—V2—V859.566 (16)V3—V8—V458.88 (2)
V3—V2—V859.67 (2)V2—V8—V489.05 (2)
V7—V2—V891.15 (2)O28—V9—O20104.09 (13)
O22—V2—V4177.21 (10)O28—V9—O19103.45 (13)
O16—V2—V476.96 (8)O20—V9—O1994.99 (12)
O9—V2—V474.81 (9)O28—V9—O6101.66 (12)
O17—V2—V475.84 (8)O20—V9—O690.33 (11)
O7—V2—V483.87 (8)O19—V9—O6152.18 (11)
O2—V2—V45.16 (6)O28—V9—O496.30 (13)
Pt1—V2—V444.673 (12)O20—V9—O4157.32 (11)
V3—V2—V444.184 (16)O19—V9—O489.74 (11)
V7—V2—V445.295 (17)O6—V9—O475.73 (10)
V8—V2—V445.861 (16)O28—V9—O1173.88 (12)
O23—V3—O9104.06 (14)O20—V9—O181.06 (10)
O23—V3—O18104.91 (14)O19—V9—O179.15 (10)
O9—V3—O1893.52 (13)O6—V9—O174.74 (10)
O23—V3—O15102.55 (14)O4—V9—O178.08 (9)
O9—V3—O1588.98 (12)O28—V9—V889.57 (10)
O18—V3—O15150.91 (11)O20—V9—V8129.43 (9)
O23—V3—O10102.92 (13)O19—V9—V8129.28 (9)
O9—V3—O10152.70 (11)O6—V9—V839.10 (7)
O18—V3—O1083.57 (12)O4—V9—V839.74 (7)
O15—V3—O1081.10 (11)O1—V9—V884.55 (6)
O23—V3—O2175.10 (13)O28—V9—Pt1135.31 (11)
O9—V3—O279.80 (10)O20—V9—Pt1120.42 (9)
O18—V3—O277.65 (10)O19—V9—Pt178.01 (8)
O15—V3—O274.29 (10)O6—V9—Pt175.77 (7)
O10—V3—O273.05 (9)O4—V9—Pt139.23 (7)
O23—V3—V4132.64 (11)O1—V9—Pt139.37 (6)
O9—V3—V4123.15 (9)V8—V9—Pt159.986 (16)
O18—V3—V477.73 (9)O28—V9—V5136.34 (11)
O15—V3—V476.70 (8)O20—V9—V532.50 (8)
O10—V3—V429.73 (7)O19—V9—V583.03 (8)
O2—V3—V443.36 (6)O6—V9—V587.05 (8)
O23—V3—V2135.73 (11)O4—V9—V5127.14 (7)
O9—V3—V231.70 (8)O1—V9—V549.11 (6)
O18—V3—V285.62 (9)V8—V9—V5119.86 (2)
O15—V3—V281.40 (8)Pt1—V9—V588.34 (2)
O10—V3—V2121.11 (7)O28—V9—V1135.49 (10)
O2—V3—V248.10 (6)O20—V9—V183.87 (8)
V4—V3—V291.46 (2)O19—V9—V132.15 (8)
O23—V3—V8136.60 (12)O6—V9—V1122.28 (8)
O9—V3—V881.38 (9)O4—V9—V188.55 (7)
O18—V3—V832.00 (8)O1—V9—V147.59 (6)
O15—V3—V8120.72 (8)V8—V9—V1119.27 (3)
O10—V3—V882.01 (7)Pt1—V9—V159.295 (16)
O2—V3—V846.43 (6)V5—V9—V159.44 (2)
V4—V3—V861.80 (2)O28—V9—V4135.28 (10)
V2—V3—V860.80 (2)O20—V9—V476.28 (8)
O23—V3—V7132.27 (12)O19—V9—V4121.19 (8)
O9—V3—V779.87 (9)O6—V9—V434.44 (7)
O18—V3—V7122.50 (8)O4—V9—V482.30 (7)
O15—V3—V729.84 (7)O1—V9—V442.14 (6)
O10—V3—V778.95 (7)V8—V9—V461.191 (19)
O2—V3—V744.88 (6)Pt1—V9—V459.772 (16)
V4—V3—V760.73 (2)V5—V9—V458.686 (19)
V2—V3—V759.66 (2)V1—V9—V489.23 (2)
V8—V3—V791.12 (2)Pt1—O1—V499.19 (10)
O23—V3—Pt1177.51 (12)Pt1—O1—V994.39 (10)
O9—V3—Pt177.11 (8)V4—O1—V992.76 (10)
O18—V3—Pt177.13 (8)Pt1—O1—V693.82 (10)
O15—V3—Pt175.21 (7)V4—O1—V693.01 (9)
O10—V3—Pt175.77 (7)V9—O1—V6169.09 (12)
O2—V3—Pt12.81 (6)Pt1—O1—V191.55 (9)
V4—V3—Pt146.065 (13)V4—O1—V1169.24 (13)
V2—V3—Pt145.410 (14)V9—O1—V186.93 (8)
V8—V3—Pt145.571 (14)V6—O1—V185.67 (9)
V7—V3—Pt145.558 (13)Pt1—O1—V5174.41 (12)
O10—V4—O11108.43 (13)V4—O1—V586.39 (9)
O10—V4—O698.49 (12)V9—O1—V584.91 (9)
O11—V4—O697.67 (12)V6—O1—V586.22 (9)
O10—V4—O597.08 (12)V1—O1—V582.87 (8)
O11—V4—O598.38 (12)Pt1—O2—V499.33 (10)
O6—V4—O5152.79 (11)Pt1—O2—V795.09 (10)
O10—V4—O1164.10 (12)V4—O2—V792.87 (10)
O11—V4—O187.45 (11)Pt1—O2—V893.83 (9)
O6—V4—O179.56 (10)V4—O2—V892.93 (10)
O5—V4—O179.36 (10)V7—O2—V8168.43 (12)
O10—V4—O287.17 (11)Pt1—O2—V291.48 (10)
O11—V4—O2164.40 (11)V4—O2—V2169.19 (12)
O6—V4—O279.41 (10)V7—O2—V286.07 (9)
O5—V4—O279.22 (10)V8—O2—V286.35 (9)
O1—V4—O276.95 (9)Pt1—O2—V3173.80 (14)
O10—V4—V5145.90 (9)V4—O2—V386.64 (9)
O11—V4—V537.48 (9)V7—O2—V386.25 (8)
O6—V4—V589.74 (8)V8—O2—V384.11 (8)
O5—V4—V589.76 (8)V2—O2—V382.56 (8)
O1—V4—V549.98 (7)Pt1—O3—V6101.36 (11)
O2—V4—V5126.92 (7)Pt1—O3—V7100.87 (11)
O10—V4—V337.22 (9)V6—O3—V799.40 (11)
O11—V4—V3145.58 (9)Pt1—O4—V8101.24 (11)
O6—V4—V388.52 (8)Pt1—O4—V9100.88 (11)
O5—V4—V390.53 (8)V8—O4—V9100.17 (11)
O1—V4—V3126.93 (7)V4—O5—V7108.75 (12)
O2—V4—V350.00 (6)V4—O5—V6109.54 (12)
V5—V4—V3176.75 (3)V7—O5—V6101.74 (11)
O10—V4—Pt1125.56 (9)V4—O6—V9109.10 (12)
O11—V4—Pt1126.01 (9)V4—O6—V8110.04 (12)
O6—V4—Pt176.30 (7)V9—O6—V8101.86 (11)
O5—V4—Pt176.49 (7)Pt1—O7—V2101.17 (12)
O1—V4—Pt138.56 (7)Pt1—O7—H7121 (5)
O2—V4—Pt138.39 (6)V2—O7—H799 (5)
V5—V4—Pt188.538 (19)Pt1—O8—V1101.55 (12)
V3—V4—Pt188.38 (2)Pt1—O8—H8108 (6)
O10—V4—V783.71 (9)V1—O8—H8107 (6)
O11—V4—V7134.82 (10)V3—O9—V2117.66 (14)
O6—V4—V7124.10 (8)V4—O10—V3113.05 (13)
O5—V4—V736.44 (8)V4—O11—V5112.42 (13)
O1—V4—V784.42 (7)V5—O12—V1117.00 (13)
O2—V4—V744.77 (7)V6—O13—V1117.01 (13)
V5—V4—V7118.59 (3)V6—O14—V5117.87 (14)
V3—V4—V760.44 (2)V7—O15—V3117.71 (13)
Pt1—V4—V759.101 (16)V2—O16—V7116.38 (14)
O10—V4—V9134.95 (9)V8—O17—V2118.38 (14)
O11—V4—V984.27 (9)V8—O17—O21i106.13 (12)
O6—V4—V936.46 (7)V2—O17—O21i129.86 (13)
O5—V4—V9124.37 (7)V3—O18—V8116.79 (14)
O1—V4—V945.10 (7)V9—O19—V1116.81 (13)
O2—V4—V984.48 (7)V9—O20—V5116.27 (14)
V5—V4—V959.74 (2)N1—C1—N2120.7 (4)
V3—V4—V9117.60 (3)N1—C1—N3119.8 (4)
Pt1—V4—V959.053 (16)N2—C1—N3119.4 (4)
V7—V4—V9118.15 (2)C1—N1—H1A120.0
O10—V4—V885.22 (9)C1—N1—H1B120.0
O11—V4—V8133.67 (9)H1A—N1—H1B120.0
O6—V4—V836.00 (8)C1—N2—H2A120.0
O5—V4—V8124.33 (8)C1—N2—H2B120.0
O1—V4—V884.14 (7)H2A—N2—H2B120.0
O2—V4—V845.22 (7)C1—N3—H3A120.0
V5—V4—V8118.02 (2)C1—N3—H3B120.0
V3—V4—V859.32 (2)H3A—N3—H3B120.0
Pt1—V4—V858.765 (16)N6—C2—N5120.2 (4)
V7—V4—V889.55 (2)N6—C2—N4120.1 (4)
V9—V4—V858.291 (19)N5—C2—N4119.7 (4)
O24—V5—O12104.52 (14)C2—N4—H4A120.0
O24—V5—O20103.68 (14)C2—N4—H4B120.0
O12—V5—O2091.21 (12)H4A—N4—H4B120.0
O24—V5—O14103.73 (14)C2—N5—H5A120.0
O12—V5—O1490.15 (12)C2—N5—H5B120.0
O20—V5—O14151.27 (12)H5A—N5—H5B120.0
O24—V5—O11101.84 (13)C2—N6—H6A120.0
O12—V5—O11153.64 (11)C2—N6—H6B120.0
O20—V5—O1182.82 (11)H6A—N6—H6B120.0
O14—V5—O1183.32 (11)N8—C3—N9120.7 (4)
O24—V5—O1175.53 (13)N8—C3—N7119.5 (4)
O12—V5—O179.90 (10)N9—C3—N7119.8 (4)
O20—V5—O176.70 (10)C3—N7—H7A120.0
O14—V5—O175.30 (10)C3—N7—H7B120.0
O11—V5—O173.74 (9)H7A—N7—H7B120.0
O24—V5—V4131.95 (11)C3—N8—H8A120.0
O12—V5—V4123.53 (9)C3—N8—H8B120.0
O20—V5—V478.03 (8)H8A—N8—H8B120.0
O14—V5—V477.35 (8)C3—N9—H9A120.0
O11—V5—V430.11 (7)C3—N9—H9B120.0
O1—V5—V443.63 (6)H9A—N9—H9B120.0
O24—V5—V1136.33 (11)N10—C4—N12120.6 (5)
O12—V5—V131.82 (8)N10—C4—N11119.9 (5)
O20—V5—V184.17 (8)N12—C4—N11119.4 (5)
O14—V5—V181.98 (8)C4—N10—H10A120.0
O11—V5—V1121.82 (8)C4—N10—H10B120.0
O1—V5—V148.08 (6)H10A—N10—H10B120.0
V4—V5—V191.71 (2)C4—N11—H11A120.0
O24—V5—V9134.78 (12)C4—N11—H11B120.0
O12—V5—V980.92 (8)H11A—N11—H11B120.0
O20—V5—V931.23 (8)C4—N12—H12A120.0
O14—V5—V9121.29 (8)C4—N12—H12B120.0
O11—V5—V980.79 (8)H12A—N12—H12B120.0
O1—V5—V945.98 (6)N14—C5—N13120.8 (4)
V4—V5—V961.57 (2)N14—C5—N15120.0 (4)
V1—V5—V960.84 (2)N13—C5—N15119.2 (4)
O24—V5—V6134.00 (12)C5—N13—H13A120.0
O12—V5—V680.48 (9)C5—N13—H13B120.0
O20—V5—V6122.09 (8)H13A—N13—H13B120.0
O14—V5—V630.39 (8)C5—N14—H14A120.0
O11—V5—V681.08 (8)C5—N14—H14B120.0
O1—V5—V645.39 (6)H14A—N14—H14B120.0
V4—V5—V661.29 (2)C5—N15—H15A120.0
V1—V5—V659.65 (2)C5—N15—H15B120.0
V9—V5—V691.19 (2)H15A—N15—H15B120.0
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O19i0.73 (6)2.06 (6)2.718 (4)152 (7)
O8—H8···O4i0.77 (7)1.87 (8)2.626 (4)165 (8)
N1—H1A···O26ii0.882.112.916 (5)153
N1—H1B···O17iii0.882.182.970 (5)149
N2—H2A···O25ii0.881.992.863 (5)173
N2—H2B···O120.882.393.105 (5)138
N3—H3A···O22iii0.882.192.973 (5)148
N3—H3B···O210.882.233.018 (5)149
N4—H4A···O15iii0.882.443.224 (5)149
N4—H4B···O28iv0.882.302.985 (5)134
N5—H5A···O140.882.062.932 (5)173
N5—H5B···O28iv0.882.102.830 (5)140
N6—H6A···O120.882.072.899 (5)156
N6—H6B···O9iii0.881.862.737 (5)171
N7—H7A···O21ii0.882.353.084 (5)142
N7—H7B···O26v0.882.363.179 (5)154
N8—H8A···O200.882.122.942 (5)154
N8—H8B···O13ii0.882.042.890 (4)161
N9—H9A···O110.882.203.025 (5)157
N9—H9B···O15v0.882.192.936 (5)142
N10—H10A···O30.882.072.892 (5)156
N10—H10B···N7iv0.882.623.349 (6)141
N11—H11A···O23vi0.882.403.171 (5)147
N11—H11B···O23vii0.882.062.923 (6)168
N12—H12A···O260.882.463.159 (5)137
N12—H12B···O18vii0.882.243.063 (5)157
N13—H13A···O60.882.423.216 (5)150
N13—H13B···O16viii0.882.142.892 (5)143
N14—H14A···O100.882.022.876 (5)165
N14—H14B···O14v0.882.172.947 (5)147
N15—H15A···O25v0.882.173.034 (5)169
N15—H15B···O22viii0.882.052.911 (5)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x1, y, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x1/2, y+3/2, z+1/2; (vii) x+3/2, y+1/2, z+1/2; (viii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(CH6N3)5[H2PtV9O28]
Mr1404.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)147
a, b, c (Å)12.8861 (3), 18.5137 (5), 15.2299 (4)
β (°) 91.143 (1)
V3)3632.67 (16)
Z4
Radiation typeMo Kα
µ (mm1)6.15
Crystal size (mm)0.09 × 0.06 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.187, 0.305
No. of measured, independent and
observed [I > 2σ(I)] reflections
35027, 9026, 7369
Rint0.029
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.04
No. of reflections9026
No. of parameters531
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.02, 0.75

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O19i0.73 (6)2.06 (6)2.718 (4)152 (7)
O8—H8···O4i0.77 (7)1.87 (8)2.626 (4)165 (8)
N1—H1A···O26ii0.882.112.916 (5)152.7
N1—H1B···O17iii0.882.182.970 (5)149.3
N2—H2A···O25ii0.881.992.863 (5)173.3
N2—H2B···O120.882.393.105 (5)138.2
N3—H3A···O22iii0.882.192.973 (5)147.8
N3—H3B···O210.882.233.018 (5)149.3
N4—H4A···O15iii0.882.443.224 (5)148.6
N4—H4B···O28iv0.882.302.985 (5)134.3
N5—H5A···O140.882.062.932 (5)172.8
N5—H5B···O28iv0.882.102.830 (5)140.3
N6—H6A···O120.882.072.899 (5)156.4
N6—H6B···O9iii0.881.862.737 (5)171.1
N7—H7A···O21ii0.882.353.084 (5)141.5
N7—H7B···O26v0.882.363.179 (5)154.2
N8—H8A···O200.882.122.942 (5)154.4
N8—H8B···O13ii0.882.042.890 (4)160.8
N9—H9A···O110.882.203.025 (5)156.7
N9—H9B···O15v0.882.192.936 (5)142.2
N10—H10A···O30.882.072.892 (5)155.5
N10—H10B···N7iv0.882.623.349 (6)140.5
N11—H11A···O23vi0.882.403.171 (5)146.9
N11—H11B···O23vii0.882.062.923 (6)168.3
N12—H12A···O260.882.463.159 (5)136.8
N12—H12B···O18vii0.882.243.063 (5)156.5
N13—H13A···O60.882.423.216 (5)149.8
N13—H13B···O16viii0.882.142.892 (5)143.3
N14—H14A···O100.882.022.876 (5)165.4
N14—H14B···O14v0.882.172.947 (5)147.0
N15—H15A···O25v0.882.173.034 (5)168.8
N15—H15B···O22viii0.882.052.911 (5)166.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x1, y, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x1/2, y+3/2, z+1/2; (vii) x+3/2, y+1/2, z+1/2; (viii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Pukyong National University Research Fund in 2010 (PK-2010-041).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKonaka, S., Ozawa, Y., Shonaka, T., Watanabe, S. & Yagasaki, A. (2011). Inorg. Chem. 50, 6183–6188.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLee, U. (2006). Acta Cryst. E62, i176–i178.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U., Joo, H.-J., Park, K.-M., Mal, S. S., Kortz, U., Keita, B. & Nadjo, L. (2008). Angew. Chem. Int. Ed. 47, 793–796.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds